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Terahertz emission from ac Stark-split asymmetric intersubband transitions
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Transitions between the two states of an ac Stark-split doublet are forbidden in centrosymmetric systems, and
thus almost impossible to observe in experiments performed with atomic clouds. However, electrons trapped in
nanoscopic heterostructures can behave as artificial atoms, with the advantage that the wave-function symmetry
can be broken by using asymmetric confining potentials. Here we develop the many-body theory describing
the intradoublet emission of a resonantly pumped intersubband transition in a doped asymmetric quantum well,
showing that in such a system the intradoublet emission can be orders of magnitude higher than in previously
studied systems. This emission channel, which lies in the terahertz range and whose frequency depends upon the
pump power, opens the way to the realization of monolithic and tunable terahertz emitters.
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I. INTRODUCTION

When an electronic transition of a quantum system is driven
by a strong optical pump, the field dresses the system, splitting
the energy levels into doublets (see Fig. 1), whose energy
separation is given by the Rabi splitting

�� = dE, (1)

where d is the transition’s dipole and E is the amplitude
of the applied electric field. This effect is known as the
dynamical (or ac) Stark effect [1]. The fluorescence spectrum
of such a system is characterized by the Mollow triplet [2,3],
which arises from transitions between states of neighboring
Rabi doublets (thick black arrows in Fig. 1). Transitions
between states belonging to the same Rabi doublet (thick red
arrows in Fig. 1) are dipole forbidden in centrosymmetric
systems. By breaking the symmetry of the potential that
confines the electrons, this selection rule can be lifted [4],
allowing emission lines centered at the Rabi frequency � to be
observed.

A more intuitive understanding of such an emission channel
can be gained by reasoning in the time domain, where the
electrons undergo Rabi oscillations at frequency � between
the initial and final bare states under the effect of the pump.
In a centrosymmetric system, the average electron position
is the same for both of these states, and Rabi oscillations
do not result in a net charge oscillation. If the symmetry of
the electronic wave functions is broken instead, the electronic
charge oscillates back and forth, and we expect the system to
radiate as a dipole oscillating at frequency � [see Fig. 2(a) for
a pictorial representation].

Interband transitions in quantum dots have been proposed
as candidates for observing this emission channel [5], but the
magnitude of their asymmetric dipole is small and difficult to
control, as it relies on the intrinsic anisotropy of the crystal
lattice. Intersubband transitions (ISBTs) in doped quantum
wells (QWs) appear to be a better candidate, thanks to the
possibility of tailoring their asymmetry by engineering the
confining structure [6]. Moreover, for these systems, the Rabi
splitting lies in the terahertz (THz) domain [7], and it depends
on the intensity of the pump beam, as shown by Eq. (1).
Symmetry-forbidden transitions in ISBTs, apart from their

fundamental interest in quantum optics, could thus empower
a generation of extremely tunable, monolithic THz emitters.

The possibility of using asymmetric QWs to obtain THz
radiation was recently explored by two of the present authors
[8] in the polaritonic case, where the splitting is not due to the
high intensity of the pump laser, but to the strong coupling of
ISBTs to the vacuum field of a photonic microcavity. In that
case, in the dilute excitation regime, the spectrum of the system
is composed of quasibosonic excitations called intersubband
polaritons [9–14]. In Ref. [8], it was shown that an asymmetric
QW structure can give rise to scattering between different
polaritonic branches, leading to the possibility of designing
an efficient THz laser, whose emission frequency could be
partially tuned by modifying the electron density in the QWs
[15,16]. Related works, which also use symmetry breaking
to observe otherwise forbidden emissions, have also recently
been proposed [17–22].

Bare states  Dressed states
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FIG. 1. (Color online) Spectrum of a two-level system resonantly
driven with amplitude E . Interdoublet transitions (thick black arrows)
give rise to the Mollow triplet with emission centered at frequencies
ω12 and ω12 ± �. Intradoublet transitions (thick red arrows) at
frequency � are forbidden in centrosymmetric systems.
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FIG. 2. (Color online) (a) An asymmetric quantum well and the
wave functions of its first two conduction subbands. Due to the
asymmetry, the average charge position in the two subbands is
different. Electrons cycling between them under the effect of a
resonant pump generate a radiating dipole of length �z, oscillating
at the Rabi frequency �. (b) The parabolic dispersion in k space of
the first two conduction subbands.

Compared with these existing works, the scheme presented
here offers the advantages of an extreme tunability of the
emission frequency, and of a comparatively simple and flexible
design, because it does not rely on a resonant photonic cavity
coupled to the ISBT. From a theoretical point of view, a major
difference between this scheme and all of the others cited above
is that here we are interested in the full electron dynamics, and
so we cannot limit ourselves to the bosonic or quasibosonic
regime. We will thus have to work in a fermionic basis, without
any bosonization approximation.

Moreover, in this nonbosonic, nonlinear regime, the elec-
trons in ISBTs do not generally behave as independent dipoles
(as has been recently proven in Ref. [23]) and thus we cannot
a priori rely on the single dipole theory developed in Ref. [4].

In the following, we will thus develop a general theory of
the spontaneous emission from the resonantly driven ISBT
of a two-dimensional electron gas (2DEG). After developing
the general formalism to calculate the emission efficiency,
we will perform a numerical study of the magnitude of the
asymmetric dipole achievable in a QW structure. This will
allow us to quantify the experimentally achievable emission
efficiency and to address future experiments toward the best
sample geometry.

The paper is structured as follows: in Sec. II, we discuss
why symmetry-forbidden transitions have never been observed
in atomic physics experiments. In Sec. III, we develop a theory
describing optically pumped ISBTs. Such a theory will then
be used in Sec. IV to estimate the THz emission efficiency
for a realistic asymmetric device. Finally, conclusions and
perspectives are drawn in Sec. V.

II. ASYMMETRIC DIPOLE IN ATOMIC SYSTEMS

Before proceeding with our study of THz emission in asym-
metric QWs, it is instructive to recall why symmetry-forbidden

FIG. 3. (Color online) In an atom, the symmetry of the electronic
orbitals can, in principle, be broken by applying an external static
electric field, Estat. As the orbitals are deformed in the same
direction, the two induced dipoles, dnn and dmm, are parallel, and
the asymmetric dipole moment, �dnm = 〈n| d |n〉 − 〈m| d |m〉, only
grows differentially.

emission channels have never been observed with atomic
systems [24], which are usually an ideal testbed to observe
quantum optics phenomena. Although atoms are intrinsically
symmetric, their symmetry can be broken applying a static
electric field [25], as pictorially shown in Fig. 3.

The coupling with an external, static electric field Estat can
be described by the interaction Hamiltonian

Vstat = − d · Estat, (2)

where d is the atomic dipole. To first order in perturbation,
the asymmetric dipole between two states, |n〉 and |m〉, whose
energy difference is �ωnm, is

�dnm = 〈n| d |n〉 − 〈m| d |m〉 . (3)

The ratio between the unperturbed transition dipole,

dnm = 〈n| d |m〉 , (4)

and the asymmetric one, �dnm, is thus of the order of d·Estat
�ωnm

,
and, for nonionizing fields, it is always much less than unity.
A better estimate can be obtained by introducing the electric
polarizability for a state |n〉, αn, allowing the asymmetric
dipole to be rewritten as

�dnm = (αn − αm)E stat. (5)

Alkali atoms possess the strongest polarizabilities of both the
ground state (n = S1/2) and of the first excited states (m =
PJ , with J = {1/2,3/2}) due to the fact that just one valence
electron lies in the outer shell. Interpolating data from both
experimental measurements and theoretical calculations [26],
one finds that the difference in the polarizabilities of the ground
and first excited states of alkali atoms Li, Na, K, Rb, and Cs
are, at most, �1000 a3

0 , where a0 is the Bohr radius. Given that
the transition dipoles are instead ≈4 ea0, even considering an
extremely strong electric field up to Estat = 107 V/m [27] in
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Eq. (5), we obtain

�dnm/dnm � 0.003, (6)

implying that any effect due to the asymmetric dipole will be
very challenging to observe.

III. MAIN THEORY

A. ISBT under intense resonant pumping: ac Stark splitting

In a QW, spatial confinement along the growth z direction
splits the electron bands into multiple, quasiparallel subbands,
as shown in Fig. 2(b). Doping can raise the Fermi energy �ωF

between the first and the second subband edges, so that the first
conduction subband is partially filled with a 2DEG. Defining
cj,k to be the annihilation operator for an electron in the j th
subband, with in-plane wave vector k and energy �ωj,k, we can
write the Hamiltonian describing a doped quantum well under
the effect of a pump that is quasiresonant with the transition
between the first two conduction subbands, in the rotating
wave approximation (RWA), as

H0 = �

∑
j={1,2},k

ωj,kc
†
j,kcj,k

+ ��

2

∑
k

(c†2,k+q̄c1,ke
iωLt + c

†
1,kc2,k+q̄e

−iωLt ), (7)

where ωL is the pump frequency, q̄ is its in-plane wave vector,
and � is the Rabi frequency as defined in Eq. (1), proportional
to the square root of the pump intensity. Since the dipole of the
ISBT lies parallel to the growth axis, we can explicitly write

� = ez12E/�, (8)

where e is the electron charge, E is the amplitude of the pump
field,

zij =
∫

ψ∗
i (z)ψj (z)zdz, (9)

and ψj (z) is the envelope function of an electron in the j th
subband.

Hereafter, we neglect the photon momentum when it is
compared to the electronic one, i.e., we approximate ω2,k+q �
ω2,k, where ω2,k = ω1,k + ω12. By choosing a suitable rotating
frame and by setting the pump resonant with the ISBT bare
frequency, ωL = ω12, Eq. (7) can be rewritten as

H ′
0 =

∑
k

Hk = ��

2

∑
k

(c†2,k+q̄c1,k + c
†
1,kc2,k+q̄). (10)

Notice that since all of the interactions are spin conserving,
we have omitted the spin index in the electron operator here;
all of the sums over electronic wave vectors are thus implicitly
assumed to also be summed over electron spin. We also neglect
the electron-electron Coulomb interaction, since it has been
shown to amount, to leading order, only to a renormalization
of the intersubband energy �ω12, an effect usually referred to
as depolarization shift [28–31]. In the following, we assume
that the system is in a cryogenic environment, allowing us to
disregard all temperature effects.

The operators of a pair of electrons, with one in the first
subband with wave vector k and one in the second subband

(a) (b)

FIG. 4. (Color online) Representation of the (a) bare states and
(b) eigenstates of Hk.

with wave vector k + q̄, appear only once in the sum in
Eq. (10), in the term Hk, as shown pictorially in Fig. 4(a).
Each Hk thus acts on a different four-dimensional subspace
of the electronic Hilbert space (two electronic states, each of
them full or empty). Defining the ground state of the electronic
system without the pump coupling (� = 0) as

|G〉 =
∏

|k|<kF

c
†
1,k |0el〉 , (11)

with |0el〉 being the empty conduction band and kF the Fermi
wave vector, we can diagonalize Hk, writing its eigenvectors
explicitly as

Ek |G〉 = c1,k |G〉 ,

Fk |G〉 = c
†
2,k+q̄ |G〉 , (12)

M±
k |G〉 = 1√

2
(c†2,k+q̄c1,k ± 1) |G〉 .

A representation of these four states is presented in Fig. 4(b).
The first two states of Eq. (12) describe the full and empty
states, in which states in neither or both subbands in the
considered subspace of Hk are occupied. As these states do
not couple with the pump laser, in the rotating frame in which
we are working, both of these states are degenerate and have
zero energy. The other states in Eq. (12), with energy ±��

2 , are
instead states where only one electron is present and, under
the action of the pump, it cycles between the two subbands.

In order to be able to calculate the THz emission due to the
presence of an asymmetric dipole, we will start by finding the
full many-body eigenstates of Eq. (10), in order to then be able
to perturbatively calculate the emission using Fermi’s golden
rule.

From the decomposition of H ′
0 in a sum of commuting

Hamiltonians in Eq. (10), a general eigenvector of H ′
0 can be

put in the form

|ψ〉 =
∏

k∈S+

M+
k

∏
k∈S−

M−
k

∏
k∈SF

Fk

∏
k∈SE

Ek |G〉 , (13)

where the four sets S+, S−, SF , and SE are a partition of
the Fermi sphere, with cardinalities N+, N−, NF , and NE ,
respectively, which are constrained by the fact that the total
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electron number is conserved,

N = N+ + N− + 2NF . (14)

The eigenvalue of a given many-body state |ψ〉 in Eq. (13) is
thus given by

�ω0 = ��

2
(N+ − N−). (15)

For further reference, it is useful to calculate the following
operator products:

FkEk = M+
k + M−

k√
2

,

FkM
±
k = ± Fk√

2
,

(16)

EkM
±
k = ± Ek√

2
,

EkEk = FkFk = 0.

B. The light-matter coupling Hamiltonian

In order to calculate the photonic emission rate from dipolar
transitions between the states of the pumped electronic system,
we need to couple it to the electromagnetic field continuum.
This can be accomplished by considering the full Hamiltonian

H = H ′
0 + HEM + V, (17)

where HEM is the Hamiltonian of the free electromagnetic
field,

HEM = �

∑
q,qz

ωq,qz
a†

q,qz
aq,qz

, (18)

such that aq,qz
is the bosonic operator annihilating a photon

with in-plane and normal wave vectors q and qz respectively,
and energy �ωq,qz

. The term V describes the coupling between
the electronic subbands and the electromagnetic field. In the
rotating frame, this reads

V =
∑

k,q,qz

(a†
−q,qz

+ aq,qz
)

⎡
⎣ ∑

j={1,2}
χjj,q,qz

c
†
j,k+qcj,k

+ χ12,q,qz
(eiω12t c

†
2,k+qc1,k + e−iω12t c

†
1,kc2,k−q)

⎤
⎦ , (19)

where the explicit expressions for the coupling coefficients can
be written as

χij,q,qz
= E0

q√
q2 + q2

z

ezij , (20)

with

E0 = √
�ωq,qz

/(2ε0εrV) (21)

being the zero-point fluctuation of the electromagnetic field, V
the quantization volume, and εr the relative dielectric constant
inside the QW. Notice that because of the selection rules of
ISBTs, the photonic field is assumed to be transverse magnetic
(TM) polarized.

An inspection of Eq. (19) reveals that for q 
= q̄, V couples
subspaces corresponding to different values of k in Eq. (10).

Therefore, we cannot limit ourselves to treat each subspace
independently and we must calculate the transition matrix
elements while taking into account the full many-body nature
of the problem.

There are two qualitatively different kinds of terms that can
be identified in Eq. (19). The last two terms, whose coupling
is proportional to the intersubband dipole ez12, will give an
emission centered on the unperturbed frequency ω12, with two
satellite peaks at ω12 ± �. In the following, we disregard these
Mollow-like emission components and concentrate instead on
the remaining part of the interaction Hamiltonian,

VTHz =
∑

k,q,qz

(χ11,q,qz
c
†
1,k+qc1,k + χ22,q,qz

c
†
2,k+qc2,k)

× (a†
−q,qz

+ aq,qz
), (22)

which is responsible for the asymmetry-induced THz emis-
sion. Notice that using Eqs. (9) and (20), by a simple shift in
the origin of the z axis, we can shift both χ11,q,qz

and χ22,q,qz

by the same amount, while keeping χ12,q,qz
constant. We can

thus simplify Eq. (22) into

VTHz =
∑

k,q,qz

�χq,qz
c
†
2,k+qc2,k(a†

−q,qz
+ aq,qz

), (23)

where �χq,qz
= χ22,q,qz

− χ11,q,qz
. Thanks to the fact that VTHz

annihilates the ground state,

VTHz |G〉 |0ph〉 = 0, (24)

where |0ph〉 is the vacuum state for the electromagnetic field,
matrix elements of VTHz between the different eigenstates of
Eq. (13) can thus be easily calculated from the commutators
of VTHz. Straightforward algebra gives

[VTHz,M
±
k ] = 1√

2

∑
q,qz

�χq,qz
Fk+qEk(a†

−q,qz
+ aq,qz

),

[VTHz,Fk] =
∑
q,qz

�χq,qz
Fk+q(a†

−q,qz
+ aq,qz

), (25)

[VTHz,Ek] = 0.

C. Emission rates

We now have all of the tools we need to calculate the THz
emission due to the asymmetric dipole. To this aim, we employ
Fermi’s golden rule,

	 = 2π

�2

∑
f

|〈ψf | VTHz |ψi〉|2δ(ωi − ωf ), (26)

where the initial and final states, |ψi〉 and |ψf 〉, are eigenstates
of H ′

0 with energies �ωi and �ωf , respectively. We start by
calculating the emission induced by VTHz in the simplest case in
which all of the electrons are cycling between the two subbands
under the effect of the pump, and no electrons are blocked in
double excitation states (NF = 0), as in the process of Fig. 4(a).
This assumption is supported by previous experiments, with
limited asymmetry samples [7,32,33], where the fraction of
electrons participating in the coherent Rabi oscillation has
been estimated to be up to 90%. Although this assumption
neglects the electrons that end up in blocked states due to
the THz emission, inclusion of the latter does not alter the
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(a)
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FIG. 5. (Color online) (a)–(d) Schematical representation of the
four resonant processes involved in the emission of THz photons.

results significantly. Proving this, however, requires a rather
cumbersome algebraic calculation which has been relegated
to the Appendix for the sake of simplicity.

Using the notation of Eq. (13), we are thus considering
emission starting from states of the form

|ψi〉 =
∏

k∈S+

M+
k

∏
k∈S−

M−
k |G〉 |0ph〉 , (27)

whose energy we will call �ωi . The effect of VTHz, which is
shown pictorially in Fig. 5(a), can be calculated by commuting
it all the way to the right and using Eqs. (16), (24), and (25),

VTHz |ψi〉 = 1√
2

∑
k,q,qz

k∈S++S−

�χq,qz
Fk+qEk

×
∏
k′ 
=k

M
jk′
k′ a

†
−q,qz

|G〉 |0ph〉

=
∑

k,q,qz

k,k + q∈S++S−

jk+q

2
�χq,qz

Fk+qEk

×
∏

k′ 
=k,k+q

M
jk′
k′ a

†
−q,qz

|G〉 |0ph〉 , (28)

where jk = ±, and the sums and products over k, here and in
the remainder of the paper, are intended to be for k < kF, unless
otherwise specified. In Eq. (28), we have neglected border
terms when an electron inside the Fermi sphere is scattered to
the outside of it. The latter involve only electrons at a distance
q from the border of the Fermi sphere and are thus negligible

given that q/kF � 1. The right-hand side (rhs) of Eq. (28) is
a sum of terms that we can recognize, from Eq. (13), to be the
eigenstates of H ′

0. These states,

|ψf 〉 = Fk+qEk

∏
k′ 
=k,k+q

M
jk′
k′ a†

q,qz
|G〉 |0ph〉 , (29)

with energy

�ωf = �ωi + �ωq,qz
− ��

2
[(jk1) + (jk+q1)], (30)

will thus be the available final states for the scattering process
leading to THz emission. In particular, in order to satisfy
energy conservation, from Eq. (30), the only final states giving
rise to a photonic emission will be those with

jk = jk+q = +. (31)

At this point, we can apply Fermi’s golden rule to calculate
the THz emission rate as

	THz = 2π

�2

∑
k,q,qz

|�χq,qz
|2

4
δ(� − ωq,qz

), (32)

from which one can check that the only matrix elements giving
a nonzero contribution are those that respect Eq. (31). As we
are assuming that all of the electrons are cycling between the
two subbands under the effect of the pump laser, on average
one quarter of the states will respect such a condition. Given
this, and the fact that the terms in the sum of Eq. (32) do not
depend on k, we can rewrite Eq. (32) as

	THz = Nπ

8�2

∑
q,qz

|�χq,qz
|2δ(� − ωq,qz

). (33)

Note that this result depends only on the average number of
electrons in the M±

k states, and not on their relative phases.
The emission will thus be unaffected by electron dephasing,
which would damp the coherence of the collective Rabi
oscillations after only a few oscillations [7]. In the remainder
of this paper, we use Eq. (33) to estimate the quantum
efficiency of the THz emission process, both in the case of a
free-space emitter and when using a THz cavity to enhance the
emission rate.

IV. QUANTUM EFFICIENCY

A. Numerical results for an asymmetric QW

In order to estimate the achievable THz emission rates and
assess the device’s technological potentiality, we start here by
studying a simple but realistic asymmetric QW structure. The
exact degree of asymmetry will have to be chosen carefully; on
the one hand, a small degree of asymmetry gives a large z12 but
a small �z, and, on the other hand, excessive asymmetry leads
to a large �z but a vanishing z12. An efficient THz emitter
design must lie between these extremes, with an acceptably
large intersubband dipole ez12, in order to couple strongly
to the pump beam, and a sizable asymmetric dipole e�z to
efficiently emit THz radiation.

We consider an infinite double QW structure, similar to the
one shown in Fig. 2(a), comprising a central barrier of height
V0 and width Lb, separating two potential wells of widths La
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and Lc, respectively. The overall QW, of total length LQW,
is asymmetric for La 
= Lc. We explore the parameter space
by varying La , Lb, and V0, in order to maximize the value of
|z12�z|. This figure of merit allows us to identify structures
with sizable values for both dipoles, and, as we will see, the
quantum efficiency of the THz emission explicitly depends
upon this parameter. The optimization is performed keeping
LQW and �ω12 fixed. This procedure thus mimics the search
for an optimal structure given a fixed QW’s length and pump
laser frequency. In particular, we set �ω12 = 125 meV and
LQW = 11.6 nm, which is the length corresponding to the
desired �ω12 when V0 = 0. The height of the central barrier V0

is allowed to vary up to 250 meV, mindful of the barrier heights
obtainable in AlxGa1−xAs heterostructures. Figures 6(a) and
6(b) show dipole values as a function of Lb and La , in units
of LQW. The corresponding height of the barrier, V0, and the
value of the maximized figure of merit (normalized to facilitate
comparison) are shown in Figs. 6(c) and 6(d). As expected,
the asymmetric dipole �z vanishes on the line La/LQW =
1
2 (1 − Lb/LQW), corresponding to a symmetric QW case.

For the sake of definiteness and in order to make numerical
estimates, henceforth we set the parameters La = 0.3LQW,
Lb = 0.2LQW, denoted by the circled point in the parameter
space in Fig. 6, leading to z12 = 0.18LQW and �z = 0.11LQW.
While larger values for the dipoles are obtainable in principle,
we have chosen these values because they generate results that
are stable over a fairly large section of the parameter space,
making them robust against device fabrication tolerances. It
is important to notice that these dipole values are almost

one order of magnitude larger than the values obtainable in
quantum dots, for similar emission frequencies [4].

B. Free-space efficiency

The free-space THz emission rate 	0
THz of a single QW, per

unit surface S, can be estimated directly from Eq. (33) with
the expressions given by Eqs. (20) and (21) by transforming
the sum over discrete photonic states into an integral,

	0
THz

S
= N2DEGe2|�z|2√εr

12ε0π�c3
�3, (34)

where we considered a QW doped with a uniform surface
density N2DEG = N/S. This formula has the same parameter
dependency as the emission formula developed in Ref. [4] for
emission from quantum dots. From Eq. (34) and from the fact
that both the asymmetric dipole �z and the dipole density
N2DEG of the structure we are considering are one order of
magnitude larger than in the quantum-dots case, we can expect
an emission rate that is three orders of magnitude larger than
in previous quantum-dot-based proposals. A posteriori, this
confirms that QWs are an ideal testbed to observe intradoublet
emission.

The free-space quantum efficiency is then given by

η0 = 	0
THz

S

�ω12NQW

I

= NQWN2DEGe4|�z|2z2
12

√
εrω12�

6ε2
0π�2c4

, (35)

(d)(c)

(a) (b)

FIG. 6. (Color online) (a) Intersubband and (b) asymmetric dipoles obtained using the optimization procedure described in the text. (c),
(d) The optimal value of V0 and of |z12�z|, respectively. A circle highlights the point in the parameter space that is used for the numerical
estimates given in the main text.
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FIG. 7. Quantum efficiency for free space η0 (solid line) and
cavity emission ηcav (dashed line) as a function of the pump power
density I (lower axis) and of the Rabi frequency � (upper axis).

where the device is made of NQW identical QWs and I =
ε0cE2/2 is the pump power density. The free-space efficiency
for NQW = 50 and N2DEG = 1012 cm−2, and using the QW
whose parameters are marked by a white circle in Fig. 6, is
plotted in Fig. 7 (solid line) as a function of the the pump
power density I (lower horizontal axis) and of the emitted
frequency � (upper horizontal axis). In particular, considering
a pump of strength I = 8 × 105 W cm−2, from Eq. (8) one
obtains �/2π = 1 THz, which is of the same order of those
experimentally observed in Ref. [7]. The free-space quantum
efficiency would then be η0 � 10−10.

C. Cavity efficiency

In order to increase the THz emission rate, it is possible to
embed the multiple-QW structure into a THz cavity [34]. As an
analysis of different kinds of THz resonators is out of the scope
of the present work, we will limit ourselves to the conceptually
simple case of a planar THz cavity. A modification of Eq. (34),
considering a two-dimensional continuum of photonic modes,
then gives [35]

	cav
THz

S
= N2DEGe2|�z|2

32�ε0c2Lcav
�2, (36)

where Lcav is the cavity length. The quantum efficiency
accordingly becomes

ηcav = 	cav
THz

S

�ω12NQW

I

= NQWN2DEGe4|�z|2z2
12ω12

16ε2
0�2c3Lcav

, (37)

independent of the pump power in the parameter regime we
are considering. Note that both η0 and ηcav are proportional
to |z12�z|2 (the former only at given emission frequency).
This justifies a posteriori our choice of using |z12�z| as our

optimization parameter in Sec. IV A. The efficiency gain using
a two-dimensional cavity is thus given by the Purcell factor
[36], FP = 	cav

THz/	0
THz, i.e.,

FP = 3πc

8
√

εrLcav�
. (38)

To increase the emission efficiency at a fixed pump power, it
is thus convenient to reduce the cavity length Lcav. Present-
day THz cavities allow for strong subwavelength confinement
[37] using plasmonic or localized phonon-plasmon excitations
[38,39]. These cavities have demonstrated a linear confinement
λres/Lcav � 200, where λres is the free-space wavelength of
the THz radiation, with quality factors in excess of 100. The
cavity efficiency ηcav is independent on the pump strength, as
shown in Fig. 7 (dashed line); for the parameters chosen in the
previous section and a cavity length Lcav = 1 μm, we obtain
ηcav � 10−9, which is competitive with fluorescence efficiency
in monolithic THz emitters, with tunable frequencies [4].

V. CONCLUSIONS

We have shown how asymmetric artificial atoms can be
exploited to obtain a resonant fluorescence THz peak from
a transition that would normally be dipole forbidden in
centrosymmetric systems. We have developed a many-body
theory that allows us to give a reliable estimate of the
photon emission achievable in a realistic device, showing
that the emission rate can be orders of magnitude larger than
in previous quantum-dot-based proposals. Numerical results
of the attainable efficiency indicate that such an emission
channel should be observable in present-day experiments, and
it could potentially be exploited to realize monolithic THz
devices.
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APPENDIX: EMISSION FROM
GENERAL EIGENSTATES

In Sec. III C, we calculated the THz emission, limiting
ourselves to the case in which no electrons are locked into
double-occupancy states (NF = 0). However, under the effect
of the pump beam, electrons will be actually scattered into such
states, as shown in Fig. 5(c). Other scattering mechanisms,
both radiative and nonradiative, will subsequently scatter
away those blocked electrons. In this Appendix, we develop
a more detailed theory taking into account these processes,
considering the emission for a general state in the form of
Eq. (13).
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Applying VTHz to such a state, we obtain, using Eqs. (16), (24), and (25),

VTHz |ψi〉 = 1√
2

∑
k,q,qz

k∈S+

�χq,qz
Fk+qEk

∏
k′∈S++S−−{k}

M
jk′
k′

∏
k′∈SF

Fk′
∏

k′∈SE

Ek′a
†
−q,qz

|G〉 |0ph〉

+
∑

k,q,qz

k∈SF

�χq,qz
Fk+q

∏
k′∈S+

M+
k′

∏
k′∈S−

M−
k′

∏
k′∈SF −{k}

Fk′
∏

k′∈SE

Ek′a
†
−q,qz

|G〉 |0ph〉 . (A1)

The two lines of Eq. (A1) give rise to four different terms each, depending on which set k + q belongs to, with each of
these terms describing a different scattering channel. At the same time, only four of these eight terms, those for which the
difference between the numbers of M+

k and M−
k operators is strictly smaller than N+ − N−, will give rise to resonant emission

processes. Moreover, we make the assumption, to be confirmed a posteriori, that most of the electrons are coupled to the
laser pump and only a few are locked in double-occupancy Fk states. We can thus limit ourselves to terms of the lowest order
in NF

N
.

In the first line of Eq. (A1), if both k and k + q are in S+, we obtain a result analogous to that of the previous section, describing
a scattering from two single-occupancy states to a full and and an empty state, with the only difference being the normalization
of the sum over electronic and photonic wave vectors in Eq. (32). The total contribution to the emission of the scattering process
from states such that k,k + q ∈ S+, sketched in Fig. 5(a), can be estimated by using Eq. (14), assuming that N+ = N−, so that

after straightforward manipulation, N2
+

N
� (N

4 − NF ), where the term of order N2
F /N has been neglected. We thus obtain

	++→EF
THz =

(
1 − 4

NF

N

)
	THz. (A2)

If instead k + q belongs to SE , we obtain

1√
2

∑
k,q,qz

k∈S+,k + q∈SE

�χq,qz
Fk+qEk

∏
k′∈S++S−−{k}

M
jk′
k′

∏
k′∈SF

Fk′
∏

k′∈SE

Ek′a
†
−q,qz

|G〉 |0ph〉

= 1

2

∑
k,q,qz

k∈S+,k + q∈SE

�χq,qz
(M+

k+q + M−
k+q)Ek

∏
k′∈S++S−−{k}

M
jk′
k′

∏
k′∈SF

Fk′
∏

k′∈SE−{k+q}
Ek′a

†
−q,qz

|G〉 |0ph〉 , (A3)

describing a process, sketched in Fig. 5(b), in which an electron with energy �� is scattered into an empty k subspace, giving
rise to a state of energy −��, an empty state, and a photon. The emission rate of this process can be calculated analogously to
what has been done in Eq. (33), but with the normalization N+NF

N
,

	+E→E−
THz = 2NF

N
	THz. (A4)

Finally, the second line of Eq. (A1) gives a non-negligible contribution only for k + q ∈ S+, describing a process, sketched in
Fig. 5(c), in which one of the two electrons of a full state and an electron in a state with energy �� scatter into a full state and a
state with energy −��, and we obtain∑

k,q,qz

k∈SF ,k + q∈S+

Fk+q

∏
k′∈S+

M+
k′

∏
k′∈S−

M−
k′

∏
k′∈SF −{k}

Fk′
∏

k′∈SE

Ek′a
†
−q,qz

|G〉 |0ph〉

= 1√
2

∑
k,q,qz

k∈SF ,k + q∈S+

�χq,qz
Fk+q

∏
k′∈S+−{k+q}

M+
k′

∏
k′∈S−

M−
k′

∏
k′∈SF −{k}

Fk′
∏

k′∈SE

Ek′a
†
−q,qz

|G〉 |0ph〉 . (A5)

Also, in this case, the relevant normalization for the sum over
the wave vectors is N+NF

N
, giving an emission rate

	F+→−F
THz = 2NF

N
	THz. (A6)

The remaining emission process, FE → −−, sketched in
Fig. 5(d), can be ignored, as the scattering occurs from two

initial uncoupled states, Fk and Ek+q, and it is thus of second
order in NF .

We thus obtain the important result that to the first order in
NF , the emission rate does not depend on NF , as

	++→EF
THz + 	+E→E−

THz + 	F+→−F
THz = 	THz. (A7)

In order to ascertain if the first-order approximation is
adequate, we need to estimate the number of electrons that
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are locked in double-occupancy states. In fact, the semi-
conductor also allows many nonradiative energy relaxation
channels that cool the electron gas, so we can write, always
to the first order in NF , a rate equation for the total
number of electrons that are coupled to the pump laser
Ne = N+ + N−,

dNe

dt
= −2	++→EF

THz + 2	nrNF , (A8)

where 	nr is the rate of nonradiative relaxation. At equilibrium,
we have

NF

N
= 1

4 + N	nr
	THz

. (A9)

Given the extremely fast nonradiative phonon-assisted inter-
subband recombination, NF /N in Eq. (A9) can be safely
taken to be vanishing, thus a posteriori confirming our initial
approximation.
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