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Understanding and manipulating coherent phonon transport in solids is of interest both for enhancing
the fundamental understanding of thermal transport as well as for many practical applications, including
thermoelectrics. In this study, we investigate phonon transmission across Si/Ge superlattices using the Green’s
function method with first-principles force constants derived from ab initio density functional theory. By keeping
the period thickness fixed while changing the number of periods, we show that interface roughness partially
destroys coherent phonon transport, especially at high temperatures. The competition between the low-frequency
coherent modes and high-frequency incoherent modes leads to an optimum period length for minimum thermal
conductivity. To destroy coherence of the low-frequency modes, scattering length scale on the order of period
length is required. This finding is useful to guide the design of superlattices to reach even lower thermal
conductivity.
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I. INTRODUCTION

Thermal properties of semiconductor superlattices have
been under intense investigation due to their potential uses
in thermoelectric energy conversion [1–3] and optoelectronic
devices [4]. The thermal conductivity of superlattices can
be even lower than their alloy counterparts [5–8]. Although
diffuse scattering at interfaces is responsible for the remark-
able thermal conductivity reduction [9,10], coherent phonon
transport has been experimentally observed in GaAs/AlAs
superlattices [11] and perovskite oxides [12]. To further reduce
the thermal conductivity for thermoelectric applications, it is
crucial to understand and control the different phonon transport
modes in superlattices.

Phonon heat conduction in superlattices can be attributed
to incoherent and coherent phonon modes. Coherent modes
preserve their phase as they propagate through multiple
interfaces. For these phonons, Bloch mode extends through
the whole structure, and the superlattices can be treated as
a homogeneous material with its own unit cell and phonon
dispersion. If, due to roughness or other structures, interfaces
destroy the constructive interference of waves, phonon modes
lose their phase information and their transport becomes
incoherent. For these modes, superlattices act as a composite
made of a stack of two alternating materials, each having their
own phonon dispersion.

Previous theoretical studies on superlattices have focused
on changing periodicity. Most common theories developed to
understand phonon transport in superlattices fall into one of
two pictures: the incoherent particle picture, which is rooted
in solving the Boltzmann transport equation [9,13], and the
coherent wave picture, where lattice dynamics calculations
are employed [14–16]. Either picture could fully explain
the experimentally observed thermal conductivity trend as a
function of period length in both in-plane and cross-plane
directions, though [3]. A combination of both pictures is
desired. Lattice dynamics based on damped wave functions
was used to predict a minimum in the thermal conductivity
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of superlattices in the cross-plane direction [17,18]. More
recently, a perturbation method based on the Fermi golden rule
[11,19,20] was developed, but the method may have limitations
on treating interface scattering, as strong scattering may not
be captured by perturbation. One alternative approach is to use
molecular dynamics simulations [21,22], which do not assume
the nature of phonon transport but are classical in nature. Yet
the empirical potentials involved in molecular dynamics limit
accuracy, and it is difficult to explore the detailed phonon mode
behavior.

The green’s function method has been applied to study
phonon transport across single and multiple Si/Ge interfaces.
For single Si/Ge interfaces, effects of strain [23], lattice
mismatch [24], and interface roughness [25,26] on phonon
transmission have been investigated. Green’s function study on
Si/Ge superlattices, however, is scarce. Zhang et al. [23] briefly
discussed the effect of number of interfaces on the overall
thermal resistance across multiple Si/Ge interfaces, while
transmission function was not detailed. In this study, we use the
Green’s function method to investigate coherent phonon trans-
port across Si/Ge superlattices. First-principles force constants
have been incorporated as in our previous work on single Si/Ge
interfaces [25]. We calculate the phonon transmission and
corresponding thermal conductivity of Si/Ge superlattices with
varying interface roughnesses. Inspired by recent experiments
[11], we keep the period thickness of the superlattices
fixed while changing the number of periods. We observe
coherent phonon transport in smooth-interfaced superlattices,
and partially coherent and partially incoherent transport
in rough-interfaced superlattices. While the low-frequency
modes maintain their coherence in both cases, roughness is
able to destroy the coherence of the higher frequency modes.
To destroy the coherence of low-frequency modes, a scattering
length scale comparable to period length is needed. These
fundamental observations are crucial for the intelligent control
of coherent vs incoherent transport in superlattices.

II. METHODOLOGY

We follow the same atomistic Green’s function method
[23,27] we applied for a single Si/Ge interface [25]. The only
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FIG. 1. (Color online) Schematic of the system setup: the left
reservoir is pure Si, the right reservoir is pure Ge, the center region
is the Si/Ge superlattices.

difference is that, in this study, we use Si/Ge superlattices as
the center region, as shown in Fig. 1. As a brief overview, we
employ the force constant φC from ab initio density functional
theory into the Green’s function to determine the transmission
function. The retarded Green’s function is given by

GR (ω) = [ω2I − φC − �L(ω) − �R(ω)]−1, (1)

where GR is the retarded Green’s function, ω is the phonon
frequency, φC represents the onsite force constants of the
center region, and the self-energy �α describes the effect of the
lead α on the center block. The transmission function �(ω) is
given as a trace over the Green’s function of the center region
and the coupling terms between the leads and the center

�(ω) = T r[�L(ω)GR(ω)�R(ω)GA(ω)], (2)

where �α = i[�R
α − �A

α ] describes the rate at which phonons
enter and exit the leads. In these calculations, transverse
periodic boundary conditions are assumed, and the above
formulas hold for every single transverse momentum, over
which a final summation needs to be performed in order to
obtain the total transmission.

The interface transmittance is then defined as

τ (ω) = �(ω)

�pure(ω)
. (3)

In our system setup, we use �pure(ω) = �Si(ω).
The two-probe thermal conductance per unit area σ based

on the total transmission function �(ω) is calculated using the
Landauer formula [28]

σ (T ) = 1

S
× 1

2π

∫ ∞

0
�ω

∂f (ω,T )

∂T
�(ω)dω, (4a)

where f is the Bose-Einstein distribution and s is the cross-
sectional area of the simulation cell perpendicular to the
direction of heat flow. The four-probe conductance can then
be written [25]

σ ′(T ) = σ (T ) × 1

1 − 1
2

(
σ (T )
σ1(T ) + σ (T )

σ2(T )

) . (4b)

Although the difference in thermal conductance between
the two-probe and four-probe formulas becomes small as the
number of interfaces increases, we use the four-probe formula
throughout this study to be consistent with our previous
calculation of single-interface and experiments.

The thermal conductivity of a sample length L is defined to
be L times the four-probe conductance:

k = σ ′L. (5)

The calculations in this paper do not include phonon-phonon
scattering. According to experimental [5,6] and modeling
[9,19,21] results on Si/Ge superlattices, anharmonic effects are
not important for temperatures below 500 K. The anharmonic-
ity would become important when the phonon mean free path

due to anharmonicity becomes smaller than the superlattice
length L. In the harmonic regime, specular scattering leads to
coherent wave effects [29–31], while diffuse scattering could
destroy coherence.

III. RESULTS AND DISCUSSION

For incoherent transport, the interfaces behave like a series
of thermal resistors, and the effective thermal conductivity
becomes independent of the number of periods. For coherent
transport, thermal resistance keeps constant with respect to
number of periods, and thermal conductivity increases linearly
with increasing number of periods. The thermal conductivities
for smooth- and rough-interfaced superlattices are shown
in Fig. 2(a). The thermal conductivity of smooth-interfaced
superlattices demonstrates a linear increase with respect
to the number of periods, indicating coherent transport at
300 K, although ultimately anharmonicity limits the number
of periods over which transport is coherent. The thermal
conductivity of rough-interfaced superlattices increases more
slowly than linear, indicating partially coherent and par-
tially incoherent transport. Another noticeable point is that
roughness increases the thermal conductivity of small-period
superlattices, contrary to conventional wisdom. This is because
atomic roughness generates smoother change of density of
states between layers [25]. Note that competition between
better transition of the vibrational spectrum and diffuse
scattering, both introduced by atomic mixing, gives rise to
the enhancement of phonon transmission at small thicknesses
of roughness (�1 nm for Si/Ge case) and small number of
periods. This conclusion does not conflict with experimentally
observed lower thermal conductivity caused by atomic mixing
at larger length scales [32].

We then compare transmittance across smooth-interfaced
superlattices [Fig. 2(b)] with that of rough-interfaced ones
[Fig. 2(c)]. When the number of periods equals 1, it reverts to
the single Si/Ge interface we investigated before [25], which
we include as a reference. What we are mainly interested in
here are multiple interfaces. For number of periods >1, there
are clearly two frequency regimes: the low-frequency regime
and the higher frequency regime separated by vertical lines
at 55.6 cm−1. The low-frequency regime is defined as the
region where transmittance does not change as the number
of periods is increased. This indicates that low-frequency,
long-wavelength phonons pass through the entirety of the
superlattices as if it is a homogeneous medium. They form
passing bands and transport coherently. The low-frequency
regime is the same for both smooth and rough superlattices. In
the rough case, the constancy of transmittance vs the number
of periods for low-frequency phonons is due to the fact that
such phonons have wavelengths larger than the roughness
scale and thus see an effectively homogeneous interface of
atoms with mass intermediate between Si and Ge. As such,
they do not get scattered by roughness at the interface;
thus, similar to ideal interfaces, their transmittance does not
change with the number of periods. In the higher frequency
regime, the transmittance for smooth-interfaced superlattices
no longer changes as the number of periods becomes larger
than five, suggesting the formation of minibands. Because
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FIG. 2. (Color online) (a) Thermal conductivity of superlattices
as a function of number of periods for smooth and rough superlattices
at T = 300 K. (b) Transmittance as a function of frequency for
superlattices (period = 2a) with smooth interfaces; (c) Transmittance
as a function of frequency for superlattices (period = 2a) with rough
interfaces.

the superlattice eigenstates are formed from the constructive
interference between all multiple reflected waves, the wave
needs to go a few periods away and be reflected back
a few times in order to get a coherent eigenstate of the
superlattice. In contrast, the transmittance for rough-interfaced
superlattices keeps dropping due to more diffuse scattering at
the interfaces. In other words, roughness destroys coherence
of higher frequency modes.

To unveil the cutoff frequency ωcutoff of the low-frequency
regime, we plot the phonon dispersion of SiGe superlattice
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FIG. 3. (Color online) Phonon dispersion of Si/Ge superlattice
with period l = 2a in [100] direction.

with period length l = 2a in the [100] direction [Fig. 3]. The
zone boundary frequency of the lowest acoustic branch is
55.6 cm−1. It is intriguing that the cutoff frequency is the
lowest acoustic phonon branch at the folded Brillouin zone
edge. Although some of the higher frequency phonons have
a long wavelength in the folded zone representation, they
are unable to maintain their coherence. Therefore, phonon
wavelengths of higher frequency modes in the folded zone
do not matter. We expect that this argument generally holds
for different materials. As the period length increases, the
first Brillouin zone becomes shorter because the edge of the
folded zone is proportional to the inverse of the period length.
Thus, the cutoff frequency of the totally coherent regime is
determined by the reduced first Brillouin zone, or the period
length. It is, therefore, difficult to destroy the coherence of
the low-frequency modes unless a scattering length scale
comparable to the period length can be introduced.

We then explore the temperature dependence of coherent
and incoherent phonon transport. This temperature depen-
dence comes only from phonon occupation or heat capacity.
At all temperatures, phonons with frequencies smaller than
the cutoff frequency yield a linearly increasing thermal
conductivity as a function of number of periods, as shown in
Fig. 4(a)–4(c). To illustrate this effect, we choose temperatures
of 20, 50, and 300 K, which correspond to frequencies of
13.9, 34.7, and 208.1 cm−1 respectively. These are to be
compared with the cutoff frequency of 55.6 cm−1. At low
temperatures, only low-frequency modes are excited; thus,
the phonon transport is mostly coherent. As the temperature
increases, more and more high-frequency modes are excited,
and incoherent phonon transport plays a more and more
important role. Correspondingly, we observe that thermal
conductivity increases more slowly than linear and becomes
flatter as the number of periods increases.

In our previous paper on single Si/Ge interfaces [25], we
found that the conductance at a single Si/Ge interface is an
order of magnitude lower than the extracted experimental ther-
mal conductance from Si/Ge superlattices, assuming thermal
resistance only happens at the interfaces. We predicted that the
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FIG. 4. (Color online) Total thermal conductivity and contribu-
tion from phonons with frequencies larger than the cutoff frequency
and not larger than the cutoff frequency at (a) T = 20 K, (b) 50 K,
and (c) 300 K.

discrepancy comes from the long-wavelength phonons, which
maintain their coherence. Now with coherent transport, the
calculated thermal conductance per interface increases with
the number of periods and matches well with experiments
(Fig. 5). Although the size of the superlattices is much
smaller than that of the experimental samples [6,33] due to

0 10 20 30 40
0

0.5

1

1.5

2

Number of Periods

T
he

rm
al

 C
on

du
ct

an
ce

 [G
W

 m
−

2
K

−
1 ]

Extrapolated Experimental Value

FIG. 5. (Color online) Normalized thermal conductance per in-
terface as a function of number of periods for rough-interfaced
superlattices with period length l = 2a. The experimental value is
extrapolated from the sample of period length l = 4.4 nm and 100
periods [6].

computational limitations, we can at least see that the trend is
consistent. It states that thermal conductance is not intrinsic to
the interface but depends on what exists on both sides of the
interface.

To destroy coherence in rough superlattices for the purpose
of reducing thermal conductivity, there are two competing
effects as the period length increases: (1) the low-frequency
regime with totally coherent transport shrinks, which is benefi-
cial, and (2) the interface density decreases and the importance
of interface roughness decreases, which is detrimental. We
plot thermal conductivity as a function of superlattice length
for period length l = a,2a, and 4a, respectively in Fig. 6. At
the same superlattice length, superlattices with period length
l = 2a = 1nm possess minimum thermal conductivity. The
crossover from a coherent to incoherent regime is naturally
included in our formulation. We thus observe the minimum
thermal conductivity of superlattices [12,18,20] under the
atomistic Green’s function framework.

We then introduce a simple model in Eq. (6) to identify
the dependence of thermal conductivity on period length. We
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FIG. 6. (Color online) Thermal conductivity of rough-interfaced
superlattices as a function of superlattice length for period length
l = a,2a,and 4a at 300 K.
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write the thermal conductivity as a sum over the contribution
of acoustic (the three low-lying folded acoustic phonons) and
optical (rest of the bands) phonons

k = kac + kop

=
∫ ωcutoff

0
Cv(ω)D(ω)v(ω)�(ω)dω

+
∫ ωmax

ωcutoff

Cv(ω)D(ω)v(ω)�(ω)dω (6)

where ωmax represents the highest phonon frequency. For
acoustic phonons, we assume specific heat Cv(ω) = kB,

density of states D(ω) = Aω2 (A is a coefficient that can be
determined from the Debye approximation or lattice dynamics
calculations), v(ω) = c (average speed of sound of acoustic
modes), and �(ω) = L (in the absence of anharmonicity, and
for short enough samples, we assume that acoustic phonon
scattering occurs at the sample boundaries). Then

kac =
∫ ωcutoff

0
Aω2kBcLdω = 3

lAtrans
kBcL (7)

since
∫ ωcutoff

0 Aω2dω = 3
cell

and cell = lAtrans with Atrans

being the area of the unit cell in the transverse direction. For
optical phonons, we use Cv(ω) = �ω

∂f

∂T
, D(ω) = D̄ (average

density of states in a given volume per unit frequency interval),
v(ω) = cop(average speed of sound for optical modes, which is
much smaller than speed of sound), and �(ω) = 1

2
1+p

1−p
l, where

p accounts for the probability of pure specular scattering at
each interface, and we have assumed the thickness of each
medium to be equal to half the superlattice period

kop =
∫ ωmax

ωcutoff

�ω
∂f

∂T
D̄cop

1

2

1 + p

1 − p
ldω

≈ 3N − 3

cell
kBcop

1

2

1 + p

1 − p
l (8)

if further assumption of �ω
kBT

� 1 is made. Here N is the
total number of atoms in a period. Therefore, the overall
conductivity (neglecting anharmonicity) would be a sum of

k= 3

lAtrans
kBcL+3N − 3

cell
kBcop

1

2

1 + p

1 − p
l. (9)

Equation (9) has a minimum at an optimum period length
at

lopt=
√

3cellcL(1 − p)

(3N − 3)Atranscop(1 + p)
≈

√
cell0cL(1 − p)

N0Atranscop(1 + p)
,

(10)

where cell0 and N0 are the volume and number of atoms in
a unit cell, respectively. It is noteworthy that the optimum
period length depends on superlattice length, because the
relative contribution from coherent and incoherent phonons
would vary as the superlattice lengths change. When designing
superlattices to reduce thermal conductivity, the optimum
period length would be desirable. For the SiGe superlattices
considered in this work, N0 = 8,cell0 = a3, Atrans = 3a ×
3a, and a = 0.54 nm. We assume c = 5400 m/s(speed of
sound for germanium), cop = 100 m/s, and p = 0.5. This
leads to lopt = 0.82 nm at L = 5 nm, lopt = 1.16 nm at L =
10 nm, and lopt = 1.64 nm at L = 20 nm. All the optimum
period lengths are close to 2a = 1.08 nm, which is consistent
with our calculations using the atomistic Green’s function
method. In strongly anharmonic materials, however, kop would
be independent of l, and there is no minimum thermal
conductivity.

IV. CONCLUSION

We apply the atomistic Green’s function method to calculate
phonon transmission across Si/Ge superlattices. We focus
our discussion on coherent vs incoherent phonon transport
in superlattices. We show totally coherent phonon transport
in smooth-interfaced superlattices and partially coherent and
partially incoherent phonon transport in rough-interfaced
superlattices. We demonstrate that the contribution from
coherent phonons decreases in rough-interfaced superlattices
as temperature increases. To obtain the lowest thermal con-
ductivity, there is an optimum length resulting from the
competition between coherence of low-frequency phonons and
incoherence of high-frequency phonons caused by interface
scattering when anharmonicity is negligible. Our theoretical
study complements earlier experiments, providing guidance
for the design of superlattices.
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