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Supersymmetry approach to delocalization transitions in a network model of the weak-field
quantum Hall effect and related models
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We consider a recently proposed network model of the integer quantum Hall (IQH) effect in a weak magnetic
field. Using a supersymmetry approach, we reformulate the network model in terms of a superspin ladder. A
subsequent analysis of the superspin ladder and the corresponding supersymmetric nonlinear sigma model allows
us to establish the phase diagram of the network model, and the form of the critical line of the weak-field IQH
transition. Our results confirm the universality of the IQH transition, which is described by the same sigma model
in strong and weak magnetic fields. We apply the suspersymmetry method to several related network models that
were introduced in the literature to describe the quantum Hall effect in graphene, the spin-degenerate Landau
levels, and localization of electrons in a random magnetic field.
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I. INTRODUCTION

Anderson localization of a quantum particle or a classical
wave in a random environment [1] is a vibrant research
field [2]. One of its central research directions is the physics of
Anderson transitions [3], including metal-insulator transitions
and transitions of quantum Hall type (i.e., between different
phases of topological insulators). While such transitions are
conventionally observed in electronic conductor and semi-
conductor structures, there is also a considerable number of
other experimental realizations actively studied in recent and
current works. These include localization of light [4] and
microwaves [5], cold atoms [6], ultrasound [7], and optically
driven atomic systems [8].

Especially intriguing is the problem of the plateau transition
in the integer quantum Hall (IQH) effect. The nature of the
critical state at and the critical phenomena near the IQH
transition are at the focus of intense experimental [9–14]
and theoretical research [15–26]. It is worth mentioning here
that experiments aimed at understanding the critical behavior
near the IQH transition usually study scaling of transport
coefficients with temperature. Such scaling inevitably involves
the so-called dynamical critical exponent z, and can only
be explained if one takes into account some mechanism of
dephasing of electronic wave functions, such as electron-
electron interactions. The subject of the effects of interactions
on the IQH transition is important, and we refer the reader
to Refs. [22,27]. One conclusion of this line of research
is that if interaction between electrons is short ranged (for
example, due to screening), the interaction is irrelevant in
the renormalization group sense, and does not change critical
properties that do not involve temperature.

Correspondingly, the vast majority of existing theories of
the IQH effect focus on models of noninteracting electrons
in a strong magnetic field subject to disorder. Depending on
the nature of disorder, one can pursue two complementary

approaches. The first, a field-theoretic approach, was devel-
oped for short-range (Gaussian white-noise) disorder, where
the correlation length of the disorder potential is much shorter
than the magnetic length. This leads to a nonlinear sigma
model with a topological term [28–31]. Khmelnitskii [32] and
Pruisken [30,33] argued that the inclusion of the topological
term yields a desirable delocalization in the middle of a Landau
band, and predicted a two-parameter flow diagram for the
diagonal and Hall conductivities. However, it was not possible
to extract critical characteristics of the IQH transition from
this theory.

A different approach was developed for smooth disorder
with correlation length much longer than the magnetic length,
and strong magnetic fields, such that ωcτ � 1, where ωc is
the cyclotron frequency and τ the scattering time. In this
limit, Landau bands are well resolved, and the semiclassical
picture is that of the drift motion of an electron along
equipotential lines of the disorder potential [34]. Based on
this picture of chiral motion in strong magnetic field, Chalker
and Coddington (CC) proposed a random network model of
the quantum Hall transition [35]. Remarkably, the CC model
is very convenient for numerical simulations and captures
both qualitative and quantitative aspects of the high-field
IQH transition. Moreover, the CC model and its triangular
version [36] admit a (semi)analytical treatment in terms of a
real-space renormalization group [36,37].

The idea of incorporating disorder via random phases on
the links, on which the CC model was based, appeared to be
very fruitful and turned the network-model approach into a
powerful tool in numerical studies of disordered systems. By
imposing proper symmetry requirements on phases on the links
and scattering matrices at the nodes, one can build network-
model realizations of disordered electronic systems in all 10
symmetry classes of Altland and Zirnbauer [38–40]. These
realizations often involve networks with multiple channels on
the links due to higher symmetries of the scattering matrices.
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The disorder average in network models can be performed
using either the replica method or the supersymmetry (SUSY)
method of Efetov [41] adapted to networks [42,43]. In the
replica formalism, network models in an anisotropic limit
can be mapped to quantum spin chains [44]. Similarly, in the
SUSY formalism one obtains superspin chains [42,43,45]. A
variant of the SUSY method was used to obtain a continuum
limit of the CC model [46] and to connect the field-theoretical
and network-model approaches. The mapping to spin chains
provides a way to study network models analytically and
numerically. In particular, the superspin chain relevant for
the CC model and the IQH transition has been numerically
studied by the density matrix renormalization group method
in Ref. [45]. Also, the language of spin chains makes possible
to use analogies with more conventional SU(2) spin chains.
Later in this paper, we will use intuition gained from the study
of SU(2) spin systems. Many such conventional SU(2) spin
chains are known to be integrable and amenable to exact
solutions by Bethe ansatz. This leads to a natural question
as to whether integrability can shed light on the problem of
the IQH and other Anderson transitions. Unfortunately, the
direct implementation of the SUSY method for the CC model
leads to a superspin chain that is not integrable. Attempts
to obtain integrable deformations of the CC model and the
corresponding superspin chain have been made [46,47]. Most
likely, these modifications change the critical properties of the
models, so their relevance to the IQH transition is not clear at
present.

The limit of weak magnetic fields ωcτ � 1 is drastically
different. In this limit, the electron motion is not purely
chiral and the simple picture of the drift motion fails. As a
consequence, the CC model is not applicable. The nontriv-
ial behavior of critical states in vanishing magnetic fields,
the so-called phenomenon of levitation, was predicted by
Khmelnitskii [48] and Laughlin [49] within the field-theoretic
(sigma model) approach. They have argued that, when the
magnetic field is decreased towards zero, delocalized states
float above the Fermi energy. Subsequently, the levitation
scenario became an essential component of the global phase
diagram of the quantum Hall effect [50] and was confirmed
by a number of experiments [51–56]. However, theoretical
attempts to understand its microscopic reasons were restricted
to the region of weak levitation ωcτ � 1, where delocalized
states depart from the centers of Landau bands only slightly.

A minimal microscopic model which describes the lev-
itation phenomenon was proposed recently in Ref. [57] in
terms of a certain random network. This model, named the p-q
model, captures the highly nontrivial interplay and competition
of the disorder-induced scattering and the magnetic-field-
induced weak orbital bending of electron trajectories, which
leads to criticality. The mechanism governing the critical
behavior in weak magnetic fields is very different from
the one in strong fields, and leads to an even number (at
least two) of channels on each link of the network, for
two counterpropagating electron trajectories. Numerical and
semianalytical analysis of Ref. [57] revealed the phase diagram
of the p-q model comprising an Anderson insulator and two
quantum Hall phases, separated by a delocalization boundary,
in agreement with predictions of the scaling theory. However,
the semianalytical treatment in Ref. [57] was carried out in

the “classical” limit of strong disorder and was based on
percolative arguments. It is by no means rigorous, and a more
controlled analytical treatment of the p-q model is desirable.

In this paper, we study the p-q network model analytically.
We use the SUSY approach of Refs. [42,43] to map the p-q
model to an interacting superspin model. The superspins,
which are certain irreducible representations of the Lie
superalgebra u(n,n|2n) (n � 1 is an integer), reside on the
sites of a two-leg ladder. We treat the resulting superspin
model by further mapping it to a supersymmetric nonlinear
sigma model. Prior to the sigma model treatment, in order
to develop intuition, we discuss the case of the spin ladder
where the superspins are replaced by the more familiar su(2)
spins. The motivation to do this is the following. In the SUSY
formalism, the single CC network model is mapped to a single
superspin chain, and the phenomenology of the IQH transition
is that of the opening a gap in the superspin spectrum due
to dimerization of the bonds of the chain. This is the same
phenomenology that governs the critical behavior of the usual
su(2) spin chain with dimerization, even though the numerical
values of critical exponents are different. We believe that
in our case of the superspin ladder, we can still determine
the overall structure of the phase diagram by considering
ordinary su(2) staggered spin ladders. These were extensively
studied [58–63], and we use results of this research to gain
intuition into the phase diagram of the p-q model in the
regions inaccessible to the sigma model description. Utilizing
the developed machinery, we study localization properties of
three additional random network models related to the p-q,
and discuss proposals for their physical applications.

The paper is organized as follows. In Sec. II, we describe
the p-q model and map its anisotropic version to a superspin
ladder. In Sec. III, we discuss the su(2) spin- 1

2 counterpart of
the superspin ladder and describe its quantum phase diagram.
We introduce coherent states and develop a sigma model
description of the model by formulating path integral over
these states in Sec. IV. We investigate three additional random
network models, related to the p-q model, and discuss their
physical implications in Sec. V. Our results are summarized in
the last section. Appendices contain technical details of some
of the derivations.

II. THE p-q MODEL AND ITS MAPPING
TO A SUPERSPIN LADDER

The simplest version of the p-q network we study in this
paper is depicted in Fig. 1. The network consists of two
counterpropagating subnetworks, shown in blue and red in
the figure. We label objects and quantities related to the
two subnetworks by subscripts l taking values 1 for the red
subnetwork and 2 for the blue subnetwork. The nodes on each
subnetwork are of two kinds: A1 and B1 on the red one, and
A2 and B2 on the blue one. Vertical columns of links (shown
by dashed lines in Fig. 1) are labeled by an integer subscript
n which will play the role of the discrete space index upon
mapping to the superspin ladder later on. On each link, the
two counterpropagating channels carry fluxes (i1,n,o2,n) or
(o1,n,i2,n), where i stands for “incoming” and o for “outgoing”
(relative to a particular node) fluxes. The fluxes mix when
propagating along a link, and the mixing is described by a
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FIG. 1. (Color online) Left: the p-q model. The red and blue links
and nodes form two copies of the CC network model. Vertical dashed
lines denote sites of the spin ladder obtained from the network model
in an anisotropic limit. Right: elementary scattering events and the
corresponding amplitudes.

2 × 2 link scattering matrix S(tP ):(
o1,n

o2,n

)
= S(tP )

(
i1,n

i2,n

)
. (1)

Scattering on links is illustrated by two colored (red and blue)
circles in Fig. 1. These circles separate each link into two
“half-links” (each carrying the same “spatial” index n as the
whole link).

At the nodes of the network, the scattering of fluxes is
described by 4 × 4 node scattering matrices:⎛

⎜⎝
o1,1

o1,2

o2,1

o2,2

⎞
⎟⎠ =

⎛
⎜⎝S

(
tB1

) 0 0
0 0

0 0
0 0 S

(
tA2

)
⎞
⎟⎠

⎛
⎜⎝

i1,1

i1,2

i2,1

i2,2

⎞
⎟⎠ ,

(2)⎛
⎜⎝

o1,2

o1,3

o2,2

o2,3

⎞
⎟⎠ =

⎛
⎜⎝S

(
tA1

) 0 0
0 0

0 0
0 0 S

(
tB2

)
⎞
⎟⎠

⎛
⎜⎝

i1,2

i1,3

i2,2

i2,3

⎞
⎟⎠ .

Notice that scattering at the nodes does not mix the two
subnetworks, and we illustrate the nodal scattering matrices by
the red and blue star-shaped regions in Fig. 1. Each subnetwork
is a copy of the CC network, and they are coupled by the link
scattering. The 2 × 2 scattering matrices in Eq. (2) are chosen
as

S(t) =
(√

1 − t2 t

−t
√

1 − t2

)
, (3)

with nonrandom parameters tA1 , etc.
Disorder in the model is introduced through random phases

acquired by fluxes along the half-links, that is, between the
scattering events on the links and at the nodes. The total
scattering matrix for propagation along a link in Eq. (1) has
the form

S(tP ) =
(

eiφ1 0
0 eiφ2

)⎛
⎝

√
1 − t2

P tP

−tP

√
1 − t2

P

⎞
⎠(

eiφ3 0
0 eiφ4

)
.

(4)

The phases φi are uniformly distributed on the interval [0,2π ),
and are completely analogous to the random phases in the CC
model.

The network model described above is a generalization
of the original p-q model [57] which contained only two
parameters: p, the probability of backscattering on links,
and q, quantifying the the asymmetry between scattering
probabilities to the left and to the right for any incident
channel. Physically, parameter p is related to the local (Drude)
conductivity, and the quantity

γ ≡ 2q − 1 (5)

characterizes the strength of a weak nonquantizing magnetic
field. Our model reduces to the original one if we specify

t2
P = p, t2

A1
= t2

A2
= q, t2

B1
= t2

B2
= 1 − q. (6)

This choice of scattering parameters satisfies the isotropy
conditions t2

Al
+ t2

Bl
= 1 (l = 1,2). It is useful to relax these

conditions and consider more general networks, where tA1 �=
tA2 , tB1 �= tB2 , as well as t2

Al
+ t2

Bl
�= 1, and we will do this in

the following.
In this paper, we treat the (generalized) p-q model analyt-

ically, utilizing the SUSY approach [42,43]. To this end, we
regard the vertical direction in Fig. 1 as the (imaginary) time τ .
We denote the elementary time interval, the vertical separation
between the middle points of two adjacent half-links, by aτ .
We introduce bosons and fermions on each of the channels
on each half-link (one species per advanced/retarded sectors).
One channel on each half-link goes “up” (along the time
direction) and another goes “down.” The difference in the
direction of the two channels leads to different commutation
relations for creation and annihilation operators of the “up” and
“down” particles. The time evolution operator U describes the
dynamics of bosons and fermions in the discrete imaginary
time τ . It possesses SUSY in the sense that it commutes with
generators of the Lie superalgebra u(1,1|2) for any realization
of random phases. The SUSY form of U can be explicitly
averaged over the random phases on the half-links. This
procedure results in the projection onto certain mutually dual
irreducible representations (irreps) R and R̄ of u(1,1|2) for
each half-link [42,43] (see Appendix A 1).

An explicit form of U in the second quantized formulation
can be written as an exponential of a quadratic form in creation
and annihilation operators (see details in Appendix A 2).
Here, we will only be concerned with its time-continuous
(Hamiltonian) version. In order to achieve the Hamiltonian
description, we consider a general anisotropic version of the
p-q network with parametrization

t2
P = p, t2

Al
= εql, t2

Bl
= ε(1 − ql). (7)

At ε = 1 isotropy is restored, and when q1 = q2 = q, the
original p-q model is recovered [see Eq. (6)]. We now
proceed by taking the limit tP ,ε � 1, which introduces
strong anisotropy in the network but should not affect critical
properties of the system [64]. In this anisotropic limit, each
subnetwork can be viewed as a collection of vertical zigzag
channels with alternating (up or down) overall direction of
fluxes. A weak hopping between adjacent channels takes
place when they come close at the (4 × 4) nodes, given
by the amplitudes tA1 ,tB1 and tA2 ,tB2 . In addition, the two
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subnetworks are weakly coupled by scattering on the links,
with the hybridization amplitude tP � 1.

Upon taking the τ -continuum limit (see Appendix A 3 for
details), the resulting disorder-averaged evolution operator [U ]
can be written as

[U ] = exp

(
−

∫ β

0
dτ H

)
, (8)

where the one-dimensional Hamiltonian H is

H = − str
∑

k

[
J⊥

(
S (1)

2k−1S̄
(2)
2k−1 + S̄ (1)

2k S
(2)
2k

)
+ J

(
(1 + γ1)S (1)

2k−1S̄
(1)
2k + (1 − γ1)S̄ (1)

2k S
(1)
2k+1

)
+ J

(
(1 − γ2)S̄ (2)

2k−1S
(2)
2k + (1 + γ2)S (2)

2k S̄
(2)
2k+1

)]
. (9)

The notation we use here is the following. The superspins
S and S̄ are graded matrices whose matrix elements are
the generators of u(1,1|2) acting in the irreps R and R̄ (see
Appendix A 1 for details). The superspins are labeled by two
indices according to their position on the sites of a two-leg
ladder: the superscript l denotes a leg of the ladder (which
corresponds to the subnetwork l), and the subscript refers to
the position along the ladder. The parameters J , J⊥, and γl are
related to the scattering amplitudes p and ql and the anisotropy
parameter ε by

J = t2
Bl

+ t2
Al

2
= ε

2
, J⊥ = 2t2

P = 2p,

(10)

γl = 2ql − 1 = t2
Al

− t2
Bl

t2
Bl

+ t2
Al

.

In the original p-q model, there are only two parameters
p and q. The corresponding superspin chain is obtained by
making the dimerization parameters γl equal:

γ1 = γ2 = γ. (11)

In this case, the superspin Hamiltonian is

Hp-q = − str
∑

k

[
J⊥

(
S (1)

2k−1S̄
(2)
2k−1 + S̄ (1)

2k S
(2)
2k

)
+ J

(
(1 + γ )S (1)

2k−1S̄
(1)
2k + (1 − γ )S̄ (1)

2k S
(1)
2k+1

)
+ J

(
(1 − γ )S̄ (2)

2k−1S
(2)
2k + (1 + γ )S (2)

2k S̄
(2)
2k+1

)]
. (12)

The Hamiltonians (9) and (12) describe the dynamics
of superspins arranged on sites of a two-leg ladder, with
interactions between nearest neighbors. The two legs of the
ladder correspond to the two subnetworks that are colored by
red and blue in Fig. 1. We keep the same colors to illustrate
the arrangement of the superspins S (filled circles) and S̄
(empty circles) on the ladder in Fig. 2. The structure of the
original network model (specifically, the counterpropagation
of fluxes on the links) results in the fact that superspins S and
S̄ (or irreps R and R̄) alternate both along the legs and along
the rungs. The superspin exchange has the u(1,1|2)-invariant
bilinear form, strSS̄ . This form is diagonalized on each bond
by decomposing the tensor product R ⊗ R̄ into irreps. This
decomposition necessarily contains a singlet of u(1,1|2) since
two dual representations are involved. With the above signs
and positive J and J⊥, the pair exchange energy is minimized

FIG. 2. (Color online) The superspin ladder described by the
Hamiltonian Hp-q [Eq. (12)]. The empty (filled) circles on the sites of
the ladder indicate the superspins S (S̄) in the R (R̄) representation.

in the singlet state on a bond, so that all the couplings in
Eqs. (9) and (12) are antiferromagnetic.

Our goal is to analyze the superspin ladder described by
the Hamiltonian (12) by mapping it to a supersymmetric
sigma model, and determining its phase diagram. This will
be achieved in Sec. IV. Meanwhile, to gain some intuition,
in the next section we will consider the analog of Eq. (12)
for the ladder where the u(1,1|2) superspins are replaced by
the usual su(2) spins S = 1

2 . Although this replacement alters
quantitative characteristics of the phase diagram and the phase
transitions of the spin ladder, we believe that the qualitative
nature of the phase diagram remains intact.

III. SU(2) SPIN LADDER

In this section, we analyze the two-leg su(2) spin ladder
described by the following Hamiltonian:

H = J
∑
l,k

[1 + (−1)k+lγ ]S(l)
k · S(l)

k+1 + J⊥
∑

k

S(1)
k · S(2)

k . (13)

Here, l = 1,2 labels the legs of the ladder, and k labels
the rungs, while S are the S = 1

2 spins. This is exactly
the Hamiltonian studied by Martı́n-Delgado, Shankar, and
Sierra [59], who argued that its phase diagram includes three
different massive phases separated by two critical lines (see
the right part of Fig. 3). Here, we will give general qualitative
arguments leading to this phase diagram, complemented by
our bosonization analysis for the asymptotic behavior of the

γ

FIG. 3. (Color online) Phase diagrams of the p-q model from
Ref. [57] (left) and the su(2) staggered spin ladder from Ref. [59]
(right). Different massive phases of the staggered spin ladder are
schematically illustrated by different thickness of bonds representing
different local spin-singlet (dimer) amplitudes.
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critical lines near |γ | ∼ 1 and known results [61,62] for their
behavior at |γ | � 1.

The phase diagram of the spin ladder described by Eq. (13)
on the (γ,J⊥/J ) plane has three distinguished points where
the nature of the ground state is very transparent. The first two
points are γ = ±1, J⊥/J = 2, and they correspond to single
homogeneous antiferromagnetic Heisenberg chains, with sites
connected alternatively along the rungs and along the legs.
These spin chains are critical. Keeping γ = ±1 but changing
J⊥/J leads to dimerization of the chains and opens up a gap in
the spectrum. The third point γ = 0, J⊥/J = 0 corresponds
to two decoupled homogeneous antiferromagnetic Heisenberg
chains and is also critical. Keeping γ = 0 but turning J⊥ > 0
leads to a massive phase with dimers on the rungs. If instead we
keep the chains decoupled (J⊥ = 0) but introduce dimerization
in the couplings along the chains (γ �= 0), then the chains also
become massive, with dimers on one sublattice of each chain.
The three critical points are connected by continuous critical
lines which separate the massive phases, as shown in Fig. 3.

Let us now focus on the vicinity of the points γ = ±1,
J⊥/J = 2. We relabel the sites along the “snaking” path on
the ladder (this path represents the single critical spin chain).
The precise relabeling depends on the sign of γ . Then, the
Hamiltonian (13) can be written as

H = H0 + Hε + Hη, (14)

which represents the single homogeneous (critical) spin chain

H0 = J⊥ + J (1 + |γ |)
2

∑
k

Sk · Sk+1 (15)

subject to two weak perturbations

Hε = ε
∑

k

(−1)kSk · Sk+1, ε = J⊥ − J (1 + |γ |)
2

, (16)

Hη = η
∑

k

S2k · S2k+3, η = J (1 − |γ |). (17)

The perturbed Hamiltonian (14) can be studied utilizing the
standard (Abelian) bosonization approach (see, for example,
Ref. [65]). The low-energy physics is described in terms of the
massless Bose field φ(x) and its conjugate momentum 
(x).
In terms of these fields the unperturbed Hamiltonian becomes
quadratic (noninteracting):

H0 → vs

2

∫
dx[
2(x) + (∂xφ(x))2] + · · · , (18)

where

vs ∼ 1
2 [J⊥ + J (1 + |γ |)]a0 (19)

is the spin wave velocity, a0 is the lattice spacing, and the
dots stand for irrelevant terms. In the same manner, the
perturbations in the bosonized form become

Hε → hε

∫
dx cos

√
2πφ(x), hε = λε

a0
(20)

Hη → hη

∫
dx cos

√
2πφ(x), hη = λη

6a0
(21)

where λ is a nonuniversal parameter of order one. We see
that both perturbations have the same form, and are strongly

relevant in the renormalization group (RG) sense. Hence, the
system is critical if the overall coefficient hε + hη vanishes:

hε + hη = λ

a0

[
J⊥ − J (1 + |γ |)

2
+ J

6
(1 − |γ |)

]
= 0.

Thus, in terms of the small parameter (1 − |γ |), the critical
line near γ = ±1, J⊥/J = 2 is given by the equation

J⊥
J

= 2 − 4

3
(1 − |γ |), (22)

which is in an excellent agreement with known numerical
results [63].

In the vicinity of the third point γ = 0, J⊥/J = 0, the
situation is more complicated. A consistent nonperturbative
description of the critical behavior near this point was
developed in Ref. [61] by mapping the lattice model onto
an O(3) × Z2-symmetric theory of four massive Majorana
fermions. The resulting behavior of the critical line

J⊥
J

∝ |γ |2/3 (23)

was previously predicted from heuristic arguments [62] and
subsequently confirmed by numerical simulations [63]. The
crossover exponent

φ = 2

3
= y⊥

yγ

(24)

that appears in Eq. (23) is the ratio of the RG eigenvalues

y⊥ = 1, yγ = 3/2, (25)

which are related in the usual way to the dimensions x⊥ = 1,
xγ = 1/2 of the two relevant operators (coupling of the two
spin chains and the dimerization) near the point of decoupled
critical spin chains.

Thus, the phase diagram of the spin- 1
2 Hamiltonian (13) has

the form shown on the right panel in Fig. 3 with asymptotic
behaviors near the end points given by Eqs. (22) and (23).
Notice that the simple relation J⊥/J = 2|γ |2/3 has the above
asymptotic forms and represents an approximate analytic
form of the critical line reasonably close to the numerically
determined one [63].

As we have mentioned in the Introduction, we believe that it
is quite reasonable to expect that the original superspin ladder
Eq. (9) has a similar phase diagram, though with asymptotic
behaviors different from Eqs. (22) and (23). Similar to the
analogy between the IQH transition in strong fields and a single
spin chain, we have now the analogy between the low-field
quantum Hall transition and the quantum criticality of the
staggered spin ladder (13). Within this analogy, the Anderson
insulator and the two different quantum Hall insulating phases
of the p-q model correspond to the rung-dimer and two differ-
ent leg-dimer phases of the staggered spin ladder (see Fig. 3).

IV. COHERENT STATES AND THE NONLINEAR
SIGMA MODEL

In this section, we return to the study of the staggered su-
perspin ladder described by the Hamiltonian (9). To obtain the
structure of its phase diagram, we map it to a supersymmetric
sigma model.
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It is advantageous to generalize the p-q network model to
a variant with an arbitrary number N of channels propagating
in both directions on each link. The scattering matrices on the
links become

S(tP ) =
(

U1 0
0 U2

)⎛
⎝

√
1 − T 2

P TP

−TP

√
1 − T 2

P

⎞
⎠(

U3 0
0 U4

)
,

(26)

with matrices Ui ∈ U(N ) describing the mixing of the fluxes
on the half-links. These matrices are analogs of the random
phases in the simpler case of Eq. (4), and are taken to be
uniformly distributed over the U(N ) group. The orthogonal
matrix in the middle, describing the scattering of fluxes at a
node, is parametrized by the diagonal in the channel index
N × N matrix

TP = diag (tP , . . . ,tP ). (27)

The number of channels N will play the role of a large
parameter that will control the gradient expansion in the
derivation of the sigma model.

We further introduce n copies (replicas) of bosons and
fermions associated with every channel. This allows us to
consider multipoint correlation functions, or higher moments
of Green’s functions. In this situation, the supersymmetry of
the model becomes u(n,n|2n), and the superspins S associated
with the up-going links are now certain highest weight irreps
RN of u(n,n|2n). Similarly, for the down-going links we
obtain the superspins S̄ which are lowest weight irreps R̄N

of u(n,n|2n) (dual to RN ) (see Appendix B for details).
The next step is to introduce the superspin coherent

states [66] and the functional integral over them. This step is
quite analogous to the coherent-state path-integral derivation
in Refs. [67,68], so we relegate details to Appendix B. As
a result, a single superspin S with the Hamiltonian H[S] is
described by the following imaginary-time path integral:

Z =
∫

D exp

(
−

∫ β

0
dτ L

)
, (28)

where the Lagrangian L is

L = LB[] + H[N(τ )/2],
(29)

LB[] = N

4

∫ 1

0
du str [(τ,u)∂u(τ,u)∂τ(τ,u)].

Here, (τ ) is a periodic matrix function (Lτ ) = (0), taking
values in the super-coset space G/H , where G = U(n,n|2n)
and H = U(n|n) × U(n|n). The matrix

� = diag (I2n, − I2n) (30)

plays the role of the origin in G/H , and other points in this
space can be reached from the origin by the adjoint action of
elements g ∈ G:

 = g�g−1. (31)

Also, (τ,u) is a homotopy between � and (τ ) as u

goes from 0 to 1. For a single conjugate superspin S̄ with
Hamiltonian H(S̄), the Lagrangian is

L = −LB[] + H[−N(τ )/2], (32)

which can formally be obtained from Eq. (29) by flipping the
sign of all matrices  since, in our notation,

LB[−] = −LB[]. (33)

In taking the continuum limit to obtain a nonlinear sigma
model, we closely follow a similar derivation for SU(N )
antiferromagnets [68,69]. First, we define the fields 

(l)
k on

each site of both legs (l = 1,2) of the ladder. In terms of
these fields, the Lagrangian for the superspin ladder with the
Hamiltonian (9) is

L =
∑
l,k

(−1)k+lLB

[


(l)
k

] + J⊥N2

4
str

∑
k


(1)
k 

(2)
k

+ JN2

4
str

∑
l,k

[1 + (−1)k+lγl]
(l)
k 

(l)
k+1. (34)

In view of the staggered arrangement of the superspins
on the ladder (the antiferromagnetic nature of the couplings),
the expected ground state of the ladder is of Néel type. In the
large-N limit, we can treat the superspin ladder semiclassically
and decompose the field  into the staggered (Q) and uniform
(L) components, as well as their harmonics in the transverse
direction (along the rungs of the ladder) R and M:


(l)
2k−1 = Qk − a[(−1)l(Rk − Lk) + Mk],

(35)


(l)
2k = Qk − a[(−1)l(Rk + Lk) − Mk].

This decomposition is similar to the one used in Ref. [60]
(where the author used a Hamiltonian operator formalism).
Both Q and L fields are taken to be the same on both legs
of the ladder and are expected to be smoothly varying along
the ladder. In the continuum limit, all the fields except Q

happen to be massive and can be integrated out (see details
in Appendix C). It is worth mentioning here that the mass
of the R field is proportional to J⊥, so we may expect the
decomposition (35) to become less and less meaningful and
useful as we approach the point of decoupled chains J⊥ = 0.
On the other hand, the masses of M and L are set by J , so they
remain finite even at J⊥ = 0.

Integrating out all the fields except Q, we get the following
nonlinear sigma model action:

S = 1

8

∫
[−σxx(∂xQ)2 + 2σxyQ∂τQ∂xQ]. (36)

Here and below we adopt the shorthand notation∫
≡

∫
dτ dx str . (37)

The coefficients in the action (36) play the role of the bare
dimensionless conductivities and are given by

σxx = N

μ

√
μ(1 − γ 2−) − γ 2+, σxy = −Nγ+

μ
, (38)

where

γ± = γ1 ± γ2

2
, μ = 1 + J⊥

2J
. (39)

The Hall conductivity is related to the so-called θ angle by

θ = 2πσxy = −2πNγ+
μ

. (40)
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For the spin ladder (12), the expressions for the conductiv-
ities and the θ angle simplify:

σxx = N

√
1 − γ 2 + J⊥/2J

1 + J⊥/2J
, σxy = − Nγ

1 + J⊥/2J
, (41)

θ = − 2Nπγ

1 + J⊥/2J
. (42)

The sigma model (36) is critical when the θ angle is an
odd multiple of π . Let us explore the single channel case
N = 1 in more details. In this case, the θ angle [Eq. (42)]
exactly coincides with the one derived in Ref. [59] for the
two-leg S = 1

2 staggered spin chain discussed in the previous
section. The shape of the critical line θ = ±π translates into
the dependence

J⊥
J

= 2 − 4(1 − |γ |). (43)

This result strongly deviates from more accurate results (22)
and (23). Still, we see that near γ = ±1, J⊥/J = 2, this result
agrees with Fig. 3 and Eq. (22) qualitatively. On the other hand,
for J⊥/J � 1, it yields two critical points at γ = ± 1

2 , far from
γ = 0. This strongly disagrees with the phase diagram Fig. 3.
Obviously, the J⊥/J = 0, γ = 0 point is massless as the two
superspin chains, without any dimerization, get decoupled,
or in the network model picture, we have two critical CC
networks. We clearly see that the sigma model (36) is not
an adequate description of the superspin system (12), in the
vicinity of the point J⊥/J = 0, γ = 0. The reason is that
the fields Rk that we have integrated out become massless as
J⊥ → 0. In this limit, it is not the sigma model field Q that
becomes critical, but its combination with the other degrees of
freedom.

To describe analytically the low-energy behavior of our
system near the point J⊥/J = 0, γ = 0, we need to correctly
identify the degrees of freedom that remain massive and the
ones that are lower in energy and eventually become critical.
We have seen in the previous section that for su(2) spin- 1

2
case (with N = 1) this was done in Ref. [61], by mapping
the system onto four weakly coupled Ising models. As we do
not have a luxury to relate our superspin model to simpler
systems such as the Ising model, we choose a different way.
Namely, we make an alternative parametrization of the system
by introducing two independent sets of Q and L fields for each
leg by


(l)
2k−1 = Q

(l)
k − aL

(l)
k , 

(l)
2k = Q

(l)
k + aL

(l)
k . (44)

Making the dimerization parameters γl (possibly) different on
each leg, again, and lowering the leg index l for fields in the
continuum, we obtain the action

S = N

4

∫ ∑
l

(−1)l+1LlQl∂τQl

− JN2a

4

∫ ∑
l

[
[1+(−1)lγl]∂xQl(∂xQl − 2Ll)+2L2

l

]

− J⊥N2a

8

∫ [
1

a2
(Q1 − Q2)2 + (L1 − L2)2

]
. (45)

The last line in this equation couples the legs of the ladder.
However, at J⊥ = 0 they get decoupled. Then, integrating out
the L fields, we obtain two decoupled sigma models, one
for each leg. These sigma models are critical only if γ1 =
0 and γ2 = 0. Thus, we see that the description (45) does
capture the low-energy critical properties of our superspin
system for J⊥ = 0, in contrast with the previous treatment
through a single sigma model (36).

In the vicinity of the point J⊥/J = 0, γ = 0 the following
arguments seem to be plausible (compare with the discussion
of a similar action in Ref. [70], Sec. II C). For a positive
J⊥/J , the first term in the second line of Eq. (45) is a relevant
perturbation, leading in the infrared to “locking” of the fields

Q1 = Q2 = Q. (46)

Once the locking happens, the L fields can be integrated
out, which gives again the sigma model action (36) with the
couplings (38). When the dimerization parameters γl are equal
as in Eq. (11), we recover the conductivities (41) and the critical
lines (22). We conclude that for J⊥ > 0, the critical point at
J⊥/J = 0, γ = 0 splits into two critical lines.

We thus believe that the critical lines on the phase diagram
of the superspin ladder (12) include the J⊥/J = 0, γ = 0 point
and close to it have the form

J⊥
J

∝ |γ |φ, (47)

shown (qualitatively) by the curve in Fig. 3. The analytical
value of the crossover exponent φ in this case is not known
since, unlike in the su(2) case, we do not know the dimensions
xγ and x⊥ of the relevant operators or the values of the
corresponding RG eigenvalues yγ and y⊥. However, yγ = 1/ν,
where ν ≈ 2.6 is the localization length exponent known
numerically. This gives φ = νy⊥ ≈ 2.6y⊥. If we assume that
y⊥ ∼ O(1) (not too small, similar to the case of the su(2)
spin chain), we obtain that φ > 1. This is in agreement with
the results for the form of the phase diagram established
semiclassically in Refs. [57,71]. The second of these papers
reports φ ≈ 2. Notice also that the original results of Khmel-
nitskii [48] and Laughlin [49] combined with (nonrigorous)
heuristic arguments translate into the linear dependence φ = 1
(see Ref. [71]).

V. RANDOM NETWORK MODELS RELATED
TO THE p-q MODEL

While our primary goal was to use the supersymmetry
method to study the phase diagram of the p-q model, we
can apply this method to other random network models. In
this section, we describe three random network models related
to the p-q model, and study their localization properties using
the method developed in previous sections. We also discuss
their physical implications in the subsequent section.

As we have seen above, the p-q model can be thought of as
two CC models (two layers) coupled by the p scattering in the
middle of each link. In this case, the pairs of fluxes mixed
on the links are counterpropagating, and phases acquired
by each flux between any two scattering events are random
and independent. Also, parameters of the nodes of each CC
subnetwork of the p-q model are chosen in the way that any
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FIG. 4. (Color online) Two-channel networks related to the p-q model, and the corresponding spin ladders. In the network model, the lines
indicate primary direction of scattering at the nodes. Strong scattering between adjacent sites in the network model leads to strong couplings
in the spin chain. The empty (filled) circles in the spin ladder indicate that the site has superspins in the R (R̄) representation.

flux incoming to a node scatters to the left with the same
probability, equal to q, for all the nodes.

Two CC networks can be coupled in other ways, so that
the two fluxes on the resulting links are either copropagating
or counterpropagating. At the nodes we also distinguish
two possibilities, compatible with the requirement of overall
isotropy: each incoming flux scatters to the left with the same
probability, as is the case of the p-q model, or the probability
of scattering to the left for two of the incoming fluxes equal
to the probability of scattering to the right for the other two
incoming fluxes. Overall, we end up with four two-channel
networks illustrated in Fig. 4, one of which is the p-q model
shown in Fig. 4(d).

In the next section, we will demonstrate that, similar to
the p-q model, the phase diagram of the network Fig. 4(a)
includes three regions of localized states separated by lines of
extended states. On the other hand, as we will demonstrate, in
the network models shown in Figs. 4(b) and 4(c), all the states
are localized.

A. Models and their phase diagrams

We begin our consideration with the network with copropa-
gating channels, illustrated in Fig. 4(a). In notations of Sec. II,
the scattering probabilities at the nodes are chosen exactly the
same as in the p-q model [see Eq. (7)]. However, in the present
case the nodes A1 and A2 are located on top of each other, as
well as the nodes B1 and B2. As before, randomness is encoded
in independent random phases acquired by each flux between
scattering events at the nodes and on the links.

It is instructive to observe that the p-q model transforms
into this network upon a shift of one of the constituting CC
networks by one lattice constant, along either of the two
directions parallel to the links. Such a transformation makes
two fluxes on the links copropagating, as well as brings the
resulting nodes into the form illustrated in Fig. 4(a).

The copropagating fluxes on the links make this problem es-
sentially different from the p-q model. The second-quantized
transfer matrices for the links are given in Ref. [42] (where they
appeared in the study of the so-called “chiral metal”). In the
time-continuum limit they lead to a ferromagnetic interaction
between the superspins on the two legs of the superspin ladder.
This means that the relevant terms in the Hamiltonian are now
−J⊥ strS (1)

k S (2)
k , and favor the representation with the largest

highest weight in the decomposition R ⊗ R.
The node transfer matrices produce antiferromagnetic

couplings along the legs of the ladder, as before. Thus,
the disorder-averaged supersymmetric Hamiltonian associated
with the network in Fig. 4(a) is

Ha = − str
∑

k

[
J⊥

(
S (1)

2k−1S
(2)
2k−1 + S̄ (1)

2k S̄
(2)
2k

)
+ J

(
(1 + γ1)S (1)

2k−1S̄
(1)
2k + (1 − γ1)S̄ (1)

2k S
(1)
2k+1

)
+ J

(
(1 + γ2)S (2)

2k−1S̄
(2)
2k + (1 − γ2)S̄ (2)

2k S
(2)
2k+1

)]
. (48)

Further analysis of this Hamiltonian can be done following
the same steps as for the p-q model. Introducing coherent
states parametrized by the matrix  leads to the following
Lagrangian:

La =
∑
l,k

(−1)kLB

[


(l)
k

] − J⊥N2

4
str

∑
k


(1)
k 

(2)
k

+ JN2

4
str

∑
l,k

[1 − (−1)kγl]
(l)
k 

(l)
k+1. (49)

Notice that this Lagrangian differs from Eq. (34) by the sign
of the interchain coupling, by the relative sign of the Berry
phase terms of the two chains, and by the staggering pattern
of the dimerization parameters γl . Formally, if we substitute


(l)
k → (−1)l(l)

k , Eq. (49) takes the form of Eq. (34) except
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that the dimerization parameters are replaced by

γl → γ̃l ≡ (−1)l−1γl. (50)

The corresponding substitutions

Ql → (−1)lQl, Ll → (−1)lLl, γl → γ̃l (51)

can be done in the continuum action (45), and this leads to the
action [recall the convention (37)]

Sa = −N

4

∫ ∑
l

LlQl∂τQl

− JN2a

4

∫ ∑
l

[
(1 + γ̃l)∂xQl(∂xQl − 2Ll) + 2L2

l

]

− J⊥N2a

8

∫ [
1

a2
(Q1 + Q2)2 + (L1 + L2)2

]
. (52)

In the limit J⊥ = 0, this action describes two decoupled
superspin chains which are critical when both γ̃l = 0. The
interchain coupling is relevant, as before, and leads to the
locking of the fields Q1 = −Q2 = Q in the infrared. Once this
happens, the L fields can be integrated out, which gives again
the sigma model action (36) with the couplings (38). When
the γ1 = γ2 = γ , we recover the conductivities (41) and (for
N = 1) the critical lines (43). Thus, the phase diagram of the
model (48) should be qualitatively similar to the one of the
p-q model, with the critical point at J⊥/J = 0, γ = 0 giving
rise to two critical lines for J⊥ �= 0.

This conclusion can be again substantiated by the analysis
of the su(2) spin ladder that is analogous to the model (48).
The corresponding Hamiltonian is

Ha = J
∑
l=1,2

∑
k

[1 + (−1)kγ ]S(l)
k S(l)

k+1 − J⊥
∑

k

S(1)
k S(2)

k ,

(53)

which differs from Eq. (13) by the pattern of staggering and
the sign of the interchain coupling, which is now ferromag-
netic. This spin- 1

2 model has been previously studied both
analytically [72] (bosonization and sigma model mapping)
and numerically [73] (DMRG). Here, we briefly outline its
basic properties in the limits of weak coupling J⊥/J � 1
and strong coupling J⊥/J � 1. These properties, combined
with our analytical arguments for the weak coupling regime,
will lead us to the unified quantum phase diagrams for the
models (13) and (53), as well as the p-q model (12) and the
model (48) (see Fig. 5).

In the weak coupling regime J⊥/J � 1, the system
described by Eq. (53) consists of two effectively decoupled
S = 1

2 dimerized Heisenberg chains. These chains are gapped
unless γ = 0. This is the same behavior as in the model (13).
Adapting the theory of Ref. [61] for the model (13), it can
be demonstrated that the two systems (13) and (53) are dual
to each other asymptotically exactly, in the limit J⊥/J → 0.
This duality means that the analytical behavior of critical lines
near the point γ = 0 for two models coincides and is given by
Eq. (23) (with J⊥ replaced by its absolute value |J⊥|). This
allows us to present the quantum phase diagrams of the two
models in a single Fig. 5.

FIG. 5. (Color online) Combined phase diagram of random net-
works and their spin- 1

2 counterparts. Phase boundaries (critical states)
of spin- 1

2 models (13) and (53), corresponding to J⊥/J > 0 and
J⊥/J < 0, respectively, are plotted in red, whereas phase boundaries
(extended states) of the p-q model, J⊥/J > 0, and of the network
Fig. 4(a), J⊥/J < 0, are plotted in blue.

In the case of strong interchain coupling J⊥/J � 1, on
the other hand, the spins on each rung form a single spin-1,
and the system (53) turns into a single dimerized S = 1 spin
chain. Analytical [74–76] and numerical [76,77] studies of
the dimerized S = 1 spin chain established that its spectrum
is gapped for all values of γ except for critical points
at nonzero values |γ | = γ0 = 0.259. A Haldane phase is
realized in the region |γ | < γ0, whereas the region |γ | > γ0

corresponds to a dimer phase. Based on this basic knowledge,
we sketch the phase diagram of Eq. (53) in the lower panel of
Fig. 5, corresponding to negative (ferromagnetic) interchain
coupling. Our critical curve γc(J⊥/J ) starts from γc(0) = 0
and at large negative arguments asymptotically approaches to
γc = ±γ0. For more details on analytical shape of the critical
lines in intermediate region J⊥/J ∼ 1, the reader may consult
Ref. [73], where the model (53) was studied numerically. We
note in passing that the strong coupling limit of Eq. (13)
is not at all related to an S = 1 spin chain because of the
shifted dimerization patterns on constituting S = 1

2 chains.
This difference in strong coupling limit of Eq. (13), where the
spectrum is gapped for any γ , and the same limit of Eq. (53),
where there are two critical states no matter how strong the
coupling gets, is clearly seen on the phase diagram Fig. 5.

We believe that phase diagrams of the p-q model and the
network shown in Fig. 4(a), as well as of their superspin
counterparts (12) and (48), are qualitatively similar to the
ones for the spin models (13) and (53), respectively. In
particular, the shapes of the critical lines of the two networks
(or, equivalently, of both superspin systems) in the vicinity
of γ = 0 are mirror images of each other relative to the
horizontal axis. However, their analytical form is different
from Eq. (23). We reflect this fact by sketching the expected
phase boundaries of the two networks in blue in Fig. 5. For the
p-q model, neither our sigma model approach nor the earlier
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numerical simulations in Ref. [57] were able to resolve the
actual shape of the critical line γc(J⊥/J ) in the weak-mixing
limit J⊥/J � 1. As we saw above, this dependence should be
captured by the coupled nonlinear sigma model (45) which is
not solvable. For the numerical simulation, on the other hand,
the difficulty resides in strong (quantum) fluctuations near the
critical point γc = 0, which are quite generic [57]. For the same
reasons, the dependence γc(J⊥/J ) in the weak-mixing limit
was impossible to determine in models similar to the network
in Fig. 4(a), either from the coupled nonlinear sigma model
arguments [70] or from numerics [78]. Existing numerical
results pertinent to the region of weak mixing, both for the
p-q model [71] and for the copropagating model of Ref. [79],
are performed in a classical limit where the models reduce to
random walks. The resulting behavior of the critical line in
the weak-mixing regime for both models is γc ∝ (J⊥/J )1/β

with β close to 2. According to this result and other qualitative
arguments [70], we draw phase boundaries of the two networks
[Figs. 4(a) and 4(d)], tangent to the horizontal axis at γ = 0 in
Fig. 5.

Let us now turn to the other two networks shown in
Figs. 4(b) and 4(c). The corresponding superspin Hamiltonians
are

Hb = − str
∑

k

[
J⊥

(
S (1)

2k−1S
(2)
2k−1 + S̄ (1)

2k S̄
(2)
2k

)
+ J

(
(1 + γ1)S (1)

2k−1S̄
(1)
2k + (1 − γ1)S̄ (1)

2k S
(1)
2k+1

)
+ J

(
(1 − γ2)S (2)

2k−1S̄
(2)
2k + (1 + γ2)S̄ (2)

2k S
(2)
2k+1

)]
, (54)

Hc = − str
∑

k

[
J⊥

(
S (1)

2k−1S̄
(2)
2k−1 + S̄ (1)

2k S
(2)
2k

)
+ J

(
(1 + γ1)S (1)

2k−1S̄
(1)
2k + (1 − γ1)S̄ (1)

2k S
(1)
2k+1

)
+ J

(
(1 + γ2)S̄ (2)

2k−1S
(2)
2k + (1 − γ2)S (2)

2k S̄
(2)
2k+1

)]
. (55)

The Hamiltonian (54) differs from Eq. (48) by the change in
the sign of γ2. The same sign difference distinguishes Eq. (55)
from the Hamiltonian (9). This leads to the change γ± → γ∓,
which can be done directly in the appropriate actions in the
continuum. For both models, this leads to the nonlinear sigma
model action (36) with conductivities

σxx = N

μ

√
μ − μγ 2+ − γ 2−, σxy = −Nγ−

μ
. (56)

An important consequence is that when γ1 = γ2 = γ , the θ

angle vanishes, which makes the models massive for any
nonzero values of J⊥. For the network models in Figs. 4(b)
and 4(c), this implies the absence of extended states for
any values of the parameters (except in the limit of totally
decoupled critical CC networks).

This conclusion is again corroborated by the similarity with
the su(2) spin- 1

2 ladders with the Hamiltonians

Hb = J
∑
l,k

[1 + (−1)k+lγ ]S(l)
k S(l)

k+1 − J⊥
∑

k

S(1)
k S(2)

k , (57)

Hc = J
∑
l,k

[1 + (−1)kγ ]S(l)
k S(l)

k+1 + J⊥
∑

k

S(1)
k S(2)

k , (58)

corresponding to the networks in Figs. 4(b) and 4(c), re-
spectively. Indeed, both models (57) and (58) exhibit gapped
spectra for all (positive) values of couplings, that is, they do not
undergo any quantum phase transitions. This follows from the
results of previous studies [76,80,81]. We have drawn the same
conclusion from an analysis based on mapping of Eqs. (57)
and (58) onto O(3) nonlinear sigma models.

B. Physical implications

In contrast to the counterpropagating p-q model in Figs. 1
and 4(d), the copropagating random network shown in Fig. 4(a)
does not capture the peculiarities of electron motion in
vanishing magnetic field. Instead, the latter describes the
strong-field integer quantum Hall effect in a double-layer
system [78,82], if one identifies the two CC components with
the two layers. Hence, our phase diagram Fig. 5 represents the
repulsion of energies of delocalized states predicted for such
systems. In spite of difficulties in numerical simulations of
Ref. [78] in the weak-mixing regime |J⊥/J | � 1, their phase
diagram is in overall good agreement with ours.

The model of Fig. 4(a) is also the random network
description of the theory of splitting of delocalized states due
to the valley mixing in graphene, put forward in Ref. [70]. The
two channels copropagating on each link of Fig. 4(a) describe
the quasiclassical drift of guiding centers of Dirac particles
belonging to inequivalent valleys, within a single Landau
level of the disordered graphene in a strong magnetic field.
Scattering between these channels corresponds to the mixing
of states between different valleys, with an amplitude p ∝ J⊥.
According to our results and in agreement with Ref. [70],
the valley mixing splits the single delocalized state into two
delocalized states with energy difference �E, and with an in-
termediate plateau of Hall conductivity in-between. According
to the phase diagram shown in Fig. 5, for weak valley mixing
J⊥/J � 1, the energy splitting �E ∝ Jγc(J⊥/J ) is strongly
sensitive to the mixing strength.

In Ref. [83], a two-channel random network model was
introduced to describe electron states in spin-degenerate
Landau levels. In that network, the two channels correspond to
the two possible spin orientations, and scattering between these
channels is included by replacing the link phases with U(2)
scattering matrices. On each link, these matrices are randomly
and independently chosen uniformly over the Haar measure.
Geometrically, the network model for spin-degenerate Landau
levels is very similar to the network in Fig. 4(a). The only
difference between the two networks is in the mixing strength
p of the fluxes on the links. This strength is random in the
network of Ref. [83], with the distribution function Q(p) =
2/(π

√
1 − p2). The mean value of p is 〈p〉 = 2/π , which

corresponds to strong mixing.
The authors of Ref. [83] numerically determined the phase

diagram of their two-channel network and found that it had two
critical lines supporting delocalized states. This is consistent
with our phase diagram in Fig. 3 (the negative J⊥ region).
The correspondence may be understood as follows. We can
modify the distribution of the U(2) scattering matrices to make
it anisotropic in such a way that all mixing parameters p are
the same along a vertical zigzag (independent of the imaginary
time), but randomly distributed in the spatial direction with
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the distribution Q(p). Such “quenched” disorder can be
treated within our supersymmetric approach, and leads to
the superspin ladder with the Hamiltonian (48) with random
positive J⊥. In this case, due to the large value of 〈p〉, we will
have 〈J⊥〉/J � 1. We can argue that the randomness in J⊥, as
long as it preserves the ferromagnetic nature of the coupling,
is irrelevant, and does not modify the qualitative features of
the phase diagram.

Reference [83] introduced another copropagating network
to describe the localization in random magnetic field. This
network is geometrically the same as our Fig. 4(b), but
with randomness in the mixing strength described by the
distribution Q(p) [since, again, the mixing was modeled by
U(2) scattering matrices uniformly distributed over the Haar
measure]. The authors found that model to have no extended
states, similarly to the network of Fig. 4(b). We can understand
this by considering the anisotropic modification of the random
magnetic field network described above. This leads to the
superspin ladder (54) but with random values of the couplings
J⊥. We do not expect such randomness to change the nature of
the phase diagram, so that all the states in the corresponding
network model should be localized, in full agreement with the
results of Ref. [83].

VI. CONCLUSIONS

We have considered a minimal two-channel network model
(the so-called p-q model) for the integer quantum Hall effect
in weak magnetic fields and the phenomenon of “levitation”
of extended states within Landau levels. Using the supersym-
metry method, we have mapped this network to a staggered
superspin ladder. Under this mapping, the rung-dimer phase
of the ladder corresponds to the Anderson insulator, while the
leg-singlet phases correspond to the quantum Hall insulator
phases of the low-field quantum Hall phase diagram.

We have analyzed the shape of the critical lines separating
the localized phases using a combination of the effective
field theory for the superspin ladder, the nonlinear sigma
model with a topological term, and the intuition gained
from the study of analogous ladder with S = 1

2 su(2) spins.
This analysis also demonstrated that the transitions between
localized phases of the p-q model are in the same universality
class as the usual integer quantum Hall transitions modeled
by the CC network model.

Using the supersymmetry method, we have also consid-
ered other two-channel network models. These models were
previously proposed to describe quantum Hall effects in spin-
degenerate Landau levels, in graphene with mixing between
valleys, and localization of electrons in a random magnetic
field. Our results are in complete agreement with previous
findings about the localization behavior of these models.
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APPENDIX A: SUSY FORMALISM

In this appendix, we provide details of the SUSY formalism
for the p-q network model. We start with algebraic prelimi-
naries about certain irreps of the Lie superalgebra u(1,1|2).
We then construct the second-quantized supersymmetric form
of the transfer matrices, average them over the disorder, and
consider the time-continuum limit.

1. Irreps of u(1,1|2)

We introduce four pairs of creation and annihilation opera-
tors cm, c∗

m on an up half-channel, with a composite index m =
(s,S), where s = R,A corresponds to the retarded/advanced
sector, and S = B,F corresponds to the boson/fermion sector.
Explicitly, these operators are given by

cR,B = bR, cR,F = fR, cA,B = −b
†
A, cA,F = f

†
A,

(A1)
c∗
R,B = b

†
R, c∗

R,F = f
†
R, c∗

A,B = bA, c∗
A,F = fA.

Here, b and f are the canonical bosonic and fermionic
annihilation operators, satisfying the usual (anti)commutation
relations. We define the parity |m| as 0 for bosonic operators
and 1 for fermionic operators. Then, the (anti)commutation
relations acquire the form

〚cm,c∗
n〛 ≡ cmc∗

n − (−1)|m||n|c∗
ncm = δmn. (A2)

The 16 generators of u(1,1|2) appear as bilinears in bosons
and fermions:

Smn = cmc∗
n − 1

2δmn. (A3)

It is convenient to arrange the generators in a 4 × 4 super-
matrix S, and refer to them collectively as components of a
“superspin.” For such supermatrices we define the supertrace
“str” as

str A =
∑
m

(−1)|m|Amm. (A4)

With this notation we have

strS = nbR
+ nfR

− nbA
− nfA

, (A5)

where the number operators are given by the usual expressions

nbs
= b†sbs, nfs

= f †
s fs, s = R,A. (A6)

The components of the superspin S act in the Fock space
associated with the operators bs and fs . Applying these
generators to the vacuum |0〉 defined as usual by

bR|0〉 = bA|0〉 = fR|0〉 = fA|0〉 = 0, (A7)

we obtain an irreducible representation (irrep) of the Lie
superalgebra u(1,1|2) which we denote by R. This irrep can
also be obtained by imposing the constraint strS = 0 in the
Fock space. R is a highest-weight representation with the
vacuum |0〉 playing the role of the highest-weight vector.
The components of the highest weight λ are given by the
eigenvalues of the Cartan generators [diagonal components of
the superspin (A3)] in the vacuum state:

λ = 1
2 (1,1, − 1, − 1) . (A8)
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On the down half-channels, we introduce another set of
bosonic and fermionic operators:

c̄R,B = b̄
†
R, c̄R,F = f̄

†
R, c̄A,B = −b̄A, c̄A,F = f̄A,

(A9)
c̄∗
R,B = b̄R, c̄∗

R,F = f̄R, c̄∗
A,B = b̄

†
A, c̄∗

A,F = f̄
†
A.

Internal consistency of the SUSY description (cancellation
of contributions from vacuum loops) requires the states with
odd numbers of “up” fermions to have “negative norms,”
which is achieved by assigning the following noncanonical
(anti)commutation relations:

〚c̄m,c̄∗
n〛 ≡ c̄mc̄∗

n − (−1)|m||n|c̄∗
nc̄m = −δmn. (A10)

Then, the number operators for the down particles are

nb̄s
= b̄†s b̄s , nf̄s

= −f̄ †
s f̄s , s = R,A. (A11)

The operators c̄, c̄∗ provide another realization of the
generators of u(1,1|2):

S̄mn = −c̄mc̄∗
n − 1

2δmn. (A12)

When acting on the vacuum |0̄〉 (annihilated by b̄s and f̄s),
these generators form another representation R̄ of u(1,1|2).
This is the lowest-weight representation dual to R. The lowest
weight λ̄ is opposite to the highest weight λ (as it should be
for dual representations):

λ̄ = −λ = − 1
2 (1,1, − 1, − 1) . (A13)

2. Transfer matrices in SUSY form

In our network model, each elementary 2 × 2 scattering
matrix

S(tX) =
(

αX βX

γX δX

)
≡

⎛
⎝

√
1 − t2

X tX

−tX

√
1 − t2

X

⎞
⎠, (A14)

where X can take values P , A1, A2, B1, and B2, describes
scattering between up- and down-going fluxes. Using bosonic
and fermionic operators (A1) and (A9), the second-quantized
form of the transfer matrix associated with SX is [42,43]

VX =
∏

s=R,A

exp[βX(b†s b̄
†
s + f †

s f̄ †
s )]α

nbs +nfs

X δ
nb̄s +nf̄s

X

× exp[γX(b̄sbs + f̄sfs)]. (A15)

We multiply all such transfer matrices to construct the total
evolution operator of the network U in the discrete time τ . To
be specific, let us consider a network which has the vertical
size

Lτ = 4Nτaτ , (A16)

where Nτ is the number of links in every vertical column, and
aτ denotes the elementary time interval, equal to the vertical
separation between the middle points of two adjacent half-
links. We choose the origin for the vertical τ axis in such a
way that the τ coordinates of the middles of the links, where
the scattering matrices S(tP ) are located, are odd multiples of
aτ . The τ coordinates of the A and B nodes are then even
multiples of aτ (see Fig. 6). Different boundary conditions
may be imposed in the τ direction. To be specific, and for
simplicity, here we assume periodic boundary conditions.

FIG. 6. (Color online) The p-q model. The horizontal dashed
lines denote time slices at the values of time coordinate τ which
are integer multiples of aτ .

In the horizontal direction, we label all columns of
links (and the corresponding bosons and fermions) by i =
1,2, . . . ,2Nx . Upon taking the time-continuum limit, the
columns of links will become sites of a superspin ladder,
and the index i will label the sites along the ladder. We
also have to label fermions and bosons by the index l = 1,2
distinguishing the two subnetworks. The ordering of indices
will be as follows: bl,i,s , etc.

Using these conventions, a generic transfer matrix located
at the discrete time τ and connecting bosons and fermions on
sites i and i ′ can be written as

V
(l,l′)
X [τ ; i,i ′] =

∏
s=R,A

exp[βX(b†l,i,s b̄
†
l′,i ′,s + f

†
l,i,s f̄

†
l′,i ′,s)]

×α
nbl,i,s

+nfl,i,s

X δ
nb̄

l′ ,i′ ,s +nf̄
l′,i′ ,s

X

× exp[γX(b̄l′,i ′,sbl,i,s + f̄l′,i ′,sfl,i,s)]. (A17)

Notice that the indices l,i label up-going fluxes and the
corresponding bosons and fermions. Since fermionic operators
do not commute, the order of indices is important.

Next, for each τ we take the product of the transfer matrices
with this time argument. We have the following products:

U1(τ ) ≡
Nx∏
k=1

V
(1,2)
P [τ ; 2k − 1,2k − 1]V (2,1)

P [τ ; 2k,2k],

U2(τ ) ≡
Nx∏
k=1

V
(1,1)
A1

[τ ; 2k − 1,2k]V (2,2)
B2

[τ ; 2k,2k − 1],

U3(τ ) ≡
Nx−1∏
k=1

V
(1,1)
B1

[τ ; 2k + 1,2k]V (2,2)
A2

[τ ; 2k,2k + 1].

(A18)

Then, for each τ that is a multiple of 4aτ we construct
the evolution operator U (τ ) for one time step �τ = 4aτ by
multiplying the above operators as

U (τ ) = U3(τ + 4aτ )U1(τ + 3aτ )U2(τ + 2aτ )U1(τ + aτ ).

(A19)
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Finally, the full time evolution operator U is then given by the
product

U = Tτ

Nτ −1∏
n=0

U (4naτ ), (A20)

which is ordered with the earliest times at the right. The time
ordering is indicated by Tτ .

3. Disorder average and time-continuum limit

So far, we have not included the random phases on the
half-links. As is explained in Refs. [42,43], averaging over the
random phases leads to the projection of the transfer matrices
VX (and the evolution operator U ) to the tensor product

2Nx⊗
i=1

(Ri ⊗ R̄i) (A21)

of irreducible representations R and R̄, one of each for each
horizontal coordinate i. This tensor product is the space of the
superspin ladder, and we denote the projection onto it by P .

In the anisotropic time-continuum limit, all scattering
parameters tX � 1, and we can expand each transfer ma-
trix (A17) in tX. Projecting the result to the space (A21), one
can show that

PV
(l,l′)
X [τ ; i,i ′]P = 1 + t2

X strS (l)
i S̄ (l′)

i ′ + O
(
t3
X

)
, (A22)

where we have moved the indices distinguishing the sublattices
to superscripts for convenience. Multiplying such projected
expansions for all transfer matrices entering the evolution
operator U , we get

[U ] ≈ 1 + str
∑

n

[
Nx−1∑
k=1

(
t2
B1
S (1)

2k+1S̄
(1)
2k + t2

A2
S (2)

2k S̄
(2)
2k+1

)

+
Nx∑
k=1

(
t2
A1
S (1)

2k−1S̄
(1)
2k + t2

B2
S (2)

2k S̄
(2)
2k−1

)

+
Nx∑
k=1

2t2
P

(
S (1)

2k−1S̄
(2)
2k−1 + S (2)

2k S̄
(1)
2k

)]
. (A23)

Let us now introduce the following notation for the coupling
constants JX = t2

X for X = Al,Bl and J⊥ = 2t2
P . Next, we

replace the sum over the time slices n by the integral over τ ,
and also rescale the “imaginary time” as

τ → τ

4aτ

, Lτ → β = Lτ

4aτ

= Nτ . (A24)

This results in the disorder-averaged “evolution operator”

[U ] ≈ exp

(
−

∫ β

0
dτ H1D

)
, (A25)

H1D = − str
∑

k

[
JA1S

(1)
2k−1S̄

(1)
2k + JB1 S̄

(1)
2k S

(1)
2k+1

+ JB2 S̄
(2)
2k−1S

(2)
2k + JA2S

(2)
2k S̄

(2)
2k+1

+ J⊥
(
S (1)

2k−1S̄
(2)
2k−1 + S̄ (1)

2k S
(2)
2k

)]
. (A26)

We now focus on the specific choice of couplings (7), in
which case we have (i = 1,2)

t2
Al

+ t2
Bl

= ε, t2
Al

− t2
Bl

= εγl,
(A27)

t2
Al

= 1 + γl

2
ε, t2

Bl
= 1 − γl

2
ε.

Then, denoting J = ε/2 we have

JAl
= J (1 + γl), JBl

= J (1 − γl), (A28)

and the one-dimensional Hamiltonian (A26) reduces to the
form given in Eq. (9).

APPENDIX B: COHERENT STATES AND PATH
INTEGRAL FOR U(n,n|2n)

In this appendix, we construct the coherent states (see
Ref. [66] for a general discussion) for the group U(n,n|2n)
following Refs. [67,68] (see also Refs. [46,84]) with some
minor differences. We then use the constructed coherent states
to represent the partition function of a superspin system as a
functional integral.

1. Highest-weight irreps of u(n,n|2n) and U(n,n|2n)

Let us start by introducing some notation. We generalize
Eq. (A1) by introducing n copies of fermions and bosons,
labeling them by the replica index, α = 1, . . . ,n. We also add
N channels in each direction along each link, labeled by the
channel index, i = 1, . . . ,N . The number of channels N will
ultimately be seen as the large parameter that controls the
sigma model derivation, and will be related to the bare value
of the longitudinal conductivity.

We denote the bosonic and fermionic operators for
an up-going half-link as ciI , where we combine the re-
tarded/advanced index s, the replica index α, and the
fermion/boson index S into the composite index I . These are
the same operators as in Eq. (A1) but with the addition of i

and α indices everywhere, and they satisfy the commutation
relations

〚ciI ,c
∗
jJ 〛 ≡ ciI c

∗
jJ − (−1)|I ||J |c∗

jJ ciI = δij δIJ . (B1)

As before, |I | = 0 for a boson and |I | = 1 for a fermion.
The commutation relations (B1) are preserved under canon-

ical transformations that form the group GL(2n|2n). Elements
g of GL(2n|2n) are 4n × 4n complex supermatrices acting on
(the second indices of) the operators c and c∗ as

ciI → (g−1)IJ ciJ , c∗
iI → c∗

iJ gJI . (B2)

The group G ≡ U(n,n|2n), a real form of GL(2n|2n), consists
of matrices satisfying the “reality” condition:

g−1 = ηg†η, η = diag (In,In, − In,In). (B3)

The matrix η determines a bilinear form (in the graded space
C2n,2n) preserved by G. (Note that we have adopted the
so-called “retarded-advanced” notation, in which the first 2n

components of a supervector, both bosonic and fermionic,
are retarded.) If we parametrize g = exp(iA), where iA ∈
u(n,n,|2n), then the reality condition translates to A† = ηAη.
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Furthermore, if we decompose A into 2n × 2n blocks as

A =
(

ARR ARA

AAR AAA

)
, (B4)

then the blocks satisfy

A
†
RR = ARR, A

†
RA = −�zAAR, A

†
AA = �zAAA�z,

(B5)

where �z = diag (In, − In) is a diagonal 2n × 2n matrix.
The 16n2 generators of u(n,n|2n), the Lie superalgebra of

G, can be constructed as the following bilinears in bosons and
fermions:

SIJ =
N∑

i=1

ciI c
∗
iJ − N

2
δIJ . (B6)

As before, it is convenient to arrange these generators in
the form of a 4n × 4n matrix S and refer to this matrix as
a superspin. The superspin components generate a highest-
weight representation RN when acting on the vacuum |0〉
of all the bosons and fermions. The diagonal blocks Sss (in
the retarded/advanced ordering) of the superspin act on the
vacuum as

(SRR)α,S;α′,S ′ |0〉 = N

2
δα,α′δS,S ′ |0〉,

(B7)

(SAA)α,S;α′,S ′ |0〉 = −N

2
δα,α′δS,S ′ |0〉.

This implies, in particular, that the vacuum is the highest-
weight state with the weight

λN = N

2
(1, . . . ,1︸ ︷︷ ︸

2n times

,−1, . . . , − 1︸ ︷︷ ︸
2n times

). (B8)

The expectation value of S in the vacuum is

〈0|S|0〉 = N

2
�, (B9)

where � is the diagonal matrix

� = diag (I2n, − I2n). (B10)

We can construct a unitary representation of G which
corresponds to RN . To this end, for every element g ∈ G we
consider the operator

Tg = exp[ str (ln g)S] = exp[c∗
iI (ln g)IJ ciJ ](sdet g)N/2.

(B11)

These operators form a representation of G in the Fock space
by virtue of the following relations:

TgciI T
−1
g = (g−1)IJ ciJ , Tgc

∗
iI T

−1
g = c∗

iJ gJI . (B12)

This representation in terms of Tg is unitary:

T †
g = Tg−1 = T −1

g . (B13)

2. Coherent states

Now, we are ready to introduce the coherent states.
According to the general scheme of Ref. [66], we should
identify the subgroup H of G which stabilizes the vacuum
|0〉. If a general element of G is decomposed as

g = exp i

(
ARR ARA

AAR AAA

)
, (B14)

then the required subgroup H is the group U(n|n) × U(n|n) of
elements of the form

h = ei diag (ARR,AAA). (B15)

Indeed, according to the general formula (B11)

Th|0〉 = exp[i str (ARRSRR + AAASAA)]|0〉
= ei N

2 str (ARR−AAA)|0〉, (B16)

where we used the action (B7) of the diagonal blocks of the
superspin on the vacuum.

The coherent states are defined as

|ω〉 = Tgω
|0〉, (B17)

where a convenient choice of gω is

gω = eiAω = exp i

(
0 ω

−�zω 0

)
, (B18)

where ω ∈ GL(n|n) is an arbitrary 2n × 2n supermatrix. Thus,
we have used only the generators of u(n,n|2n) which are
not generators of u(n|n) + u(n|n), and remembered the reality
condition (B5). The coherent states |ω〉 have several important
properties. First of all, the expectation value of the superspin
in a coherent state is

〈ω|SIJ |ω〉 = N

2
(gω)IK�KL

(
g−1

ω

)
LJ

, (B19)

where we used (B9) and (B12). Thus,

〈ω|S|ω〉 = N

2
,  = gω�g−1

ω . (B20)

The matrix  obviously satisfies

2 = I4n (B21)

and belongs to the supermanifold G/H . Denoting the G-
invariant measure on this manifold by d, we also have the
following resolution of identity in the representation space of
RN expressing the completeness of the system of coherent
states:

P =
∫

d |ω〉〈ω|. (B22)

We call this operator P since in the total Fock space it plays
the role of the projection operator to the space RN . This is a
local (a single superspin) version of the projection operator
that appeared in Appendix A 3.

3. Functional integral

Now, we have all the ingredients necessary to express the
partition function for a single superspin as a functional integral.
Breaking the imaginary-time interval [0,β] into infinitesimal
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intervals, and inserting the resolution of identity (B22) in the
usual way, we get

Z =
∫
De−S, (B23)

where the action is

S =
∫ β

0
dτ (〈ω(τ )|∂τ |ω(τ )〉 + H[N(τ )/2]). (B24)

The matrices ω(τ ) and

(τ ) = gω(τ )�g−1
ω(τ ) (B25)

are periodic in τ : ω(β) = ω(0), (β) = (0), and so trace
closed trajectories in the corresponding spaces.

By standard manipulations, the first term in Eq. (B24), the
Berry phase term SB , can be rewritten as

SB = N

4

∫ β

0
dτ

∫ 1

0
du str [(τ,u)∂u(τ,u)∂τ(τ,u)], (B26)

where (τ,u) is a smooth homotopy between (τ,0) = � and
(τ,1) = (τ ) defined similarly to (B25) as

(τ,u) = g(τ,u)�g−1(τ,u), (B27)

where

g(τ,u) = eiuAω(τ ) = exp iu

(
0 ω(τ )

−�zω(τ ) 0

)
. (B28)

Applying Stokes’ theorem to Eq. (B26), we obtain the
following alternative form:

SB = N

2

∫ β

0
dτ str [�g−1∂τg], (B29)

where now g = gω(τ ) = g(τ,1). This last form allows us, in
particular, to evaluate the variation of SB upon an infinitesimal
variation of the field  →  + δ using integration by parts:

δSB = N

2

∫ β

0
dτ str (�[g−1∂τg,g−1δg])

= N

4

∫ β

0
dτ str [(τ )δ(τ )∂τ(τ )]. (B30)

This expression is very useful in the derivation of the nonlinear
sigma model below.

4. Modifications for lowest-weight irreps and systems
of many superspins

On the down half-links, we have superspins in the conjugate
representation R̄N . Here, the fermions and bosons c̄iI [see
Eq. (A9)] satisfy

〚c̄iI ,c̄
∗
jJ 〛 = −δij δIJ . (B31)

The components of the conjugate superspin S̄ are

S̄IJ = −
N∑

i=1

c̄iI c̄
∗
iJ − N

2
δIJ . (B32)

These generate the lowest-weight representation R̄N from the
vacuum |0̄〉, which is the lowest-weight vector with the lowest

weight λ̄N = −λN . We have

〈0̄|S̄|0̄〉 = −N

2
�, (B33)

where the matrix � is the same as in Eq. (B10).
The corresponding representation of the group G and the

coherent states are constructed as

T̄g = exp[ str (ln g)S̄], |ω̄〉 = T̄gω
|0̄〉. (B34)

Then, we have

〈ω̄|S̄|ω̄〉 = −N

2
, (B35)

with the same matrix  as in Eq. (B20).
Finally, the action for a single conjugate superspin is

S = −SB +
∫ β

0
dτH[−N(τ )/2]. (B36)

The formulas of this appendix generalize straightforwardly
to a system with many superspins. Berry phase terms for each
spin add, and the rest of the action is read off from the many-
superspin Hamiltonian, where one makes substitutions

S → N

2
, S̄ → −N

2
. (B37)

APPENDIX C: DETAILS OF THE SIGMA
MODEL DERIVATION

In this appendix, we derive the nonlinear sigma model (36)
starting from the Hamiltonian (9). To simplify equations we
will suppress the integral signs as well as the supertrace sign.
With this caveat in mind, using the superspin coherent states
we obtain the action

S =
∑
l=1,2

(
S

(l)
B + S

(l)
I

) + S⊥, (C1)

S
(l)
B =

∑
k

(−1)k+lSB

[


(l)
k

]
, (C2)

S
(l)
I = −JN2

8

∑
k

[1 + (−1)k+lγl]
(


(l)
k+1 − 

(l)
k

)2
, (C3)

S⊥ = −J⊥N2

8

∑
k

(


(1)
k − 

(2)
k

)2
. (C4)

Here, we used str 2 = str I4n = 0.
To derive a sigma model from this action, we use the

decomposition (35). The constraints ((l)
k )2 = I4n lead to

Q2
k = I4n + O(a2),

(C5)
{Qk,Lk} = {Qk,Rk} = {Qk,Mk} = 0,

and the fields Lk are assumed to be small in the sense that
aLk � 1. Both Qk and Lk are expected to vary little from one
lattice site to the next, so they should have nice continuum
limits as fields Q(x) and L(x).
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Using the identity (B30), it is easy to compute the Berry
phase terms:

SB

[


(l)
2k−1

] = SB[Qk] + Na

4
[(−1)l(Rk − Lk)+Mk]Qk∂τQk,

SB

[


(l)
2k

] = SB[Qk] + Na

4
[(−1)l(Rk + Lk)−Mk]Qk∂τQk.

(C6)

Summing these with appropriate signs, we get in the continuum
limit

SB = S
(1)
B + S

(2)
B = N

2
LQ∂τQ. (C7)

Next we turn to the terms S
(l)
I describing interactions along

the legs of the ladder. We use the decomposition (35) in
Eq. (C3), replace finite differences by derivatives, and the
sum over k by the integral

∫
dx
2a

in the continuum. This gives
(remember that we suppress integral signs)

S
(l)
I = −JN2a

4
{[1 + (−1)lγl](∂xQ)2 + 2[(−1)lL − M

]2

+ 2[1 + (−1)lγl][(−1)lL − M]∂xQ}. (C8)

Summing over l we get

SI = −JN2a

2
[(1 − γ−)(∂xQ)2 + 2L2 + 2M2

+ 2γ+L∂xQ − 2(1 − γ−)M∂xQ], (C9)

where γ± = (γ1 ± γ2)/2.
The remaining term in the action S⊥, describing the

interaction of superspins along the rungs of the ladder, is

treated similarly and gives in the continuum

S⊥ = −J⊥N2a

2
(R2 + L2). (C10)

There are two noticeable features of this action. First of all,
the field R is completely decoupled from all other fields.
Second, its mass is proportional to J⊥, so we may expect the
decomposition (35) to become less and less meaningful and
useful as we approach the point of decoupled chains J⊥ = 0.
The masses of other fields to be integrated out (M and L) are
set by J , and so they remain finite even at J⊥ = 0.

For now, we simply disregard the R field and integrate out
the M field, which leads to

S = N

2
LQ∂τQ − JN2a

4
(1 − γ 2

−)(∂xQ)2

− JN2a(μL2 + γ+L∂xQ), (C11)

where we have introduced the parameter

μ ≡ 1 + J⊥
2J

. (C12)

Then, we integrate out the L field:

S = −JN2a

4μ
(μ − μγ 2

− − γ 2
+)(∂xQ)2

− 1

16Jaμ
(∂τQ)2 − Nγ+

4μ
Q∂τQ∂xQ. (C13)

Now, we only need to rescale the time variable τ → τ/λ to
make the coefficients of the quadratic terms equal. This leads
to the isotropic sigma model (36), with coefficients given by
Eq. (38).
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