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A distinguishing feature of fractional quantum Hall (FQH) states is a singular behavior of equilibrium densities
at boundaries. In contrast to states at integer filling fraction, such quantum liquids posses an additional dipole
moment localized near edges. It enters observable quantities such as universal dispersion of edge states and
Lorentz shear stress. For a Laughlin state, this behavior is seen as a peak, or overshoot, in the single-particle
density near the edge, reflecting a general tendency of electrons in FQH states to cluster near edges. We compute
the singular edge behavior of the one-particle density by a perturbative expansion carried out around a completely
filled Landau level. This correction is shown to fully capture the dipole moment and the major features of the
overshoot observed numerically. Furthermore, it exhibits the Stokes phenomenon with the Stokes line at the
boundary of the droplet, decaying like a Gaussian inside and outside the liquid with different decay lengths. In
the limit of vanishing magnetic length, the shape of the overshoot is a singular double layer with a capacity that is
a universal function of the filling fraction. Finally, we derive the edge dipole moment of Pfaffian FQH states. The
result suggests an explicit connection between the magnitude of the dipole moment and the bulk odd viscosity.

DOI: 10.1103/PhysRevB.89.235137 PACS number(s): 73.43.−f, 05.20.−y

I. INTRODUCTION

One of the distinct features of fractional quantum Hall
(FQH) states is the nonmonotonic behavior of static correlation
functions at short distances. Such behavior has physical
consequences. One of the most familiar is the magnetoroton
minimum in the dispersion curve of the gapped collective
excitations. This was first demonstrated for Laughlin states
(states with the filling fraction equal to the inverse of an odd
integer [1]) using a variational formula for the energy spectrum
which involves the static structure factor of the FQH ground
state [2]. The dip in the dispersion curve was attributed to a
peak that occurs in the numerically computed static structure
factor. Numerical studies show that this peak is followed
by damped oscillatory features [3], already apparent in the
ν = 1/3 state [2]. That the magnetoroton minimum disappears
for the integer quantum Hall (IQH) state can also be deduced
directly from its static structure factor, which, in this case
(ν = 1) is a monotonically increasing function of momentum.
The pair correlation function in coordinate space possesses
the same structure as the static structure factor (the Fourier
transform of the pair density correlation function). The pair
correlation function oscillates as separation between points
decreases, then rises up before vanishing at zero separation [2].

Similar, nonmonotonic behavior is seen in the one-particle
density of FQH states, which displays a prominent peak,
or “overshoot,” at the edge [4]. This behavior has been
observed numerically in the Laughlin states [5–8]. This is
in stark contrast to the particle density of the IQH state,
which monotonically decreases with distance from the center
of mass, as seen in Fig. 1. Consequently, states with a fractional
filling factor possess a dipole moment, as well as higher order
moments, additional to the integer case and localized near the
edge.

The overshoot in the one-particle density is seen to have
noticeable physical consequences. Recently, it has been shown
that the double layer is an essential ingredient in the theory

of edge waves that supports fractionally charged edge solitons
[9]. In the same paper, it was conjectured that in the limit of
vanishing magnetic length the edge dipole moment is in fact
a double layer with a capacity, which is a universal function
of the filling fraction [9]. The universal properties of the edge
dipole are also closely linked to the Lorentz shear stress, an
intrinsic property of the bulk [10,11].

There is a very good reason to think that these two peaks,
or overshoots, are closely related. Indeed, the pair correlation
function in coordinate space is equivalent to the one-particle
density around a hole, or puncture, which is effectively an edge
with large curvature. Thus both features can be understood as
a tendency of electrons in the FQH state to cluster at inner
edges of the droplet. The overshoot in the density and pair
correlation function should be understood as a key feature of
the FQH state, one that is conspicuously absent in the IQH
state.

While the significance of such edge singularities is now
appreciated, an understanding of them has thus far relied
almost entirely on numerics. Of the handful of analytic works
in the literature, we refer to [12,13] for attempts to capture this
behavior in the bulk pair correlation function and [14,15] in
relation to the boundary overshoot.

The goal of this paper is to shed light on the density
overshoot at the edge. We are primarily concerned with the
analytical structure of the edge density. We find that the most
reliable approach is to treat the inverse filling fraction ν−1 = β

as a parameter in Laughlin’s wave function and to expand
the edge density about its known value for the completely
filled Landau level β = 1 to first order in the perturbation
variable β − 1. This approach has been successfully executed
by Jancovici in Ref. [13] for the bulk pair correlation function.
The leading correction is shown to herald the overshoot for
the Laughlin states. Since the 2D one component plasma is
not believed to have a phase transition in the domain of β

relevant for FQH states, we assume the results near β = 1 can

1098-0121/2014/89(23)/235137(7) 235137-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.235137
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FIG. 1. (Color online) Density profile near the edge of the droplet
ρβ (y)/ρ̄, labeled by the value of β (equal to the inverse filling fraction
ν−1 for odd integer values). For reference, the support of the droplet
is plotted as a step function. Data obtained by numerical simulation
[16]. Distance y is measured in units of �.

be adiabatically connected to the β = 3,5, . . . , and specifically
that the β − 1 term evolves smoothly into the overshoot seen
in the Laughlin state. This argument is supported by numerical
data.

The overshoot at the boundary and subsequent oscillatory
features (not captured by the first order correction) extended
toward the bulk of the droplet could be assigned to a tendency
toward crystallization as β increases. The “crystallization” is
more pronounced in the vicinity of the boundary.

In this paper, we focus on Laughlin states, and briefly
discuss possible extensions to other FQH states. We expect
more complicated FQH states also feature singular behavior
on edges, and as a first step toward understanding their
structure we compute the edge dipole moment for Pfaffian
states. In Sec. II, we present our main results, the derivation
of which is summarized in the subsequent sections. Further
detailed derivations will be presented in an expanded
companion paper [17].

II. NOTATION AND THE MAIN RESULTS

The Laughlin state of N particles on a cylinder of
circumference Lx at the filling fraction ν = 1/β in the Landau
gauge is [18]

�β(z1, . . . ,zN ) = Z
−1/2
N �β exp

(
−πβρ̄

N∑
i=1

y2
i

)
, (1)

where zi = xi + iyi is the coordinate on the cylinder, ρ̄ =
(2πβ�2

B )−1 is the mean density, �B = √
�c/eB is the magnetic

length, ZN is the normalization factor, and

� =
∏
i<j

(
ei2πzi/Lx − ei2πzj /Lx

)
.

We assume that � = √
β�B is held constant, while varying β,

so that the mean density ρ̄ = (2π�2)−1 is independent of β.
Below, we set the units of length along the cylinder � = 1. In
these units the mean density is ρ̄ = (2π )−1.

We are interested in the one-particle density for a large
number of particles,

ρβ(y) = N

∫
|�β(z,z2, . . . ,zN )|2

N∏
i=2

dxidyi . (2)

The square of the amplitude of the Laughlin wave function
|�β |2 can be seen as the Boltzmann weight of a 2D Coulomb
plasma on a cylinder, with neutralizing uniform background
charge in the rectangle

R := {0 � x � Lx, −τLx � y � 0},
where τ = N/(ρ̄L2

x) is an aspect ratio, and β acting as the
inverse temperature. The plasma forms a droplet in R with
approximately uniform density ρ̄. The mean position of the
center of the droplet is given by the exact sum rule:

ȳ = N−1
∫

yρβ(y)dy = −Lxτ

2

(
1 − 1

N

)
. (3)

Outside the droplet, the density decays as a Gaussian. We
focus on the density near the right boundary at y = 0, sending
the left boundary to negative infinity. This is accomplished by
fixing ρ̄, τ , y and sending N → ∞. In this limit, the shape of
the density is a universal (N , τ , and Lx independent) function
of y. It depends continuously on β as a parameter. The particle
density for different β, obtained via simulation, is plotted in
Fig. 1. The density approaches ρ̄ in the bulk.

For β = 1, the limiting shape of the density can be
computed analytically from the exact finite N form [19] (see
also the sentence below (14)), and we find

ρ1(y) = ρ̄

2
erfc(y) ≈ ρ̄

{
1 − (2

√
π |y|)−1e−y2

, −y � 1,

(2
√

π |y|)−1e−y2
, y � 1.

(4)

We would like to emphasize the Stokes phenomena already
seen in this simple case: the density is an entire function having
analytically discontinuous asymptotes at different parts of the
complex plane z.

Below [see Eq. (22)], we compute ρβ (y) to the leading order
in β − 1, obtaining the exact functional form of

f (y) =
[

∂ρβ

ρ̄∂β

]
β=1

. (5)

The function f (y) is an entire function. It shows a richer
Stokes phenomena: at large |y| inside and outside the droplet
the density behaves as

f (y) = 1

2
√

π

{
35/2 y−3e−y2/3, −y � 1 (inside),
−|y| e−y2

, y � 1 (outside).
(6)

In fact, the leading large y asymptote outside the droplet is
independently known for all β [17,20] up to the coefficient cβ .
It is

ρβ(y) ≈ ρ̄
cβ√
2π

(|y|
√

2)−βe−βy2
. (7)

The leading order of the β − 1 expansion of the coefficient cβ

is found to be

cβ ≈ 1 + (β − 1)(1 − C)/2 + O(β − 1)2,

where C is the Euler-Mascheroni constant [17].
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FIG. 2. (Color online) Comparison of the numerically computed
(ρβ − ρ1)/ [ρ̄(β − 1)] (solid line) for the Laughlin state ν = β−1 =
1/3, with the O(β − 1) correction f (y) (blue dash-dotted line), and
its exterior asymptote Eq. (7) (red dashed line). The overshoot at
the inner edge is captured well by f (y). (Inset) Logarithmic-scale
comparison of exterior asymptote to numerical data for the density.
Distance is measured in units of �.

The asymptotes of the correction to ρ1(y) given by f (y)
imply an overshoot at the edge if β > 1. This follows by
observing that, when approaching from the inside of the
droplet (y < 0), the correction is positive and rising, while
approaching from the outside the correction is negative. A
depletion of charge outside the droplet, and accumulation
inside is thus implied. Since the total number of particles
remains the same, this behavior yields the overshoot. Also, the
asymmetry of the asymptotes suggests that the accumulation
inside is larger than the depletion outside, indicating a shift of
the boundary [where f (y) vanishes] towards the interior.

A noticeable feature of the correction is the asymmetry
of inside and outside behavior not seen in the integer case
where ρ1(−y) = ρ̄ − ρ1(y). Moreover, even deep inside the
droplet the β − 1 correction O( exp(−y2/3)) dominates the
β = 1 contribution O( exp(−y2)). This signals that higher
order β − 1 corrections are even more relevant deep inside the
droplet. They are responsible for oscillatory features evident
in numerics.

The full function f (y) is plotted in Fig. 2, where it
is compared with both numerical data for the normalized
difference [ρβ(y) − ρ1(y)]/[ρ̄(β − 1)] at the filling fraction
ν = 1/3, as well as the exterior asymptote of this difference,
which follows from Eq. (7) with β = 3 and the numerical
approximation for cβ computed in Refs. [8] and [17]. We
observe the function f (y) captures well the overshoot at the
inner boundary, as well as the gross overall features of the edge
double layer. However, it misses the oscillatory features which
arise inside the droplet, since as remarked in the previous
paragraph, these are likely non-perturbative corrections in
β − 1. The exterior asymptote also shows good agreement
with the numerics at distances from the edge of order �.
Therefore Eqs. (6) and (7) effectively capture the overshoot
and approximately illustrate the edge double layer.

Thus, we see that deviations of ρβ from ρ1 and subse-
quently from the step function are localized to distances of
a few magnetic lengths near the edge. In considering the
limit of vanishing magnetic length, while keeping the area

of the droplet 2πβ�2
BN fixed, we see the function f (y)

collapses to the double layer conjectured in Ref. [9] (see also
Refs. [14,15]). In original units,

ρβ(y) − ρ1(y) = (β − 1)

4πβ
δ′(y). (8)

This formula succinctly describes the dipole moment per unit
length along the edge∫

y[ρβ (y) − ρ1(y)]dy = −β − 1

4πβ
(9)

known independently [15] (see Sec. VII below). The dipole
moment is completely captured by the β − 1 expansion
through the correction f (y).

Higher moments

Mn ≡
∫ ∞

−∞
ynf (y)dy

grow as n!. The odd moments can be obtained explicitly:

M2n+1 = − (2n + 1)!

4n(n + 1)!

(
1

2
+

n∑
k=1

Rk

)
,

Rk =3k+1 (4k + 5) + (
2k2 + 4k + 1

)
16(k + 2)(k + 1)

. (10)

Finally, in Sec. VIII, we compute the edge dipole moment
per unit length for the Pfaffian states. The result further
confirms the close connection between the dipole moment
and the Lorentz shear stress alluded to in the introduction.

III. EDGE DENSITY AT β = 1

If β = 1 [19], the wave function (1) describes free fermions
on the lowest Landau level. It is the Slater determinant

�1 = det[ψn−1(zi)]1�n,i�N

of one-particle wave functions

ψn(z) = (Lx

√
π )−1/2e− 1

2 (y+pn)2
eipnx,

where pn = 2πnL−1
x , n = 0, . . . ,N − 1. Consequently, the n-

point function

g
(n)
1 ≡ N !

(N − n)!

∫
|�1(z1,...,zN )|2

N∏
i=n+1

d2zi (11)

is also a determinant (per Wick’s theorem) g
(n)
1 =

det[K(zi,zj )]i,j=1,...,n. Here,

K(z1,z2) =
N−1∑
n=0

ψn(z1)ψ∗
n (z2) (12)

is the Fredholm kernel (projector) over the Landau level. We
will use the Fourier modes of the kernel along the boundary:

K(z1,z2) = L−1
x

N−1∑
n=0

Kpn
(y1,y2)eipn(x1−x2), (13)

Kp(y1,y2) = 1√
π

e− 1
2 (y1+p)2

e− 1
2 (y2+p)2

. (14)
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In particular, for the density, we have

ρ1(y) = L−1
x

∑
p

Kp(y,y).

The limiting shape of the density is given by (4).

IV. PERTURBATION EXPANSION IN β − 1

As β departs from 1, the wave function and correlation
functions depart from the determinantal form. This can be
viewed as an interaction between fermions. We can develop a
perturbation expansion of the density around β = 1 by direct
expansion of (2) in β − 1.

Defining the expectation value over free fermions 〈A〉 =∫
�∗

1A�1
∏N

i=1 dxidyi , where A is a symmetric function of
coordinates, we write the first correction to the unperturbed
density ρ1(y) as

f (y) = −2π

〈 ∑
i

δ(2)(z − zi)

[ ∑
j>k

V (zj ,zk) +
∑

j

y2
j

]〉
c

,

(15)

where

V (z,z′) = − ln
∣∣e2π iz/Lx − e2π iz′/Lx

∣∣2
. (16)

The symbol 〈...〉c stands for the connected part of the
correlation function defined for two operators as 〈AB〉c =
〈AB〉 − 〈A〉〈B〉. In this case, it involves one-, two-, and
three-point correlation functions, which can be computed
using Wick’s theorem. The result is expressed through the
two-body interaction potential

ϕ1(z) =
∫

d2z′ρ1(z′)V (z,z′) + y2

and the two-body potential V (z,z′). We can write both contri-
butions together by introducing a nonsymmetric potential

v(z1,z2) = −ϕ1(z1) + V (z1,z2). (17)

The result reads

f (y) = 2π

∫
d2z′d2z′′K(z,z′)K(z′,z′′)K(z′′,z)

× [v(z,z′) − v(z′,z′′)]. (18)

We comment that perturbation theory around the integer
filling factor could be carried out from the phenomenological
Hamiltonian of the FQHE considered in Ref. [9]. We briefly
describe it.

The Hilbert space of FQH states is comprised of functions
Q�1, where Q = Qk(e2π iz1/Lx , . . . ,e2π izN /Lx )e− k

2

∑N
i=1 y2

i , and
Qk is a symmetric polynomial of the degree k − 1. In partic-
ular, Laughlin’s wave function corresponds to k = β − 1 and
Qk = �β−1. The operators acting in this space are symmetric
functions of coordinates and derivatives. Their matrix elements
are 〈Q|A|Q′〉 = ∫ |�1|2QAQ′ ∏

i dxidyi , where derivatives
in A (if any) act to the right. Magnetic translation operators in
this representation are

pi = ∂zi
− (β − 1)∂zi

[
y2

i +
∑
j �=i

V (zi,zj )

]
.

Each operator annihilates the Laughlin state pi�β = 0.

The phenomenological Hamiltonian is constructed as a
square of magnetic translations H = ∑

i p†i pi . Its spectrum
is non-negative, with the Laughlin wave function as the
zero energy ground state. The interaction is explicit in the
Hamiltonian. The formula (15) could be obtained as the leading
order of the perturbation expansion.

Further calculations are most conveniently done using
Fourier modes. We write the potential as

v(z,z′) = v0(y,y ′) +
∞∑

n=1

2 cos(kn(x ′ − x))vn(y − y ′),

where

vn(y) = 2π

Lxkn

e−kn|y|, v0(y,y ′) = 4π

Lx

min(y,y ′) − ϕ1(y).

Then

f (y) =2π

Lx

N−1∑
n,m=0

∫
dy ′dy ′′Kpn

(y,y ′)Kpm
(y ′,y ′′))

× [Kpm
(y ′′,y)v|n−m|(y,y ′)−Kpn

(y ′′,y)v|n−m|(y ′,y ′′)].

(19)

The integrals in y can be computed analytically. The
result is expressed through the error function erf(y) =

2√
π

∫ y

0 e−y ′2
dy ′, erfc(y) = 1 − erf(y) and its antiderivative

F (y) = −y erfc(y) + 1√
π

e−y2
, F ′(y) = −erfc(y).

We list the contributions of the zero and nonzero modes
separately f (y) = f (1)(y) + f (2)(y),

f (1)(y) = 2π (yρ1)′ + π

2
ρ ′′

1 (y) + 1√
π

(
2π

Lx

)2

×
∑

0�n�=m<N

e−(y+pn)2

[
F (y + pm) −

√
2F

(
pm − pn√

2

)]
,

(20)

f (2)(y) = 1√
π

(
2π

Lx

)2 ∑
0�n�=m<N

e−(y+pn)2

pn − pm

×
[

erf (y + pm) + erf

(
pn − pm√

2

)]
. (21)

This formula could be studied in various different large N

limits, while y is of the order 1. One is the limit of the
thin cylinder with the large aspect ratio τ � 1, when the
circumference Lx is comparable with the magnetic length.
In this case electrons are crystallized all the way into the bulk
[19,21,22]. The density is a nearly periodic function featuring
N humps with a width of the magnetic length localized at
yn = 2πn/Lx . The contribution comes only from the zero
mode (20). In this case, the correction we computed does not
drastically change the profile away from β = 1.

However, for a cylinder with aspect ratio of order 1, the
genuine 2D case, the distance between humps and the size of
the humps are of the same order. The sums in (20) and (21)
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must be replaced by integrals. This gives the limiting shape

f (1)(y) = 1

2
erfc(y) − y

2
√

π
e−y2

+ 1√
π

∫∫ ∞

y

e−p2

[
F (p′)−

√
2F

(
p′−p√

2

)]
dpdp′,

f (2)(y) = 1√
π

∫∫ ∞

y

e−p2

p − p′

[
erf p′ + erf

(
p − p′

√
2

)]
dpdp′.

(22)

The formulas are more transparent if we focus on the antisym-
metric part of the correction fA(y) = 1

2 [f (y) − f (−y)]. The
result is more compact if one applies the differential operator
D = (∂y + 2y)∂y to the antisymmetric part. This operator
annihilates the zero-order part of the density Dρ1 = 0. After
some tedious algebra we get

DfA =
(

y2− 1

2

)(
erf

(
y√
3

)
−erf(y)

)
+

√
3√
π

ye− y2

3 . (23)

The odd moments (10) were computed from this formula.

V. ASYMPTOTES OF THE OVERSHOOT

These formulas are sufficient to compute the asymptotes
of the overshoot at large |y| (larger than magnetic length but
smaller than the circumference of the boundary). They are
summarized in Sec. II.

The asymptotes outside of the droplet are readily com-
putable directly from the integrals (22). In this case, the
integrals in (22) are suppressed by the factor e−p2

. We
reproduce the β − 1 expansion of the known asymptote (7)
and obtain the β − 1 expansion of the previously unknown
coefficient cβ [17].

Inside the droplet (23) indicates that the dominant term
comes from erf(y/

√
3) and the last term in (23). It is

O(e−y2/3) and therefore dominates other contributions of the
order O(e−y2

). As a result, inside the droplet f ≈ 2fA. The
asymptotes of fA easily follow from (23). The result is
presented in (6).

We also want to comment further on the emergence of
the curious e−y2/3 asymptote only inside the droplet. A
similar effect is seen in the β − 1 correction to the pair
distribution function gβ(r1,r2) deep inside the bulk where it
depends only on the distance between the points. At β = 1 the
pair correlation function is g1(r) = 1 − e−r2/2 as it follows
from (11) and (12). However, the correction computed in
Ref. [13] has the asymptote ∼ r−2 exp(−r2/4). In that case,
the appearance of the different exponent can be understood
as necessarily following from the functional rule gβ(r) =
−e−r2/2gβ(ir) for the pair correlation function [23]. To the
best of our knowledge, there is no analogous sum rule to
explain the exp(−y2/3) decay for the density. We expect that
higher-order corrections show even slower decay, indicating
the development of oscillations extended into the bulk. The
apparent asymmetry between asymptotes inside and outside
the droplet and a decay O(e−y2/3) are perhaps the major
analytic findings of the paper.

VI. SINGULAR DOUBLE LAYER

To capture the singular character of the edge, we consider
the different limit when � → 0. In this case, the limiting
shape collapses to a singularity at the edge. Let us restore the
magnetic length in the formulas (10), fix y and send magnetic
length to zero. In the original coordinates, the moments∫

[ρβ(y) − ρ1(y)]yndy = (2π )−1(β − 1)�n−1Mn

are scaled as �n−1. In the limit � → 0, the only moment that
remains is the dimensionless dipole moment M1 = −1/2. It is
saturated by the double layer (8).

We want to emphasize that this is a fundamental feature of
the Laughlin state that persists in the thermodynamic (large N )
limit. In taking the limit of N → ∞ and � → 0, the droplet
tends to a uniform density on a domain with a step-function
support. However, the magnitude of the dipole moment per
unit length along the boundary is a universal function of the
filling fraction, and survives in the large N limit. Since the
dipole moment is localized to distances O(�) near the edge,
this gives rise to a singular double layer correction at the
boundary of the droplet, which is essential to the physics of the
FQH state.

VII. DIPOLE MOMENT FROM EXACT SUM RULE IN
DISK GEOMETRY

Though we have specialized the preceding discussion to
the case of a cylindrical geometry, the edge density derived
above also follows from studying the Laughlin state in the disk
geometry in local coordinates, and under the proper scaling
limit, in which the droplet boundary appears approximately flat
(vanishing geodesic curvature). This is discussed in great detail
in the companion paper [17]. This universality of the edge
density can be understood as arising from the finite correlation
length in the bulk, wherein correlations show Gaussian decay
over a characteristic distance on the order of the magnetic
length. Thus, the shape of the droplet is invisible to the edge
density, which is defined for distances from the boundary on
the order or larger than �, but much less than the droplet size.

In this section, we present an alternative derivation of the
edge dipole moment from an exact sum rule for the droplet
in the disk geometry. This was obtained in Ref. [15], and
we repeat the arguments below. In the next section, we use
this approach to compute the dipole moment of Pfaffian FQH
ground-state wave functions.

To begin, we write the Laughlin wave function on the plane
in the symmetric gauge with the same scaling of coordinates
as above:

�β(z1,...,zN ) = Z
−1/2
N

∏
i<j

(zi − zj )βe− 1
2 πβρ̄

∑
i |zi |2 . (24)

The droplet now achieves approximately uniform density ρ̄

over a region on the plane bounded by the disk of radius R =√
N/πρ̄. We can compute exactly the second moment of the

density, using the following arguments. Under a rescaling of
coordinates zi → λzi , the normalization integral is unchanged,
which implies ∂λ log ZN (λ) = 0. The derivative with respect
to λ can then be carried out explicitly. The scaling of the
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T. CAN, P. J. FORRESTER, G. TÉLLEZ, AND P. WIEGMANN PHYSICAL REVIEW B 89, 235137 (2014)

Laughlin-Jastrow factor, as well as the integration measure,
produces a factor βN (N − 1) + 2N , while differentiation of
the Gaussian exponential factor will result in the expectation
value of

∑
i |zi |2. Then, setting λ = 1, we recover the exact

sum rule: ∫
|z|2ρβ(z)d2z = N

2πρ̄

(
N + 2 − β

β

)
. (25)

Subtracting off the density at β = 1, this becomes∫
|z|2(ρβ(z) − ρ1(z))d2z = N

πρ̄

(
1 − β

β

)
. (26)

We are interested in the contribution to this sum rule that comes
from the edge double layer. Consider a change of coordinates
r = R + y, and take R,N → ∞ while keeping ρ̄ fixed. In this
limit, we recover the edge density above as a function of y,
the distance from the boundary. Now, we expand the left-hand
side (LHS) of (26) in R, and use

2π

∫ ∞

−R

(R + y)[ρβ(y) − ρ1(y)]dy = 0, (27)

which is just the statement that both densities ρβ and ρ1 count
the same total number of particles. Dividing through by N and
sending R,N → ∞ then gives∫ ∞

−∞
y[ρβ (y) − ρ1(y)]dy = − 1

4π

(
β − 1

β

)
. (28)

Thus the dipole moment is recovered and shown to be linear in
ν − 1. This explains the success of the perturbative expansion
at order β − 1 in capturing the double layer.

VIII. EDGE DIPOLE MOMENT OF PFAFFIAN STATES

We can derive the same result for the Pfaffian states, defined
by the ground-state wave function

�
pf

β = Pf

(
1

zi − zj

)
�βe− 1

2 πβρ̄
∑

i |zi |2 . (29)

Here, Pf(Mij ) is the Pfaffian of the matrix M [24]. Under this
scaling, the Pfaffian states describing filling fraction ν = 1/β

will have a mean density ρ̄ in the bulk. For β = 2, this is the
well-known Moore-Read state believed to describe the FQH
effect at filling fraction ν = 5/2. Following the arguments
in the preceding section, we find the second moment of the
density for the Pfaffian state:∫

|z|2ρpf

β (z)d2z = N

2πρ̄

(
N + 2 − S

β

)
. (30)

The quantity S = β + 1 for Pfaffian states, and is known
as the “shift” for FQH states. The shift relates the number of
electrons in a FQH state needed to cover a sphere pierced
by Nφ flux quanta, and is defined by the equation Nφ =
ν−1N − S [25]. Normalizability of the many-particle wave
function on the sphere requires the holomorphic part of the
wave function to be homogeneous of total degree NNφ/2.
Comparing this with the total degree of the Pfaffian wave
function N (βN − β − 1)/2 determines the shift [26], and
accounts for its appearance in the second moment sum rule
(30). Importantly, the shift determines the Lorentz shear

modulus (odd viscosity) η(A) = �ρ̄S/4 [27]. Following the
steps above, we deduce that the dipole moment for the Pfaffian
state is, upon subtracting the β = 1 (free fermion) density for
reference,

∫
y
[
ρ

pf

β (y) − ρ1(y)
]
dy = − 1

4π

(S − 2

2β
+ 1

2

)
. (31)

Note that for Pfaffian states (29) with β � 1, the dipole
moment is negative, indicating the presence of an overshoot
at the edge. Furthermore, the dependence on S, and not
simply the filling fraction, confirms a connection between the
strength of the dipole moment and the odd viscosity [11]. This
connection is somewhat obscured in the Laughlin state for
which S = β.

While the result (31) is specific to Pfaffian states at filling
fraction ν = β−1, it can be readily adapted to other FQH
model wave functions. Indeed, the derivation requires that the
ground state wave function in the symmetric gauge consists
of a product of Gaussian exponential factors multiplied by a
homogeneous function of particle coordinates of total degree
NNφ/2 = N (ν−1N − S)/2. These are rather generic features
of FQH model wave functions in the lowest Landau level, and
suggest the dependence of the edge dipole moment (31) on the
shift S is a general property of FQH states.

IX. CONCLUSION

In this paper, we studied the functional form of the edge
density of the Laughlin state at filling fraction ν = β−1 using
a perturbative expansion around the free fermion, IQH state at
β = 1. From this we obtained the exact, finite N correction to
the density at order β − 1. The correction becomes a universal
function in the limit of large N , and we explicitly compute
the odd moments and obtain exact asymptotics of the edge
density. Our results confirm the presence of the dipole moment
localized on the order of � near the edge, which collapses to
a singular double layer in the limit of large magnetic field.
We have demonstrated that the perturbative result effectively
captures the double layer structure of the edge, even for larger
values of β, although it cannot account for the nonperturbative
oscillatory features. Finally, we presented a route to analyze
the edge structure of different FQH states, and derived the
edge dipole moment of the Pfaffian state. The results reveal
a relationship between the edge dipole moment and the bulk
odd viscosity.
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