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Transport signatures of Majorana quantum criticality realized by dissipative resonant tunneling
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We consider theoretically the transport properties of a spinless resonant electronic level coupled to strongly
dissipative leads, in the regime of circuit impedance near the resistance quantum. Using the Luttinger liquid
analogy, one obtains an effective Hamiltonian expressed in terms of interacting Majorana fermions, in which all
environmental degrees of freedom (leads and electromagnetic modes) are encapsulated in a single fermionic bath.
General transport equations for this system are then derived in terms of the Majorana T -matrix. A perturbative
treatment of the Majorana interaction term yields the appearance of a marginal, linear dependence of the
conductance on temperature when the system is tuned to its quantum critical point, in agreement with recent
experimental observations. We investigate in detail the different crossovers involved in the problem, and analyze
the role of the interaction terms in the transport scaling functions. In particular, we show that single barrier scaling
applies when the system is slightly tuned away from its Majorana critical point, strengthening the general picture
of dynamical Coulomb blockade.
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I. INTRODUCTION

Engineering electronic systems at the nanoscale is becom-
ing a fascinating way to realize unconventional states of matter,
ones that break the Fermi liquid paradigm. Some recent exam-
ples include several ways of realizing one-dimensional Lut-
tinger liquid physics [1–4], gate-tunable molecules showing
quantum phase transitions [5,6], and tailored double quantum
dots in semiconductors exhibiting complex behaviors such as
multichannel Kondo physics [7,8]. Further progress and new
classes of anomalous behavior can be realized by combining
both fine-tuned nanostructures and tailored environments,
as demonstrated by a series of recent experiments [9–12]
involving quantum tunneling at the nanoscale in the presence
of strong dissipation in the contacts. In this type of system,
single-electron tunneling events create large electromagnetic
fluctuations that become energetically prohibitive in a strongly
resistive circuit. This so-called dynamical Coulomb blockade
phenomenon leads to inelastic losses that can be quite effective
in impeding low-energy electrons from transporting current,
and so dramatically depress the conductance for small applied
voltage bias across the device (typically in a power-law
fashion). This physical behavior is quite reminiscent of the
problem of quantum tunneling in Luttinger liquids, one-
dimensional conducting wires where Coulomb interaction
effects are prominent [13]. In this case, power-law zero-bias
anomalies in transport also arise due to excitations of collective
plasmon modes. This analogy can be formally pushed to
a general theoretical equivalence between the two problems
using bosonization techniques [14], which makes dissipative
circuits an attractive method for probing local aspects of
Luttinger liquid physics in nanocircuits.

Recent experimental investigations further explored this
analogy by extending previous single barrier devices to
quantum dot systems [10,11]. Here, additional quantum
degrees of freedom are introduced, such as the quantized
charge and magnetic moment for the localized electronic
level. Previous theoretical arguments [10,15] showed that the
Luttinger analogy is still maintained, opening an interesting

playground for quantum critical and anomalous Kondo-type
behavior.

In the present paper, we aim at analyzing in detail the
transport characteristics in the simpler case when only the local
electron charge is the relevant variable, as can be realized by
a full spin-polarization of the electronic states in a large mag-
netic field. This situation results in complex signatures because
zero bias anomalies are very sensitive to the typical transmis-
sion through the device. They can, for instance, be washed
out when the transmission of the electron channel approaches
unity. While the complete loss of dynamical Coulomb block-
ade at perfect transmission is correct for single tunnel barriers,
it turns out to be quite nontrivial in the case of resonant
tunneling through a perfectly transmitting electronic level.

We show here that full transmission does survive large
dissipation in the contacts, but extra energy loss in the
environment is still possible which then modifies the low-
temperature behavior of the conductance. This behavior can
be rationalized when the dissipation is fine-tuned such that
the impedance is close to the quantum value h/e2 (here h is
Planck’s constant and e the electron charge), where an exact
mapping to resonant Majorana levels can be achieved at low
energy. Losses in the circuit are then embodied in Majorana
interaction terms, which were discarded in previous theoretical
studies [16]. In contrast, we show that these terms are not only
large in magnitude for dissipative circuits, but even control
the leading behavior of the conductance near the unitary limit.
Here, a striking behavior of the inelastic scattering rate—linear
in temperature and voltage—is obtained, which we view as a
hallmark of interacting Majorana quantum criticality that was
uncovered in recent experimental studies [11].

A further question that we wish to examine here is to
what extent single barrier scaling applies to the quantum
dot setup when the system deviates from the resonance
condition. We show that corrections due to the Majorana
interaction term are in this case—and in contrast to the
resonant case mentioned above—very rapidly suppressed at
low temperature, typically as T 4. This result vindicates the
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use of usual dynamical Coulomb blockade theory in a more
general way than previously thought.

The paper is organized as follows. In Sec. II, we present
our model of resonant tunneling with dissipation, and outline
the connection to Luttinger and Majorana physics. In Sec. III,
we present a general theory of transport formulated in the
Majorana language and provide a perturbative treatment of
inelastic processes, leading to a detailed study of various
transport scaling laws in Sec. IV.

II. MAJORANA REPRESENTATION OF DISSIPATIVE
RESONANT TUNNELING

A. Modeling a resonant level with dissipative leads

We present here the basic model for resonant tunneling
through a single spin-polarized electronic level with resistive
leads characterized by the dimensionless quantity r = Re2/h,
the ratio of the lead zero-frequency impedance R to the
resistance quantum h/e2. For simplicity, we drop spin indices.
Our starting Hamiltonian reads

H = Hdot + Hleads + HT + Henv, (1)

where Hdot = εdd
†d is the Hamiltonian representing the

dot with a single energy level εd (tuned by the backgate
voltage Vgate), and Hleads = ∑

α=S,D

∑
k εkc

†
kαckα describes the

electrons in the source (S) and drain (D) electrodes. Tunneling
between the dot and the leads with amplitudes VS/D is given by

HT = VS

∑
k

(c†kSe
−iϕS d + H.c.) + VD

∑
k

(c†kDeiϕDd + H.c.),

(2)

where the operators ϕS/D describe phase fluctuations of
the tunneling amplitude between the dot and the S/D lead.
These phase operators are canonically conjugate to the charge
operators QS/D associated with the S/D junctions. Here, we
have adopted the standard treatment quantum tunneling in the
presence of a dissipative environment [17], which is valid for
electrons propagating much slower than the electromagnetic
field [18].

It is useful to transform to phase variables related to the
total charge on the dot. To that end, we introduce [17] two new
phase operators:

ϕS ≡ κSϕ + ψ, ϕD ≡ κDϕ − ψ, (3)

where κS/D = CS/D/(CS + CD) in terms of the capacitances
of the dot to the source/drain contacts, CS/D . The phase ψ is the
variable conjugate to the fluctuations of total charge on the dot
Qc = QS − QD and so couples to voltage fluctuations on the
gate that controls the energy level of the dot. Likewise, ϕ is the
variable conjugate to the charge transferred across the device,
Q = (CSQD + CDQS)/(CD + CS). Assuming for simplicity
CS = CD , we have ϕS = ϕ/2 + ψ and ϕD = ϕ/2 − ψ .

The gate voltage fluctuations will be disregarded here, as the
gate capacitance in the experiment of Refs. [10,11] was negli-
gible, Cg � CS/D . (The opposite limit of a strongly fluctuating
gate coupled to a resonant level but with no dissipation in the
leads was considered theoretically in Refs. [19–27], and the
combination of both types of dissipation was recently treated
in Ref. [28].) Thus only the relative phase difference between

the two leads remains [15,17] and the tunneling Hamiltonian
becomes

HT = VS

∑
k

(c†kSe
−i

ϕ

2 d + H.c.) + VD

∑
k

(c†kDei
ϕ

2 d + H.c.).

(4)

The last part of Eq. (1) is the Hamiltonian of the en-
vironment, Henv [17,29,30]. The environmental modes are
represented by harmonic oscillators controlled by inductances
and capacitances such that the frequency of environmental
modes are given by ωk = 1/

√
LkCk . These oscillators are then

bilinearly coupled to the phase operator ϕ through the relevant
phase variable:

Henv = Q2

2C
+

N∑
k=1

[
q2

k

2Ck

+
(

�

e

)2 1

2Lk

(ϕ − ϕk)2

]
, (5)

where C = CSCD/(CS + CD) = CS/2 is the total capaci-
tance.

B. The Luttinger bosonic representation

Now, we use bosonization [13] to map model (1) to the
Hamiltonian of a resonant level contacted to two Luttinger
liquids. Here, we follow closely previous work on tunneling
through a single barrier with an environment [14,22] and
the Kondo effect in the presence of resistive leads [15] (see
also our previous work in Refs. [10,11]). The source and
drain leads can be standardly reduced to two semi-infinite
nonchiral one-dimensional free fermionic baths [13]. By an
unfolding procedure, one obtains two infinitely-propagating
chiral fields [13], which both couple to the dot at the origin
x = 0. One can then bosonize the fermionic fields [13] as
cS/D(x) = 1√

2πa0
exp[iφS/D(x)] (we neglect Klein factors for

simplicity as their role is unimportant here), where φS/D are
the bosonic fields introduced to describe the electronic states
in the leads, and a0 is a short distance cutoff. Defining the
flavor field φf and charge field φc by

φf ≡ φS − φD√
2

, φc ≡ φS + φD√
2

, (6)

one can rewrite the lead Hamiltonian as

Hleads = vF

4π

∫ ∞

−∞
dx[(∂xφc)2 + (∂xφf )2]. (7)

with vF the Fermi velocity. The tunneling Hamiltonian then
becomes

HT = VS√
2πa0

exp

[
−i

φc(0) + φf (0)√
2

− i
ϕ

2

]
d + H.c.

+ VD√
2πa0

exp

[
−i

φc(0) − φf (0)√
2

+ i
ϕ

2

]
d + H.c. (8)

A key feature of HT is that the fields ϕ and φf (0) enter in the
same way in the tunneling process. Combining these two fields
together embodies a local tunneling process that is analogous
to having effectively interacting leads as in a Luttinger liquid.
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We thus combine the phase factors as

φ′
f ≡ √

g

(
φf (0) + 1√

2
ϕ

)
, (9a)

ϕ′ ≡ √
g

(√
rφf (0) − 1√

2r
ϕ

)
, (9b)

where g ≡ 1/(1 + r) � 1 and the new fields are scaled so
that the coupling constant g appears only in the tunneling
Hamiltonian. The action describing the tunneling in terms of
the new phase variables then reads

ST =
∫

dτ

[
VS√
2πa0

e
−i 1√

2
φc(τ )

e
−i 1√

2g
φ′

f (τ )
d + c.c.

+ VD√
2πa0

e
−i 1√

2
φc(τ )

e
i 1√

2g
φ′

f (τ )
d + c.c.

]
. (10)

Because of the local nature of the tunneling Hamiltonian,
one can proceed with an integration over all phase modes
away from the origin as well as of the environmental modes.
This leads to an effective action for the combined leads and
environment given by [14,15,30–32]

Seff
Leads+Env=

1

β

∑
n

|ωn|(|φc(ωn)|2 + |φ′
f (ωn)|2 + |ϕ′(ωn)|2),

(11)
with ωn = 2πnT a Matsubara frequency (T is temperature,
β = 1/T , and n is an integer). It turns out that one obtains
a very similar effective action by starting from a model of
spinless resonant level coupled to Luttinger liquids [31–33],
with Luttinger parameter g (g < 1 for repulsive interactions).
Thus, in the absence of dissipation, r = 0, one recovers the
correct limit of noninteracting fermions g = 1.

C. The Majorana mapping

In this last step, we concentrate on the special value
r = 1, corresponding to a fine-tuned circuit impedance R =
h/e2 (close to the experimental value of Ref. [11]), which
admits making interesting analytical progress. We use here
the refermionization [13] of the tunneling term (10), which
starts by performing a unitary transformation [16,34], U =
exp[i(d†d − 1/2)φc(0)/

√
2], in order to eliminate the φc

charge field in the tunneling action, Eq. (10):

ST =
∫

dτ

[
VS√
2πa0

e
−i 1√

2g
φ′

f (τ )
d + VD√

2πa0
e
i 1√

2g
φ′

f (τ )
d

]
+ c.c.

(12)

This operation generates a new contact interaction between the
dot and the phase field:

HC = − vF

2
√

2
(d†d − 1/2) ∂xφc(x = 0) . (13)

For the special value g = 1/2, corresponding to r = 1, one
can identify fictitious but emergent fermionic fields ψc =
eiφc/

√
2πa0 and ψf = eiφ′

f /
√

2πa0. Electron waves in the
contacts and environment fluctuations in the circuit are thus
combined together in a nontrivial way into noninteracting
(free) fermionic species. All the complexity of the tunneling

process now reduces to the form

HMajorana ≡ HT + Hdot + HC (14a)

= (VS ψ
†
f (0) d + H.c.) + (VD ψf (0) d + H.c.)

+ εd d†d − πvF√
2

:ψ†
c (0)ψc(0): (d†d − 1/2),

(14b)

where HMajorana describes everything not included in the har-
monic leads and environment, H = Hleads + Henv + HMajorana.
A remarkable feature of this effective Hamiltonian is the
presence of “pairing” terms, like ψf (0)d, in contrast to
the initial tunneling Hamiltonian Eq. (2) where the number
of fermions is conserved. The underlying reason for the
appearance of these pairing terms is that current in the source-
drain circuit is produced both by destroying an electron on the
dot while moving it to the drain and by moving an electron
from the source to the dot; hence ψf (the field describing the
current) couples to both d and d†. This structure motivates the
introduction of a Majorana description of the local electronic
level,

γ1 ≡ d + d†
√

2
and γ2 ≡ d − d†

√
2i

, (15)

so that γ1 and γ2 obey γ
†
1 = γ1, γ

†
2 = γ2, {γ1,γ2} = 0, and

γ 2
1 = γ 2

2 = 1/2. The effective tunneling Hamiltonian (14b)
then becomes

HMajorana = (VS − VD)
ψ

†
f (0) − ψf (0)√

2
γ1

+ i(VS + VD)
ψ

†
f (0) + ψf (0)√

2
γ2

+ iεd γ1γ2 + iλ :ψ†
c (0)ψc(0): γ1γ2, (16)

with λ = −πvF /
√

2.
A very special working point can be identified from

Hamiltonian (16): VS = VD and εd = 0 corresponding to
symmetric tunneling amplitudes to source and drain and
exactly on resonance. In this case, the γ1 Majorana mode
does not hybridize to either the leads or the γ2 Majorana
level; the latter is, however, tunnel coupled to the fermion
bath. If one momentarily forgets the contact interaction [last
term in Eq. (16)], one obtains the solvable Emery-Kivelson
point [16,34], described by a noninteracting Majorana resonant
level model for mode γ2 together with a perfectly decoupled
Majorana mode γ1. This leads to a Majorana quantum critical
state with fractional degeneracy (the ground state entropy is
then S = log[

√
2]). In our case, the interaction strength λ is,

however, large and certainly cannot be neglected. One purpose
of the present paper is to investigate the consequences of this
contact interaction—we will see that it strongly affects the
quantum critical properties.

We note finally that for r close to one, one obtains a
Majorana model equivalent to Eq. (16), but now with weakly
interacting Luttinger fermionic fields [35–37], described by
a new effective Luttinger parameter g̃ − 1 ≈ (1 − r)/2. This
residual interaction among the fermions leads to slight mod-
ifications of the transport laws derived in the following, but
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without affecting dramatically, we believe, the general picture.
Although the critical state is then not exactly described by a
Majorana zero mode, the associated ground state still possesses
entropy S = ln[

√
1 + r] associated with a nontrivial fractional

degeneracy [38].

III. GENERAL TRANSPORT THEORY
OF INTERACTING MAJORANA MODES

We now investigate in detail the conductance through the
dot for r = 1, both at and away from the critical state, taking
into account the Majorana interaction term. It is natural to
split the full refermionized Hamiltonian into a noninteracting
part H0 [which contains free-electron reservoirs and the
bilinear terms in Eq. (16)] and an interaction term HC =
iλ : ψ

†
c (0)ψc(0) : γ1γ2, allowing a perturbative treatment of

HC . We are guided by similar perturbative treatments near
the Emery-Kivelson point in other physical systems in which
thermodynamic quantities as well as the bulk resistivity have
been calculated [39–41]. A general conductance formula is
first derived in the Majorana description, and then it is
evaluated perturbatively to second order.

A. Current operator in Majorana terms

The starting point for the derivation of a general conduc-
tance formula is the current operator, I ≡ i[(NS − ND)/2,H ],
where NS/D denote the number operators for the original
fermions in the leads. Applying the transformations in Eqs. (6)
and (9) and noting that the unitary operator applied in Sec. II C
does not affect the current operator [28], we find

I = i

2
[Nf ,H ] = i

2
(VSψ

†
f (0) − VDψf (0))d + H.c., (17)

using the refermionized form of the tunneling amplitude,
Eq. (16), and denoting the number operator for the transformed
ψf fermions by Nf .

In the rest of this paper, we focus on the symmetric coupling
case, VS = VD ≡ V , and examine scaling laws both in the
vicinity of and away from the Majorana quantum critical point
by tuning the level position εd. It turns out to be advantageous to
introduce a Majorana fermion representation for the fermionic
bath ψf as well:

a(x) ≡ ψf (x) + ψ
†
f (x)√

2
, b(x) ≡ ψf (x) − ψ

†
f (x)√

2i
. (18)

The tunneling Hamiltonian and contact interaction appearing
in Eq. (16) can then be rewritten as

HT = 2i V a(0) γ2, HC = iλ γ1 γ2 :ψ†
c (0)ψc(0):, (19)

and the current operator becomes simply

I = i
√

2 V b(0) γ2. (20)

B. Majorana Green functions

We wish to find the linear response conductance [42]

G = − lim
ω→0

e2

�ω
ImCR

II (ω), (21)

where the retarded current-current correlator can be obtained
via the analytic continuation of the Matsubara frequency
correaltor, CR

II (ω) = CII (iωn → ω + iη). The Matsubara cor-
relator CII (iωn) is in turn given by [42]

CII (iωn) =
∫ β

0
dτeiωnτCII (τ ), (22a)

CII (τ ) = −〈Tτ I (τ )I (0)〉 = −Tr[e−βH Tτ I (τ )I (0)]

Tr[e−βH ]
, (22b)

where Tτ is the time ordering operator in imaginary time.
CII (iωn) can be computed using the Matsubara frequency
Green function method, with the basic noninteracting Green
functions of Majorana fermions defined as

G
(0)
AB(τ ) ≡ −〈TτA(τ )B(0)〉0

= −Tr[e−βH0TτA(τ )B(0)]

Tr(e−βH0 )
, (23)

where A, B = a(0), b(0), γ1, or γ2. Notice that Eqs. (22b) and
(23) are evaluated under, respectively, the full Hamiltonian
HMajorana and the noninteracting Hamiltonian H0.

Using the equation of motion technique [42], one readily
finds the noninteracting (λ = 0) Green functions exactly. The
retarded free Green functions of the free part H0 of the
refermonized Hamiltonian are thus given by the following
expressions in frequency space:(

G(0)
γ1γ1

(ω) G(0)
γ1γ2

(ω)

G(0)
γ2γ1

(ω) G(0)
γ2γ2

(ω)

)
= 1

ω(ω + i�) − ε2
d

(
ω + i� iεd

−iεd ω

)
,

(24a)

G
(0)
a(0)a(0)(ω) = −iπρ

[
1 + −i�ω

ω(ω + i�) − ε2
d

]
,

(24b)(
G

(0)
a(0)γ1

(ω)

G
(0)
a(0)γ2

(ω)

)
= −2iπρV

ω(ω + i�) − ε2
d

(
εd

iω

)
, (24c)

G
(0)
b(0)b(0)(ω) = −iπρ, (24d)

G
(0)
b(0)A(ω) = 0, A = a(0), γ1, or γ2, (24e)

where � = 4πρV 2 and ρ is the electronic density of states.
From Eq. (24), we see that the dot Majorana fermions hybridize
with the a(0) field, leaving the b(0) field decoupled. In the
special case εd = 0, while the γ2 mode still couples to the a(0)
field, the γ1 mode is now totally decoupled [see Eqs. (24a) and
(24c)]. For λ = 0, this corresponds to the Majorana quantum
critical state described by the solvable Emery-Kivelson point
already discussed in Sec. II.

C. General conductance formula

Because the b(0) field does not couple to any other Majorana
modes, and since the contact interaction Eq. (19) does not
involve b(0) either, the Green function of b(0) can be exactly
separated out in the current-current correlator of Eq. (22),
even in the interacting case λ �= 0. It readily follows that the
linear-response conductance can be written in terms of only
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the full spectral function of the γ2 Majorana fermion, given by

Aγ2 (ω) = −ImGR
γ2γ2

(ω). (25)

The prefactor of the conductance is fixed by taking into account
the Fermi-liquid nature of electrons in the source and drain
reserviors; thus the maximum conductance is e2/h instead of
ge2/h [43–45]. We thus find that

G = e2

h

∫
dω�Aγ2 (ω)

(
−∂nF (ω)

∂ω

)
, (26)

where nF (ω) is the Fermi distribution function. This is one
of the main results of the paper: it shows that the interacting
Majorana transport theory can be formulated within a simple
Landauer-type expression involving the full Majorana spectral
function. This expression is similar to the well-known Meir-
Wingreen formula for the conductance through an interacting
quantum dot [46]. Indeed, the conductance can usually be
expressed this way when the leads are noninteracting, which
is not the case in our present study due to strong dissipation
in the leads. We note that a similar though more complicated
expression holds in the case of asymmetric coupling, VS �= VD .
In addition, an analogous formula was derived recently [47] for
Coulomb blockaded Majorana quantum dots in the presence
of a charging energy on the dot (our model implies rather a
density interaction with the leads degrees of freedom).

At the Emery-Kivelson point λ = 0, using Eq. (24a), one
obtains an exact expression for the dimensionless conductance
in the absence of contact interaction, as found previously by
Komnik and Gogolin [16]:

g0 = Gλ=0

e2/h
=

∫
dω

�2ω2(
ω2 − ε2

d

)2 + �2ω2

(
−∂nF (ω)

∂ω

)
. (27)

In this equation, the structure of the spectral function is
quite different from the familiar Lorentzian line shape for
resonant fermionic tunneling, because of the nontrivial ef-
fect of dissipation in the leads. At zero temperature, this
Emery-Kivelson solution displays a quantum phase transition
controlled by the detuning εd [10,31–33]: when εd = 0, the
ground state is a conducting state with a unitary conductance
g0(T = 0) = e2/h, otherwise the conductance vanishes. We
are mainly interested in the scaling behavior close to and away
from the Majorana quantum critical point, in the presence of
the contact interaction.

D. Perturbative treatment around the Emery-Kivelson point

We now present perturbative results for the conductance
away from the Emery-Kivelson point at order λ2. A similar
strategy was used previously to find thermodynamic quantities
and the bulk resistivity in the two-channel Kondo context
[39–41]. Straighforward calculations (see Appendix) give the
following correction to the γ2 propagator:

δG(2)
γ2γ2

(ω) = λ2
∑

α,β=1,2

(−1)α+βG(0)
γ2γα

(ω)�R
ᾱβ̄

(ω)G(0)
γβγ2

(ω),

(28)

FIG. 1. Second-order diagram of the resonant level Majorana
fermion self-energy. The bath 〈ψ †

c ψc〉 and Majorana 〈γαγα〉 prop-
agators are represented by wiggly and straight lines, respectively.
Here, α = 1,2 label the two Majorana species, and we defined ᾱ = 1
if α = 2 (and vice versa).

where ᾱ = 1 if α = 2 and vice versa. The associated self-
energy matrix (see the diagram in Fig. 1) reads

�R
αβ(ω) =

∫
dω1dω2

π

(−πρ2ω1)Im
[
G(0)

γαγβ
(ω2)

]
ω + iη − ω1 − ω2

× [nB(ω1) + nF (−ω2)]. (29)

The resulting (dimensionless) second-order correction to the
linear-response conductance is therefore given by

δg2 = δG2

e2/h
=

∫
dω�δA(2)

γ2
(ω)

(
−∂nF (ω)

∂ω

)
, (30)

where the second-order correction to the spectral density
is δA(2)

γ2
(ω) = −Im[δG(2)

γ2γ2
(ω)]. Equations (27)–(30) are the

central results of this paper; they allow us to investigate the
various scaling laws related to dissipative tunneling.

IV. ANALYSIS OF THE TRANSPORT SCALING LAWS

In this section, we study in detail the scaling laws, and
examine three different regimes: (i) large detuning (Sec. IV A),
(ii) perfect tuning at the Majorana quantum critical point
(Sec. IV B), and (iii) small detuning away from the quantum
critical point (Sec. IV C). The main question to be addressed
is whether the scaling laws derived from the noninteracting
Hamiltonian at the Emery-Kivelson point are modified by the
perturbation of the contact interaction.

A. Large detuning: single-barrier scaling

The simplest situation is that of a deep level in the quantum
dot, |εd| � �′, where �′ is the low-energy renormalized width
of the resonance (which can be much smaller than �). As
a result, the electrons tunnel through the system in a single
process (cotunneling) [17], with only virtual occupation of
the resonant level. In this case, the backscattering operator (in
the bosonization formulation) is relevant at low temperatures.
The backscattering drives the system to an insulating state
[31–33,48–50]. Thus the exact solution g0(T ) at the Emery-
Kivelson point in this situation should have the same low-
temperature scaling as the conductance in tunneling through a
strong single barrier [31] in a Luttinger liquid, namely, g0(T ) ∝
T 2(1/g−1) = T 2 at low temperature. This was indeed verified
in Ref. [16] and can be seen by performing the integral in
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FIG. 2. (Color online) Large detuning, conductance shows
single-barrier scaling. (a) Low-temperature behavior of the con-
ductance g0 at the Emery-Kivelson point (red, diamond) and the
interaction-driven correction δg2 (blue, circle), in the regime of
sizable detuning (here εd = 0.1 � for which �′ ≈ 0.02 �), as a
function of T/�. (b) The small dimensionless ratio −δg2/[g0(ρλ)2]
indicates the validity of the single-barrier scaling in the present case.

Eq. (27) at T → 0 for large detuning,

g0 ≈
∫

dω
�2ω2

ε4
d

βeβω

(1 + eβω)2
= π2

3

(
T

�

)2(
�

εd

)4

. (31)

The contact interaction should, for small λ, become
ineffective in this limit: when the dot dynamics is frozen,
the contribution of the contact interaction to δg2 is irrelevant.
Analyzing the asymptotic low-temperature scaling of Eq. (30),
we find indeed

δg2 ∝ −
(

T

�

)4(
�

εd

)6

. (32)

Figure 2(a) shows the results for g0 and δg2 at εd = 0.1 �

after performing the numerical integrals in Eqs. (27) and (30).
Although εd is not very large for this particular example, the
single-barrier scaling law is already remarkably well obeyed.
The observed low-temperature scaling (∼T 2 for g0 and ∼T 4

for δg2) confirms our asymptotic analysis.
Figure 2(b) plots the ratio between δg2 and g0 normalized by

the dimensionless perturbation parameter (ρλ)2, which should
be less than 1 to validate the perturbation theory. In the low-
temperature regime, this ratio is much smaller than 1 and
scales to zero as T 2. Therefore we conclude that including
the contact interaction term perturbatively up to second order

does not modify the low-temperature single barrier scaling
at the insulating fixed point. This finding corroborates the
experimental observation [11] of the applicability of single-
barrier scaling [51] to describe the dissipative resonant-level
system away from the resonance.

B. Low-temperature scaling at the conducting critical point

We now consider the case of perfect tuning to the quantum
critical point εd = 0, and focus on the low-temperature ap-
proach to the unitary conductance [10] for T � �. By solving
for the exact solution at the Emery-Kivelson point (λ = 0),
Komnik and Gogolin [16] pointed out that the approach obeys
a Fermi liquid form [49], as can be checked in the considered
regime from Eq. (27):

g0 = 1 −
∫

dω
ω4

ω4 + �2ω2

βeβω

(1 + eβω)2

≈ 1 − π2

3

(
T

�

)2

. (33)

This result, however, corresponds to an exact and unfortunate
cancellation of the leading irrelevant operator [34,39] at the
conducting fixed point.

From Eq. (24), we observe that when εd = 0 only half
of the Majorana modes (namely, γ2) hybrize with the leads,
leaving the γ1 Majorana fermion fully decoupled from the rest
of the system. Including the contact interaction term λ does not
destroy the isolated Majorana mode; however, it does give rise
to an anomalous non-Fermi liquid temperature dependence. In
the resonant case, because the Green function between γ1 and
γ2 vanishes [see Eq. (24a)], the only nonzero correction to the
γ2 propagator in Fig. 1 is

δg2 =
∫

dω�
{−Im

[
λ2

(
G(0)

γ2γ2
(ω)

)2
�R

11(ω)
]}(−∂nF (ω)

∂ω

)
.

(34)

For εd = 0, G(0)
γ2γ2

(ω) = 1/(ω + i�), and G(0)
γ1γ1

(ω) = 1/(ω +
iη). Hence Im[G(0)

γ1γ1
(ω)] = −πδ(ω). The self-energy �R

11 can
be evaluated readily:

�R
11(ω, εd = 0) = ρ2

β
[P1(βω) + iP2(βω)], (35a)

P1(βω) =
�

dx
x

βω − x

1

2
coth

(
x

2

)
, (35b)

P2(βω) = −πβω

2
coth

(
βω

2

)
. (35c)

Plugging Eq. (35) into Eq. (34), we have

δg2 = (ρλ)2
∫

dω

(
−�

β

)[
ω2 − �2

(ω2 + �2)2
P2(βω)

− 2ω�

(ω2 + �2)2
P1(βω)

]
βeβω

(1 + eβω)2
. (36)
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FIG. 3. (Color online) Approach to the quantum critical point;
here εd = 0. (a) Low-temperature behavior of 1 − g0 (red, diamond)
and δg2 (blue, circle) close to the conducting quantum critical point.
(b) The scaling of −δg2/[(1 − g0)(ρλ)2] as a function of T/� shows
that the interaction correction dominates.

In the low-temperature limit, the P2 part dominates, and we
obtain the following asymptotic scaling for T � �:

δg2

(ρλ)2
≈

∫
dω

(
−�

β

)
1

�2

πβω

2
coth

(
βω

2

)
βeβω

(1 + eβω)2

= −π3

8

T

�
. (37)

This striking T dependence is a strong signature of the
uncoupled Majorana mode γ1. Indeed, on resonance εd = 0,
the correlation function of γ1 does not decay at long time,
Gγ1γ1 (t) = −〈γ1(0)γ1(t)〉 ∝ 1, instead of the usual 1/t decay
for hybridized modes. This translates into a 1/t2 decay of
the γ2 self-energy correction (instead of 1/t3 for a usual Fermi
liquid), giving rise by Fourier transform to a linear in frequency
scattering rate. This linear approach to the unitary conductance
signals the presence of an isolated Majorana state [39–41], and
has been observed in a recent experiment [11].

Figure 3(a) shows both 1−g0 and δg2 obtained by numerical
integration. The asymptotic scalings are reproduced at low
temperatures. Figure 3(b) plots the ratio of −δg2 to 1 − g0 nor-
malized by the dimensionless perturbation parameter (ρλ)2. As
long as (ρλ)2 is not too small, the linear temperature scaling
strongly dominates over the quadratic behavior as T →0.
Hence we conclude that the contact interaction between the
Majorana modes and the effective leads generates non-Fermi
liquid behavior at the Majorana quantum critical point.

Note that the four-fermion interaction term in Eq. (16) is too
large (λ = πvF ) for the perturbation theory to quantitatively
capture the full crossover from high temperature (T � �′)
to the asymptotic non-Fermi liquid regime (T � �′), where
�′ � � is the strongly renormalized linewidth. This strong
coupling regime [52] leads to universal scaling relations
describing the full crossover towards the quantum critical state
in our system.

C. Small detuning: runaway flow

We finally investigate intermediate-temperature scaling
with a slight detuning from the quantum critical point,
T � εd � √

T �. In this regime, the renormalization flow
approaches very close to the conducting fixed point, but
ultimately flows away from it because the transparency is not
perfectly unity. Considering first the Emery-Kivelson solution
Eq. (27) in this limit, we obtain the runaway behavior from
the unitary conductance, which has the same 1/T temperature
dependence as tunneling through a weak single barrier [16,31]:

g0 = 1 −
∫

dω

(
ω2 − ε2

d

)2(
ω2 − ε2

d

)2 + �2ω2

βeβω

(1 + eβω)2

≈ 1 −
∫

dω

(
ε2

d

/
�

)2

ω2 + (
ε2

d

/
�

)2

βeβω

(1 + eβω)2

≈ 1 −
∫

dω

(
ε2

d

/
�

)2

ω2 + (
ε2

d/�
)2

βe0

(1 + e0)2

= 1 − π

4

(
ε2

d

�T

)
. (38)

In Eq. (38), we used in the second and third lines the conditions
� � εd � T and T � ε2

d/�, respectively.
On the other hand, δg2 still obeys Eq. (37), since � � εd,

T . Therefore we have the ratio

− δg2

1 − g0
≈ π2

2
(ρλ)2

(
T

εd

)2

, (39)

which is much smaller than 1 for T � εd, indicating that the
runaway flow of 1 − g0 is not modified by the perturbation
correction from the contact interaction term.

Figure 4(a) presents 1 − g0 and δg2 as a function of �T/ε2
d

with a small detuning εd = 10−4� over a wide temperature
range. For very low temperature T ∼ ε2

d/�, 1 − g0 ∼ 1
showing that even a small detuning can drive the system to the
insulating critical point with a vanishing conductance. In the
intermediate-temperature regime (101 � �T/ε2

d � 103), the
condition � � εd � T � ε2

d/� is satisfied. Clearly, Fig. 4(b)
shows that in this temperature range δg2 is subdominant
compared to 1 − g0. Further increase of temperature leads to
the regime � � T � εd (104 � �T/ε2

d � 107). In this regime,
1 − g0 changes from 1/T to T 2 dependence and δg2 starts to
dominate the runaway scaling as shown in Fig. 4(b).

To conclude this study, we give in Table I a summary of the
scalings in the three different regimes discussed in this section.
The contact interaction controls the approach to the quantum
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FIG. 4. (Color online) Small detuning, the runaway flow. Here,
we choose εd = 10−4�. (a) 1 − g0 (red, diamond) and δg2 (blue,
circle) as a function of �T/ε2

d . (b) The ratio −δg2/[(1 − g0)(ρλ)2] as
a function of �T/ε2

d . Initially, the interaction corrections dominate
as one approaches the critical point, but then the system veers away
toward the insulating fixed point and the noninteracting term, g0,
dominates in the end.

critical point, but is strongly irrelevant otherwise, leading to
effectively single barrier scaling.

V. CONCLUSION

In summary, we have studied spinless resonant tunneling
with a large, fine-tuned circuit impedance R = e2/h and
mapped it directly to resonant tunneling between Luttinger
liquids with Luttinger parameter g = 1/2. We further mapped
the system to a resonant Majorana model in the case of
symmetric coupling. In contrast to previous studies, we
retained the contact interaction between the resonant level
and the leads. A perturbation theory of the linear-response
conductance is developed up to second order in the contact
interaction. We found that while the second-order correction
does not change the single-barrier scaling near the insulating
fixed point, it does give rise to a linear temperature dependence
as the conductance approaches unity when the resonant level
is tuned to be exactly on resonance (Majorana quantum
critical point). This striking non-Fermi liquid behavior is
due to the fact that the resonant level is fractionalized into
two independent Majorana fermions, with one of them fully
isolated from the rest of the system. Further investigations
could, for instance, concentrate on incorporating the spin
degree of freedom on the quantum dot, leading to a rich
interplay of Luttinger and Kondo physics.

TABLE I. Summary of various low-temperature scalings close to
the insulating and conducting fixed points. The first, second, and third
rows correspond to large detuning, exactly critical tuning, and small
detuning (runaway flow), respectively.

Regime g0 1 − g0 −δg2/(ρλ)2

εd ∼ � � T ∼ π2

3 ( T

�
)2( �

εd
)4 ∼1 ∝( T

�
)4( �

εd
)6

εd = 0, � � T ∼1 ∼ π2

3 ( T

�
)2 ∼ π3

8 ( T

�
)

� � εd � T � ε2
d
�

∼1 ∼ π

4 (
ε2

d
�T

) ∼ π3

8 ( T

�
)
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APPENDIX: DERIVATION OF THE
SELF-ENERGY CORRECTION

The diagrammatic calculations proceed by expanding the
propagator of the γ2 Majorana mode in powers of the contact
interaction term HC :

Gγ2γ2 (τ ) = −〈Tτγ2(τ )γ2(0)〉

= −
〈
Tτ

{
γ2(τ )γ2(0)exp

[
−

∫ β

0
dτHC(τ )

]}〉
0

= −
∑

n

〈
Tτ

{
γ2(τ )γ2(0)

1

n!

[
−

∫
dτ ′HC(τ ′)

]n}〉
0

.

(A1a)

The zeroth-order contribution provides the noninteracting
contribution already given in the conductance formula (27).
The first-order contribution vanishes due to a disconnected
diagram of the ψc field under the noninteracting Hamiltonian.
We therefore focus on the second-order contribution, which
gives rise to a correction to the spectral function in Eq. (25)
and hence to a correction to the linear response conductance.
The diagram for the second-order perturbation is shown in
Fig. 1 and reads

δG(2)
γ2γ2

(τ ) = λ2

2

∫∫
dτ1dτ2〈Tτ [: ψ†

c (τ1)ψc(τ1)ψ†
c (τ2)ψc(τ2) :]〉0

×〈Tτ [γ2(τ )γ2(0)γ1(τ1)γ2(τ1)γ1(τ2)γ2(τ2)]〉0

= λ2
∫∫

dτ1dτ2

∑
α,β=1,2

(−1)α+βG(0)
γ2γα

(τ − τ1)

×�ᾱβ̄(τ1 − τ2)G(0)γβγ2
(τ2), (A2)

where ᾱ = 1 if α = 2 (and vice versa).
The self-energy of Majorana fermions is defined as

�αβ(τ ) = G(0)
c (τ )G(0)

c (−τ )G(0)
γαγβ

(τ ), (A3a)

G(0)
c (τ ) = −〈Tτψ

†
c (x = 0,τ )ψc(x = 0,0)〉0. (A3b)
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After Fourier transformation of Eqs. (A2) and (A3), we
have

δG(2)
γ2γ2

(iωn)=λ2
∑

α,β=1,2

(−1)α+βG(0)
γ2γα

(iωn)�ᾱβ̄(iωn)G(0)
γβγ2

(iωn),

(A4a)

�αβ(iωn)= 1

β

∑
ipn

χ (ipn) G(0)
γαγβ

(iωn − ipn), (A4b)

χ (ipn)= 1

β

∑
iqn

G(0)
c (ipn + iqn) G(0)

c (iqn). (A4c)

Here, pn and qn are bosonic and fermionic Matsubara
frequencies, respectively. The Matsubara sum over iqn can be
done easily, since G(0)

c (iqn) has a simple pole [42,53], so that

χ (ipn) =
∫

dε1dε2
1

β

∑
iqn

ρ

iqn + ε1

ρ

ipn + iqn + ε2

=
∫

dε1dε2
ρ2

ipn + ε1 − ε2
[nF (ε1) − nF (ε2)]. (A5)

To evaluate the self-energy, we rely on the following identity
of Matsubara Green functions [53]

G(iωn) = −
∫

dε

π

Im[GR(ε)]

iωn − ε
. (A6)

Using this, Eq. (A4b) can be written as

�αβ(iωn) = 1

β

∑
ipn

∫
dω1dω2

π2

Im[χR(ω1)]

ipn − ω1

Im
[
G(0)

γαγβ
(ω2)

]
iωn − ipn − ω2

=
∫

dω1dω2

π

Im[χR(ω1)]Im
[
G(0)

γαγβ
(ω2)

]
iωn − ω1 − ω2

×[nB(ω1) + nF (−ω2)], (A7)

where nB is the Bose-Einstein distribution function. Again,
the summation over ipn is straightforward because the
integrand has only two simple poles at ω1 and iωn − ω2

[53]. Performing an analytic continuation and evaluating the
integral in Eq. (A5), we obtain Im[χR(ω)] = −πρ2ω in the
wide band limit. After analytic continuation of Eqs. (A4a) and
(A7), we arrive at Eqs. (28) and (29) quoted in the main text.
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