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We study the stability of gap-closing (Weyl or Dirac) points in the three-dimensional Brillouin zone of
semimetals using Clifford algebras and their representation theory. We show that a pair of Weyl points with
Z2 topological charge are stable in a semimetal with time-reversal and reflection symmetries when the square
of the product of the two symmetry transformations equals minus identity. We present toy models of Z2 Weyl
semimetals which have surface modes forming helical Fermi arcs. We also show that Dirac points with Z2

topological charge are stable in a semimetal with time-reversal, inversion, and SU(2) spin rotation symmetries
when the square of the product of time-reversal and inversion equals plus identity. Furthermore, we briefly discuss
the topological stability of point nodes in superconductors using Clifford algebras.
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I. INTRODUCTION

Weyl semimetals [1–13] are three-dimensional (3D)
analogs of graphene and have gapless low-energy excitations
of Weyl fermions. The low-energy effective Hamiltonian for
Weyl fermions has the form

H0 = kxσx + kyσy + kzσz, (1)

where the Fermi velocity is set to unity and the wave number k
is measured from a Weyl point. Since all three Pauli matrices
σα (α = x,y,z) are exhausted by the kinetic terms in the
low-energy Hamiltonian, the Weyl fermions are massless and
stable against perturbations. The stability of Weyl points has
a topological origin. For any fixed value of kz ( �= 0) at which
the energy band structure is gapped, a Chern number ν(kz)
can be defined on the two-dimensional (2D) kx-ky plane. As
kz is varied, ν(kz) can change only when the 2D kx-ky plane
crosses a Weyl point. We can thus assign to each Weyl point an
integer (Z) topological charge which is the change in ν(kz) at
the topological phase transition. The well-defined topological
charge makes Weyl points stable. A nontrivial value of the
Chern number ν(kz) also guarantees that there exist chiral
surface states which form a Fermi arc connecting projections
of two Weyl points with opposite charges onto the surface Bril-
louin zone. However, the topological stability of Weyl points
is lost when both time-reversal and inversion symmetries are
present in the material, because the combination of the two
symmetries constrains two Weyl points with opposite Chern
numbers to merge, thereby making the total topological charge
vanish [1,3,6].

A natural question we may ask is whether there are Z2

analogs of Weyl semimetals, in a similar way to the way we
have 2DZ2 topological insulators [14,15] as opposed to integer
quantum Hall systems characterized by a Chern number [16].
In this paper, we propose two kinds of Z2 semimetals which
are topologically stable in the presence of time-reversal
symmetry and additional spatial symmetry. First, we show
that semimetals with a pair of Weyl points characterized
by Z2 topological charge are stable in the presence of both
time-reversal symmetry and (a kind of) reflection symmetry
which we define later. In this semimetal, which we dubZ2 Weyl
semimetal, we can define a Z2 topological number for any 2D

cut of the Brillouin zone which is parallel to the reflection
plane and away from Weyl points. Helical edge modes exist
on the 2D cut with a nontrivial Z2 topological number, and
a 2D surface perpendicular to the reflection plane has helical
Fermi arcs in the surface Brillouin zone. Second, we show
that Dirac semimetals having stable Dirac points with Z2

topological charge are possible in materials with SU(2) spin
rotation, time-reversal, and inversion symmetries. We shall
call this class of semimetals Z2 Dirac semimetals. In Table I,
we summarize topological charges of gap-closing points in
semimetals under given symmetries. The type of topological
charges depends on the sign of squares of symmetry operators,
or equivalently commutation/anticommutation relations be-
tween symmetry operators. For example, Z2 Weyl semimetals
with time-reversal and “reflection” symmetries are stabilized
under reflection symmetry operator Rz that squares to +1
and commutes with time-reversal symmetry operator T (T 2 =
−1). Since the natural reflection symmetry operator for spin- 1

2
particles squares to −1 and commutes with T , the reflection
symmetry required for Z2 Weyl semimetals is a special
reflection symmetry, which corresponds to a combination of
natural reflection and π rotation in the spin space.

We note that Z2 Weyl/Dirac semimetals are different
from Dirac semimetals in which Dirac points located at
high symmetry points in the Brillouin zone are protected
by crystalline symmetries [17–20] and which are recently
reported [21–23] to be realized in Cd3As2 and Na3Bi. In
contrast to these Dirac semimetals with nontrivial crystalline
symmetries, Z2 Weyl (Dirac) semimetals that we propose in
this paper have Weyl (Dirac) points withZ2 topological charge
which are stabilized by the interplay of time-reversal symmetry
and reflection (inversion) symmetry.

The plan of this paper is as follows. In Sec. II we introduce
Z2 Weyl semimetals under the presence of both time-reversal
and reflection symmetries. We present several toy models ofZ2

Weyl semimetals and show their energy spectra. In Sec. III we
study the stability of these gap-closing points for various cases
by examining whether the low-energy Dirac Hamiltonian can
admit a Dirac mass term under given symmetry constraints.
This task is accomplished by making use of Clifford algebras
and their representation theory [24,25]. We show that a pair of
Weyl points are stable and have Z2 topological charge under
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TABLE I. Topological charge that is assigned to gap-closing
points in the three-dimensional Brillouin zone under various sym-
metry constraints which are chosen from time-reversal symmetry
T , reflection symmetry R, and inversion symmetry P . We assume
that the gap closing does not take place at time-reversal invariant
momenta. In cases where there are multiple symmetries, the type of
topological charge depends on the sign of squares of the combined
symmetry operator. The reflection R that gives (T R)2 = −1 actually
means combination of reflection and π rotation in spin space for
spin- 1

2 electrons. The case where (T P )2 = +1 can be realized in
semimetals with time-reversal, inversion, and SU(2) spin rotation
symmetries; see Sec. III D.

Symmetry Charge

no symmetry Z
T Z
P Z
T and R: (T R)2 = +1 0
T and R: (T R)2 = −1 Z2

T and P : (T P )2 = −1 0
T and P : (T P )2 = +1 Z2

both time-reversal and reflection symmetries. We further show
that a Dirac point with Z2 topological charge is stabilized
under SU(2) spin, time-reversal, and inversion symmetries.
The stability of point nodes with Z2 topological charge in
superconductors is also discussed. In the Appendix we explain
the basic idea of the stability analysis using Clifford algebras
and its application to Dirac Hamiltonians in all ten Altland-
Zirnbauer symmetry classes.

II. Z2 WEYL SEMIMETALS

A. Time-reversal and reflection symmetries

In this section we discuss Weyl semimetals with both time-
reversal symmetry and reflection symmetry. Time-reversal
symmetry is represented by an antiunitary operator, while
reflection symmetry is represented by a unitary operator Rz

with a mirror plane assumed to be perpendicular to the
z direction. Under these symmetries, the three-dimensional
Bloch Hamiltonian satisfies the relations

T H (−kx, − ky, − kz)T
−1 = H (kx,ky,kz), (2a)

RzH (kx,ky, − kz)R
−1
z = H (kx,ky,kz). (2b)

Suppose that a Weyl point is located at k = (k0
x,k

0
y,k

0
z )

which is neither a high-symmetry point nor a time-reversal
invariant momentum. The time-reversal and reflection symme-
tries imply that there are three other associated Weyl points:
k = (−k0

x, − k0
y, − k0

z ), (k0
x,k

0
y, − k0

z ), and (−k0
x, − k0

y,k
0
z ).

Operations of T and Rz are not closed for a single Weyl point
but couple Weyl points (valleys). Incidentally, if two Weyl
points (k0

x,k
0
y,k

0
z ) and (−k0

x, − k0
y,kz) happen to be identical

modulo reciprocal lattice vectors, then the pair of Weyl points
are combined to form a Dirac point. We will consider such a
case in the next section.

Let us assume that the low-energy effective Hamiltonian has
translation symmetry and vanishing intervalley coupling [26].
For the low-energy Hamiltonian of a pair of Weyl points (or

a single Dirac point) on the kz = k0
z plane, T and Rz are not

symmetry operations, but the product RzT is. We thus define
the combined symmetry operator

T̃ = RzT , (3)

which is an antiunitary operator satisfying

T̃ H (−kx, − ky,kz)T̃
−1 = H (kx,ky,kz). (4)

The T̃ operator relates a pair of Weyl points at, e.g., k =
(k0

x,k
0
y,k

0
z ) and (−k0

x, − k0
y,k

0
z ).

We now assume that

T̃ 2 = −1. (5)

As we show below, Eq. (5) is the essential condition for the
existence of Z2 Weyl semimetals [27]. Some comments on
reflection (mirror) symmetry are in order here. For spin-1/2
fermions, time-reversal transformation takes the form T =
iσyK, where K is a complex conjugation operator. Reflection
with respect to a mirror plane (z = 0, say) involves π rotation
of spin and is given by Rz = iσz, which leads to T̃ 2 = +1.
However, we can consider cases when the Hamiltonian is
invariant under Rz = 1 (i.e., without π spin rotation), which
results in T̃ 2 = −1. Some model Hamiltonians with T̃ 2 = −1
will be discussed in the next section.

Equations (4) and (5) imply that, for each fixed value
of kz, H (kx,ky,kz) can be regarded as a Hamiltonian that
is invariant under T̃ in the 2D Brillouin zone (kx,ky). This
means that H is effectively a 2D Hamiltonian of class
AII in the Altland-Zirnbauer classification of free-fermion
Hamiltonians [28]. Consequently, for any 2D plane of fixed
kz on which H (kx,ky,kz) is gapped, we can define the Z2

topological index ν2(kz), in the same way as in the 2D Z2

topological insulators [15,29]:

(−1)ν2(kz) =
∏

(kx ,ky )∈TRIM2

Pf [w(kx,ky ; kz)]√
det[w(kx,ky ; kz)]

(6)

with

wij (kx,ky ; kz) = 〈ψi(−kx, −ky,kz)|T̃ |ψj (kx,ky,kz)〉, (7)

where TRIM2 denotes momenta which are invariant under
the action of time-reversal transformation on the 2D plane of
constant kz, and |ψi(kx,ky,kz)〉 is a wave function of the ith
valence band defined smoothly over the whole plane of (kx,ky).
The Z2 topological index ν2(kz) can change only when kz is
varied across the plane containing a pair of Weyl points. This
change in ν2(kz) is assigned to the pair of Weyl points as Z2

topological charge. Suppose that a kx-ky plane between two
pairs of Weyl points has ν2(kz) = 1, as shown in Fig. 1. In this
case the surface Brillouin zone (ky,kz) of a (100) surface has
a pair of Fermi arcs (helical Fermi arcs) coming from helical
surface states whose existence is guaranteed by ν2(kz) = 1, as
schematically shown in Fig. 1. The helical Fermi arcs connect
Weyl points projected onto the surface Brillouin zone.

These features clearly indicate that Z2 Weyl semimetals
are time-reversal invariant Z2 versions of conventional Weyl
semimetals in which Weyl points have integer topological
charges and Fermi arcs are formed by chiral surface states.

Finally, we emphasize that the topological stability of a pair
of Weyl points on a 2D plane of constant kz come from the
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FIG. 1. (Color online) Schematic picture of a Z2 Weyl
semimetal. Helical Fermi arcs appear between a time-reversal pair
of Z2 Weyl points. A surface perpendicular to the x direction has
helical edge states in the surface band structure as a function of ky

with fixed kz between two pairs of Weyl points, as depicted in the
right panel.

assumed conditions of the RzT symmetry, Eqs. (4) and (5). In
fact, two Weyl points forming a T̃ -invariant pair in a Z2 Weyl
semimetal are a source and a drain of Berry curvature and
can be assigned integer topological charges of opposite signs.
Since a pair of Weyl points are charge neutral as a whole, they
could merge and pair-annihilate. However, with the conditions
in Eqs. (4) and (5), a Z2 topological charge is given to a pair
of Weyl points as a whole, which prohibits pair-annihilation
even when they merge at a TRIM2.

B. Examples

In this section we present four tight-binding models of Z2

Weyl semimetals. In these models the condition of Eq. (5) is
implemented by T̃ = RzT with

T 2 = −1, R2
z = 1, [T ,Rz] = 0. (8)

In all the following models we set the Fermi velocity to be 1.
The first example is a 3D variant of the Bernevig-Hughes-

Zhang (BHZ) model and is given by the Bloch Hamiltonian

H1 = τx(σz sin ky + v) + τy sin kx

+ τz(M − cos kx − cos ky − cos kz). (9)

Here σα and τα are Pauli matrices corresponding to spin and
orbital degrees of freedom. For v = 0 and fixed kz, H1 has the
same form as the BHZ model [30], and indeed H1 is obtained

by stacking the 2D BHZ model along the z direction. The
Hamiltonian satisfies the symmetry relations of Eqs. (2) with

T = iσyK, Rz = 1. (10)

When v = 0 and M = 2, we have two Dirac points at

k = (0,0, ± π/2) (11)

in the Brillouin zone −π � kα � π . The Z2 topological
number ν2(kz) is obtained as a function of kz from Bloch wave
functions of H1:

ν2(kz) =

⎧⎪⎨
⎪⎩

0, −π � kz < −π/2,

1, −π/2 < kz < π/2,

0, π/2 < kz � π.

(12)

The two Dirac points separate the regions of different values of
ν2(kz). When the parameter v is finite, each Dirac point splits
into two Weyl points which are on the same kz plane (that is
slightly shifted from kz = ±π/2) and are related to each other
by T̃ .

The second example is a stacked Kane-Mele model defined
on the stacked layers of the honeycomb lattice. The Hamilto-
nian for an electron with spin s and wave number kz along the
stacking direction is given by

H2 = t
∑
〈i,j〉

c
†
i cj + i(λSO + λ′

SO cos kz)
∑
〈〈i,j〉〉

νij c
†
i szcj

+ iλR

∑
〈i,j〉

c
†
i (s × dij )zcj + λv

∑
i

ξic
†
i ci , (13)

where we have followed the standard notation used in the
Kane-Mele model [14,15]. The first term is a nearest-neighbor
hopping term on the honeycomb lattice, where cj = (cj,↑,cj,↓)
annihilates an electron on site j . The second term is a
spin-dependent second-neighbor hopping term with νij =
(2/

√
3)(d1 × d2)z = ±1, where d1 and d2 are unit vectors

along the two bonds which an electron traverses when going
from site j to i. We have included a small spin-dependent
hopping between neighboring layers with amplitude λ′

SO. We
assume that the interlayer coupling is present only in this form.
The third term is a nearest-neighbor Rashba term induced by
breaking of inversion along the z direction. The vector dij

is a unit vector pointing from site j to i. The last term is
the staggered potential with ξ = +1 for one sublattice and
ξ = −1 for the other sublattice of the honeycomb lattice. With
λ′

SO = 0, the above Hamiltonian H2 in Eq. (13) is in the same
form as the Kane-Mele model [14,15]. The Hamiltonian H2

satisfies the time-reversal and reflection symmetry relations in
Eq. (10).

The third example is given by a Bloch Hamiltonian on the
cubic lattice:

H3 = σxτz sin kx + σyτz sin ky

+ τx(cos kx + cos ky + cos kz − M). (14)

Here σα and τα are Pauli matrices corresponding to spin
and orbital degrees of freedom. The first two terms in
Eq. (14) represent spin-orbit coupling of the Rashba type,
with opposite signs for the two orbitals labeled by τz = ±1.
The third term represents hopping between different orbitals on
nearest-neighbor sites. The Hamiltonian satisfies the symmetry
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relations of Eqs. (2) with the symmetry operators given in
Eq. (10). When we set M = 2, we have two Dirac points at
k = (0,0, ± π/2) and the Z2 topological number ν2(kz) given
by Eq. (12).

The last example is also given by a Hamiltonian defined on
the cubic lattice:

H4 = τx cos ky + τy sin kx + τzσz sin ky

+ τz(2 − cos kx − cos kz). (15)

Again the Hamiltonian is invariant under time-reversal trans-
formation and reflection defined by Eq. (10).

In Figs. 2(a)–2(d) we show the bulk and surface band
structure of the models defined in Eqs. (9), (13), (14), and (15).
For comparison, we also show in Fig. 2(e) the bulk and surface
band structure of a model for a conventional Weyl semimetal
described by the Hamiltonian

HW = σx sin kx + σy sin ky

+ σz(cos kx + cos ky + cos kz − M), (16)

where we set M = 2 to have Weyl points at k = (0,0, ± π/2).
The energy spectra of these tight-binding models (except the
stacked Kane-Mele model) are studied for the cubic lattice
with a (100) surface. The stacked Kane-Mele model H2 (13)
is solved for a lattice obtained by stacking (in the z direction)
layers of the honeycomb lattice with a zigzag edge running
along the y direction. In solving these models numerically,
we have assumed periodic boundary conditions in the y and
z directions and open boundary conditions in the x direction
(i.e., vanishing matrix elements for hopping out of the surface).

In Fig. 2, the energy bands are plotted as functions of ky

for fixed values of kz, kz = 0.3π,0.5π,0.7π . In the figures
solid black lines are bulk bands and blue dots are surface
states localized near one surface perpendicular to the x axis
(surface states localized near other surfaces are not shown in
the figures). Figure 2 clearly shows that, at kz = 0.3π , the Z2

Weyl semimetals have helical modes while the Weyl semimetal
has a chiral mode. These modes form Fermi arcs in the surface
Brillouin zone. As kz is increased, the band gap closes at kz =
0.5π in Figs. 2(c)–2(e) [kz ≈ 0.5π in Figs. 2(a), 2(b)]. When
the band gap reopens (kz > 0.5π ), surface modes connecting
the upper and lower bands disappear, as seen in the figures for
kz = 0.7π .

We note that the Hamiltonian H3 in Eq. (14) has additional
particle-hole symmetry C = σxτzK and unitary symmetry
U = σzτx . Indeed, if we exchange τx and τz in Eq. (14),
H3 becomes a Bogoliubov–de Gennes Hamiltonian of the
planar state of a p-wave superconductor, which has time-
reversal, particle-hole, and U (1) spin rotation symmetries (Sz

conservation) [31,32]. The planar state also has point nodes and
surface modes counterpropagating for opposite spins, but it is
characterized by an integer topological number rather than aZ2

topological number [32]. In the basis where U is diagonalized,
we can define a Chern number for each spin sector for a fixed
value of kz. In this sense the planar state is considered as two
copies of the 3He-A phase [10] which has a chiral surface
mode and a Fermi arc. However, in our example of the Z2

Weyl semimetal of Eq. (14), we can break the particle-hole
symmetry and the unitary symmetry by adding perturbations
which keep the time-reversal and reflection symmetries intact

(such as σyτy , σzτy , and σzτz sin kx). The breaking of the
particle-hole and unitary symmetries does not affect the Z2

topological index in Eq. (6). Therefore the essential symmetry
for stabilizing Z2 Weyl semimetals is the product symmetry T̃

with T̃ 2 = −1. The realization of this symmetry is not limited
to the one we discussed above, Eq. (8). For example, another
way to realize the combined symmetry T̃ 2 = −1 would be

T 2 = +1, R2
z = 1, {T ,Rz} = 0. (17)

III. STABILITY ANALYSIS OF WEYL AND DIRAC POINTS
USING CLIFFORD ALGEBRAS

In this section we discuss stability of gap-closing (Weyl
or Dirac) points in semimetals without/with time-reversal
symmetry and other symmetries, and we further determine the
type of topological charge attached to gap-closing points. In
fact, the stability of Fermi points has been previously studied
by applying K theory [33–36]. Here we study the stability of
Weyl/Dirac points by examining whether the effective theory
for excitations near a gap-closing point can have a Dirac
mass term compatible with symmetry constraints. For this
purpose, we use representation theory of Clifford algebras and
K theory [24,25]. In the Appendix we explain this approach
(i.e., existence condition of a Dirac mass term) and apply it
to all ten Altland-Zirnbauer symmetry classes [28]. Below we
apply the approach to the cases with spatial symmetries to find
types of topological charges that emerge under a given set of
symmetries (Table I).

A. Weyl semimetal

As is well known, a Weyl point is stable and has an integer
topological charge in three dimensions, when low-energy
effective theory of the Weyl point has no symmetry [1–3,5,10].
We will derive this known fact using representation theory of
complex Clifford algebras, as a prelude to the stability analysis
under time-reversal symmetry which we will present in the
following subsections.

A complex Clifford algebra Clq is a complex algebra
generated by q generators (e1, . . . ,eq) satisfying

{ei,ej } = 2δi,j , (18)

with Kronecker’s δi,j . In this paper we use the notation

Clq = {e1, . . . ,eq} (19)

to represent the whole complex algebra Clq generated from
the q generators (e1, . . . ,eq).

As an effective Hamiltonian for low-energy excitations
around a Weyl point, we consider a three-dimensional Dirac
(Weyl) Hamiltonian

Heff = kxγx + kyγy + kzγz + mγ0, (20)

where γj (j = 0,x,y,z) are gamma matrices satisfying the
anticommutation relations {γj ,γl} = 2δj,l . We assume that
(kx,ky,kz) are momenta measured from the Weyl point and
that the Weyl point is not located at a high symmetric point.
We have included a Dirac mass term mγ0 in Eq. (20) which
would gap out the Weyl point. We will examine whether
such a mass term is allowed when kinetic terms are given.
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FIG. 2. (Color online) Band structures of tight-binding models for Z2 Weyl semimetals (a)–(d) and a Weyl semimetal (e): (a) stacked
BHZ model H1 [Eq. (9) with v = 0.5], (b) stacked Kane-Mele model H2 [Eq. (13) with (t,λSO,λ′

SO,λR,λv) = (1,0.06,0.03,0.05,0.3)], (c) H3

[Eq. (14)], (d) H4 [Eq. (15)], (e) Weyl semimetal H5 [Eq. (16)]. These models have a two-dimensional (100) surface which is perpendicular to
the x direction; the 2D surface of the stacked Kane-Mele model (b) is coupled zigzag edges running along the y direction. Periodic boundary
conditions are assumed in the y and z directions. Band structures are shown as functions of ky for fixed kz = 0.3π,0.5π,0.7π . Black lines are
bulk bands while blue dots are surface modes localized at the (100) surface. Surface states of other surfaces are not shown. The upper and
lower bands of the models (c)–(e) touch when kz = π/2.
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If it is not allowed, then the Weyl point is stable against
(translation-invariant) perturbations.

The Hamiltonian of a single Weyl point (20) has no
symmetry and is classified as a member of class A. In this
case a complex Clifford algebra is generated by the gamma
matrices in the Dirac Hamiltonian as

Cl4 = {γx,γy,γz,γ0}. (21)

The answer to the question as to whether a mass term γ0 is
allowed is obtained by studying the topological classification
of a generator (say, γz) of the Clifford algebra without γ0,

Cl3 = {γx,γy,γz}. (22)

This is because topologically trivial classification of γz implies
the existence of another gamma matrix (i.e., γ0) which
anticommutes with the three generators (γx , γy , and γz), while
the topologically nontrivial classification of γz implies the
absence of γ0; see Appendix.

We thus consider the following extension problem of
Clifford algebra,

Cl2 = {γx,γy} → Cl3 = {γx,γy,γz}. (23)

We first fix a matrix representation (of sufficiently large
dimensions) of the original algebra Cl2 and ask how many
distinct classes of matrix representations we have for the added
generator (γz) in the extended algebra Cl3. It is known from
K theory that all the possible matrix representations form a
symmetric space, i.e., classifying space [24]. The classifying
space for the extension problem (23) is known to be C0 =
∪m∈ZU (2n)/[U (n + m) × U (n − m)] with a sufficiently large
integer n, i.e., a union of complex Grassmanians; see, for more
details, Refs. [24] and [25]. Its zeroth homotopy group,

π0(C0) = Z, (24)

indicates that the space of all possible representations of γz

consists of disconnected parts, which can be labeled with an
integer topological index. The nontrivial topology of the space
of γz also means that a Dirac mass term is not allowed in
the minimal Dirac Hamiltonian (20). Hence a Weyl point is
stable against (spatially uniform) perturbations. The integer
topological index corresponds to the Chern number of a 2D
subsystem with fixed kz in which kzγz behaves as a mass term
(the sign of kz is related to the Chern number). With kz taken
as a tuning parameter in the effective Hamiltonian, the Weyl
point can be viewed as a quantum phase transition point of
the 2D subsystem and is characterized by a Z charge which is
equal to the change in the Chern number.

An example of Weyl points is point nodes at the north
and south poles k = (0,0, ± kF ) on the Fermi surface in the
superfluid 3He-A phase. Each of the two point nodes is a
Weyl point described by an effective 2×2 Hamiltonian [10,37].
Stability of point nodes in 3He-A with particle-hole symmetry
is understood using Clifford algebras as follows. The particle-
hole symmetry is described by an antiunitary operator C =
τxK, where τx is a Pauli matrix acting on the particle-hole
space. However, action of C connects two point nodes at
k = (0,0, ± kF ) and is not closed for a single point node
(Weyl point). Hence the Bogoliubov–de Gennes Hamiltonian
for quasiparticles of a single point node has no symmetry and

is classified into class A. Thus the stability of Weyl point nodes
can be explained in the same manner as described above.

In the presence of additional spatial symmetries, topologi-
cal characterization of gap-closing points in superconductors
may change, as we discuss for Weyl/Dirac semimetals in the
following subsections. We note that stability of line nodes
[38–40] was recently studied for superconductors with in-
version symmetry or reflection symmetry and for odd-parity
superconductors in Ref. [41]. Study of stable point nodes ac-
companied by nontrivial surface states [10,40,42–44] has been
expanded to include cases with reflection symmetry [45,46]
and those with reflection and inversion symmetries [47]. Two
nontrivial examples of point nodes in topological supercon-
ductors will be discussed in Sec. III E.

B. Time-reversal and reflection symmetries: Z2 Weyl semimetal

In this section we show stability of Weyl points with Z2

charge under time-reversal and reflection symmetries using
Clifford algebras. As we discussed in Sec. II A, in the presence
of the two symmetries, we have a quartet of Weyl points at k =
(k0

x,k
0
y,k

0
z ), (−k0

x, − k0
y,k

0
z ), (k0

x,k
0
y, − k0

z ), and (−k0
x, − k0

y, −
k0
z ). Since a pair of Weyl points (k0

x,k
0
y,k

0
z ) and (−k0

x, − k0
y,k

0
z )

are related by the combined symmetry T̃ = RzT , we treat them
together as a single Dirac point and set k0

x = k0
y = 0 to simplify

notation. Incidentally, this also accounts for the special case
where (k0

x,k
0
y) ∈ TRIM2, as in the case shown in Fig. 2(c).

As an effective Hamiltonian for low-energy excitations
around the Dirac point, we consider a three-dimensional Dirac
Hamiltonian

H̃eff = kxγx + kyγy + (
kz − k0

z

)
γz + mγ0, (25)

where γj (j = 0,x,y,z) are gamma matrices satisfying the
anticommutation relations {γj ,γl} = 2δj,l . We assume that
the Dirac point (0,0,k0

z ) and its time-reversal partner k =
(0,0, − k0

z ) are distinct points in the Brillouin zone. In the
following discussions we consider only low-energy excitations
around the Dirac point at k = (0,0,k0

z ), because we are
concerned with the stability of individual Dirac points against
translation-invariant perturbations. As an example of such a
perturbation, we have included a Dirac mass term mγ0 in
Eq. (25) which would gap out the Dirac point. We will examine
whether this mass term is compatible with the assumed
symmetries. If it is not compatible, then the Dirac point is
stable against (translation-invariant) perturbations.

Since T or Rz alone is not a symmetry of the effective
Hamiltonian H̃eff , the only symmetry operator for H̃eff is the
product T̃ = RzT , which is assumed to satisfy T̃ 2 = −1.
Whether or not a Dirac mass term can exist under this
symmetry is systematically studied using Clifford algebras
below [24,25,48]. From Eq. (4) we find that the T̃ symmetry
and gamma matrices satisfy the following algebraic relations:

{γx,T̃ } = {γy,T̃ } = 0, (26a)

[γz,T̃ ] = [γ0,T̃ ] = 0. (26b)

We treat the symmetry operator T̃ and the gamma matrices
γi on equal footing in real Clifford algebras. A real Clifford
algebra Clp,q is a real algebra generated by p + q generators
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(e1, . . . ,ep+q ) satisfying

{ej ,el} = 0 (j �= l), (27a)

e2
j =

{−1, 1 � j � p,

+1, p + 1 � j � p + q.
(27b)

In this paper we use the notation

Clp,q = {e1, . . . ,ep; ep+1, . . . ,ep+q} (28)

to represent the whole real algebra Clp,q generated from the
p + q generators (e1, . . . ,ep+q ). To incorporate the antiunitary
nature of the T̃ operator in real algebras, we introduce an
operator J which plays a role of the imaginary unit i and
anticommutes with T̃ ,

J 2 = −1, {T̃ ,J } = 0. (29)

The gamma matrices commute with J , [γi,J ] = 0.
Using the symmetry relations in Eqs. (26) and (29),

we define the real Clifford algebra generated from gamma
matrices and the symmetry operator as

Cl0,4 ⊗ Cl0,2 = { ; γx,γy,γz,γ0} ⊗ { ; γxγyT̃ ,J γxγyT̃ }. (30)

From the argument explained in the Appendix, the question
as to whether a mass term γ0 is allowed under given symmetry
is answered by considering the classification problem of a
generator of the same type as γ0 (e.g., γz) for the Clifford
algebra without γ0,

Cl0,3 ⊗ Cl0,2 = { ; γx,γy,γz} ⊗ { ; γxγyT̃ ,J γxγyT̃ }. (31)

As in the discussion in Sec. III A, if the space of matrix
representations of γz is topologically trivial, then there is
another gamma matrix that can be used as γ0. On the other
hand, if it is topologically nontrivial, then there is no such
gamma matrix, hence no γ0.

We thus consider the extension problem of Clifford algebra

Cl0,2 ⊗ Cl0,2 → Cl0,3 ⊗ Cl0,2. (32)

We fix a matrix representation (in sufficiently large dimen-
sions) of Cl0,2 ⊗ Cl0,2 and ask how many possible matrix
representations we have for γz in Cl0,3 ⊗ Cl0,2. It turns
out [49] that the space of representations for γz is given by the
classifying space R2 = O(2n)/U (n), where n is a sufficiently
large integer and 2n is the dimension of representation [24,25].
Its zeroth homotopy group is known to be

π0(R2) = Z2. (33)

This indicates that there is no mass term in the minimal (4×4)
Dirac Hamiltonian (or two 2×2 Weyl Hamiltonians), while
we can always find a mass term to gap out the Dirac point
if we double the minimal model. This is precisely the Z2

nature of a pair of Weyl points. Thus a Z2 semimetal protected
by time-reversal and reflection symmetries with T̃ 2 = −1 is
characterized by Z2 charge of a pair of Weyl points (or a Dirac
point).

C. Time-reversal and inversion symmetries

As discussed in Refs. [1–3], gap-closing points in a
semimetal are fragile when Hamiltonian is invariant under

both time reversal T and inversion P . Here we derive this
known result using real Clifford algebras.

We consider a gap-closing (Weyl or Dirac) point at a generic
k point (not at one of time-reversal invariant momenta) in the
Brillouin zone. Separate operation of either time reversal T

or inversion P maps a Weyl/Dirac point at k = k0 to another
Weyl/Dirac point at k = −k0. While neither time reversal T

nor inversion P is a closed operation by itself, the combination
of the two operations PT leaves the effective Hamiltonian of
a single Weyl/Dirac point at k = k0 invariant,

PT Heff(kx,ky,kz)(PT )−1 = Heff(kx,ky,kz). (34)

Substituting the Dirac Hamiltonian (25) into the above
equation, we obtain symmetry relations obeyed by the gamma
matrices,

[γx,PT ] = [γy,PT ] = [γz,PT ] = [γ0,PT ] = 0. (35)

Let us consider semimetals with strong spin-orbit coupling
and inversion symmetry. We assume that the time-reversal
operator T and inversion operator P satisfy the following
relations:

T 2 = −1, P 2 = 1, [T ,P ] = 0, (36)

thereby the combined operator PT satisfying

(PT )2 = −1. (37)

We define a real Clifford algebra generated from PT and
gamma matrices,

Cl0,4 ⊗ Cl2,0 = {; γx,γy,γz,γ0} ⊗ {PT,JPT ; }. (38)

The existence/absence of the Dirac mass mγ0 can be judged
by considering the following extension problem:

{; γx,γy} ⊗ {PT,JPT ; } → {; γx,γy,γz} ⊗ {PT,JPT ; },
(39)

i.e.,

Cl0,2 ⊗ Cl2,0 → Cl0,3 ⊗ Cl2,0, (40)

which is equivalent to Cl0,6 → Cl0,7 [50]. The classify-
ing space for this extension problem is given by R6 =
Sp(n)/U (n), with a sufficiently large integer n [24,25]. Since
the space of possible representations for γz is singly connected
[π0(R6) = 0], one can always find more than one gamma
matrix which can be used as γz and γ0. This means that
a Dirac mass term always exists so that Weyl/Dirac points
can be gapped. Hence the instability of Weyl/Dirac points
under both time-reversal (T 2 = −1) and inversion symmetries
known from Refs. [1–3] is understood as the existence of a
Dirac mass term which is compatible with the symmetries.

Let us illustrate the instability of a Dirac point with an
example. Suppose that we have a pair of Dirac points, k =
(k0

x,k
0
y,k

0
z ) and (−k0

x, −k0
y, −k0

z ), which are related by T and
P . The low-energy effective Hamiltonians for the Dirac points
are written as

H+ = σxτy

(
kx − k0

x

) + σyτy

(
ky − k0

y

) + σzτy(kz − k0),

(41a)

H− = −σxτy

(
kx + k0

x

) − σyτy

(
ky + k0

y

) − σzτy(kz + k0),

(41b)

235127-7



TAKAHIRO MORIMOTO AND AKIRA FURUSAKI PHYSICAL REVIEW B 89, 235127 (2014)

where σ and τ are Pauli matrices representing, e.g., spin and
orbital degrees of freedom. With time-reversal and inversion
symmetries given by

T = iσyK, P = 1, (42)

the effective Hamiltonians are transformed as

T H±(−kx, − ky, − kz)T
−1 = H∓(kx,ky,kz), (43a)

PH±(−kx, − ky, − kz)P
−1 = H∓(kx,ky,kz), (43b)

and both H+ and H− are invariant under the combined
transformation,

PT = iσyK. (44)

Obviously we can add to H± mass terms

mxτx, mzτz, (45)

which are invariant under PT and gap out Dirac cones.
Therefore Dirac points are fragile and generally gapped,
in agreement with the general argument based on Clifford
algebras.

D. Time-reversal, inversion, and SU(2) spin rotation
symmetries: Z2 Dirac semimetal

Let us discuss stability of a Dirac point in the presence of
time-reversal, inversion, and SU(2) spin rotation symmetries.
We will demonstrate that the additional SU(2) spin rotation
symmetry completely changes the conclusion of Sec. III C.
With the SU(2) symmetry, we can separate the spin sector
and consider an effective Hamiltonian for spinless fermions.
We thus assume having symmetry operators satisfying the
following relations:

T 2 = +1, P 2 = 1, [T ,P ] = 0. (46)

The first equation implies that the system is in class AI. The
combined symmetry operator satisfies

(PT )2 = +1, (47)

which should be contrasted with Eq. (37). As we have
discussed in Sec. III C, we have a pair of Dirac points,
k = (k0

x,k
0
y,k

0
z ) and (−k0

x, −k0
y, −k0

z ), which are related by
time reversal or inversion. The effective Hamiltonian of a Dirac
point is invariant under PT .

Now the Clifford algebra generated from symmetry opera-
tors and gamma matrices reads

Cl0,4 ⊗ Cl0,2 = {; γx,γy,γz,γ0} ⊗ {; PT,JPT }. (48)

We can find whether or not a Dirac mass term can exist in
the low-energy effective Hamiltonian of the Dirac point by
considering the following extension problem:

{; γx,γy} ⊗ {; PT,JPT } → {; γx,γy,γz} ⊗ {; PT,JPT },
(49)

Cl0,2 ⊗ Cl0,2 → Cl0,3 ⊗ Cl0,2, (50)

which is equivalent to Cl0,2 → Cl0,3. The classifying space of
this extension problem is given by R2 = O(2n)/U (n), and its
zeroth homotopy group π0(R2) = Z2. The nontrivial topology

of the classifying space indicates that a Dirac mass term is
absent in a minimal Dirac Hamiltonian; i.e., the massless Dirac
Hamiltonian of the least dimensions (4×4 matrix) cannot be
gapped out by a Dirac mass term. However, we can always
find a mass term to add to two copies of minimal models.

For example, let us take

T = τxK, P = τx, PT = K, (51)

and write the Hamiltonian for a Dirac point

H̃+ = σxτz

(
kx − k0

x

) + σzτz

(
ky − k0

y

) + τx

(
kz − k0

z

)
. (52)

Here Pauli matrices σa , τb are assumed to span the basis of
four orbitals of spinless fermions We cannot find any mass
term gapping out the Dirac cone in this 4×4 Hamiltonian
with preserving PT symmetry. Thus the gapless Dirac cone is
stable when (PT )2 = +1. However, if we double the system
by tensoring H̃+ with a unit 2×2 matrix λ0 as H̃+ ⊗ λ0, we
can gap out the doubled Dirac cone by adding mass terms

σyτzλy, τyλy, (53)

where λx and λy are members of another set of Pauli matrices
λα (α = x,y,z). Therefore a Dirac point of a minimal (4×4)
Hamiltonian is stable while a doubled Dirac point of an 8×8
Hamiltonian is unstable, which indicates that Dirac points are
characterized by a Z2 charge.

A lattice regularization of the Dirac Hamiltonian H̃+ and
its time-reversal partner is given by

H = σxτz sin kx + σzτz sin ky

+ τx(cos kx + cos ky + cos kz − M), (54)

with symmetry operators

T = τxK, P = τx. (55)

We have two Dirac points at (0,0, ± π/2) when M = 2. These
Dirac points are stable. We note, however, that Dirac points
with a nontrivial Z2 charge do not yield helical Fermi arcs,
because the presence of a surface inevitably breaks inversion
symmetry. The bulk-edge correspondence does not hold with
inversion symmetry.

E. Z2 Weyl nodes and Z2 Dirac nodes in superconductors

In this section we briefly discuss point nodes in supercon-
ductors that are protected by Z2 topological charge. Topolog-
ical stability of nodes in superconductors with reflection and
inversion symmetries has recently been studied in Ref. [41].
Here we focus on two examples that are not discussed in
Ref. [41], i.e., Z2 Weyl nodes and Z2 Dirac nodes which are
superconductor analogs of Z2 Weyl and Dirac semimetals.

Z2 Weyl nodes are stable in the presence of time-reversal
symmetry T , particle-hole symmetry C, and refection sym-
metry Rz with respect to the z direction. For a point node
at a general k point, relevant symmetries are T̃ = T Rz and
C̃ = CRz. We assume symmetry operators satisfy

T̃ 2 = −1, C̃2 = +1. (56)

This can be realized in a class DIII superconductor with
“refection” symmetry Rz, in which symmetry operators satisfy
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the relations

T 2 = −1, C2 = +1, R2
z = +1, [T ,Rz] = [C,Rz] = 0.

(57)

Again, Rz is a special reflection symmetry that squares to +1,
e.g., a combination of reflection and π rotation in spin space
as we discussed for Z2 Weyl semimetals. Since symmetries
impose constraints on Hamiltonian

T̃ H (−kx, −ky,kz)T̃
−1 = H (kx,ky,kz), (58a)

C̃H (−kx, −ky,kz)C̃
−1 = −H (kx,ky,kz), (58b)

the Hamiltonian H (kx,ky,kz) of fixed kz can be regarded as
describing a 2D topological superconductor in class DIII,
which is characterized by a Z2 topological number when
quasiparticle spectra at fixed kz are fully gapped. Suppose
that the gap closes at some particular points in the 3D
Brillouin zone; these points correspond to Z2 topological
phase transitions of the fictitious 2D superconductor. Such
gap-closing points are stable and assigned a Z2 topological
charge. We call them Z2 Weyl nodes. Stability of Z2 Weyl
nodes is understood in terms of Clifford algebra as follows.
We have Clifford algebra for massive Dirac Hamiltonian with
symmetry constraints in Eq. (58) as

Cl2,5 = {Jγx,Jγy,; C̃,J C̃,J T̃ C̃,γz,γ0}. (59)

Following the same arguments in the previous subsections
and in the Appendix, we determine the existence/absence of a
Dirac mass term γ0 by considering the extension problem

Cl2,3 → Cl2,4. (60a)

Since the classifying space for this is known to be R1 = O(n),
the topological charge of a point node is given by

π0(R1) = Z2, (60b)

which reproduces the result of the discussions above.
Next, we discuss Z2 Dirac nodes that are stable under the

presence of time-reversal symmetry T , particle-hole symmetry
C, inversion symmetry P , and SU(2) spin rotation symmetry.
We consider superconductors in class CI, which is the
symmetry class of time-reversal symmetric superconductors
with spin SU(2) [28,51], and impose additional inversion
symmetry. The three symmetry operators are assumed to
satisfy

T 2 = +1, C2 = −1, P 2 = +1, (61a)

and

[T ,C] = [T ,P ] = [C,P ] = 0, (61b)

where we have assumed even-parity pairing to have C and P

commuting with each other. Relevant symmetries for a point
node are T ′ = T P and C ′ = CP , satisfying

T ′H (kx,ky,kz)T
′−1 = H (kx,ky,kz), (62a)

C ′H (kx,ky,kz)C
′−1 = −H (kx,ky,kz), (62b)

with

(T ′)2 = +1, (C ′)2 = −1. (62c)

Let us verify that a point node is stable and has Z2

topological charge in terms of Clifford algebra. The Clifford

algebra for a massive Dirac Hamiltonian with symmetry
operations T̃ and C̃ is given by

Cl2,5 = {C ′,JC ′; JT ′C ′,γx,γy,γz,γ0}. (63)

Then, the existence condition of the Dirac mass term γ0 and
topological charge of a point node are found from the following
extension problem:

Cl2,3 → Cl2,4, π0(R1) = Z2. (64)

We thus conclude that point nodes in class CI superconductors
with inversion symmetry are characterized by Z2 topological
charge.

Low-energy effective Hamiltonians for Z2 Weyl nodes and
Z2 Dirac nodes are given by 4×4 Bogoliubov–de Gennes
(BdG) Hamiltonians. An example of a BdG Hamiltonian for a
pair of Z2 Weyl nodes on the kz = k0

z plane is given by

H = kxσzτx + kyτy + (
kz − k0

z

)
τz, (65a)

where we have combined the pair of Weyl nodes by setting
k0
x = k0

y = 0. The relevant symmetry operators [Eq. (58)] are
given by

T̃ = iσyK, C̃ = τxK, (65b)

where σα and τα are Pauli matrices representing spin and
particle-hole degrees of freedom. An example of a BdG
Hamiltonian for a Z2 Dirac node at k = (k0

x,k
0
y,k

0
z ) is given

by

H = (
kx − k0

x

)
σxτx + (

ky − k0
y

)
σzτx + (

kz − k0
z

)
τz (66a)

with the symmetry operators [Eq. (62)]

T ′ = K, C ′ = iτyK, (66b)

where σα and τα are Pauli matrices representing, e.g., orbital
and particle-hole degrees of freedom.

From the analogy to Z2 Weyl and Dirac semimetals,
we expect the following features for point nodes with Z2

topological charge: Z2 Weyl nodes appear as a pair of Weyl
nodes connected by T̃ , and their projections onto the surface
Brillouin zone are end points of helical Fermi arcs. A Z2 Dirac
node is not split into a pair of Weyl nodes, and helical Fermi
arcs do not appear in the surface Brillouin zone because the
required inversion symmetry is broken by the presence of a
surface.

IV. DISCUSSION

In this paper we have proposed Weyl/Dirac semimetals
which are characterized with Z2 topological charges and
protected by a combination of time-reversal symmetry and
additional spatial symmetry: (a)Z2 Weyl semimetals protected
by time-reversal and “reflection” symmetries and (b) Z2 Dirac
semimetals protected by time-reversal, inversion, and SU(2)
spin rotation symmetries. The Z2 Weyl semimetals have
helical surface states forming helical Fermi arcs. These surface
states should give a contribution of 2e2k0

z d/πh to two-terminal
conductance (in analogy to the quantized conductance of
2e2/h in quantum spin Hall insulators), where d is the height
of the sample in the z direction and 2k0

z is the separation
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between two Weyl points in the kz direction (perpendicular to
the mirror plane) in the Brillouin zone [52].

In the presence of both time-reversal symmetry and broken
inversion symmetry, conventional Weyl semimetals are known
to appear as an intermediate phase between a topological
insulator phase and a trivial insulator phase [1]. Similarly,
Z2 Weyl/Dirac semimetals are expected to appear as an
intermediate phase between a topological insulator phase and a
trivial insulator phase as follows. When we have time-reversal
symmetry T and reflection symmetry Rz [(T Rz)2 = −1],
we can have 3D topological insulators with a nontrivial Z2

topological number (class AII + R+ in Ref. [25]). When
we have time-reversal, inversion, and spin SU(2) rotation
symmetries, we can define an integer topological number for
3D gapped phases (class AI + inversion) [36,53]. In both cases,
at a topological phase transition point where the topological
number changes, the bulk band gap closes. Since gap-closing
points in these systems are stable thanks to nontrivial Z2

charge, they should remain gapless when a parameter in the
Hamiltonian is changed by a finite amount. Thus a topological
phase transition point evolves into an intermediate phase of
Z2 Weyl/Dirac semimetals between a topological insulating
phase and a trivial insulating phase.

Finally, we briefly comment on the stability of Weyl/Dirac
points against disorder. What we have shown in Sec. III using
Clifford algebras is that Weyl/Dirac points are stable against
translation-invariant perturbations that preserve time-reversal
and additional spatial symmetries. On the other hand, disorder
is neither translation-invariant nor preserves additional spatial
symmetry. Furthermore, disorder can introduce intervalley
scattering which can gap out Weyl/Dirac points. However,
since potential disorder is irrelevant in the renormalization-
group sense in the three-dimensional bulk [54,55], Z2

Weyl/Dirac points are expected to be stable against weak
disorder. They should be also stable against weak Coulomb
interactions [56].

Z2 Weyl semimetals have helical Fermi arcs connecting
projections of Weyl points onto its surface Brillouin zone.
This is analogous to chiral Fermi arcs in Weyl semimetals.
The chiral surface states of Weyl semimetals are stable against
disorder because of their chiral nature. On the other hand, in
Z2 Weyl semimetals, random potentials can induce scattering

among helical surface modes of different kz and gap them
out. However, if we regard a Z2 Weyl semimetal as layers
of two-dimensional Z2 topological insulators labeled by kz

stacked in momentum space (−k0
z < kz < +k0

z ), we can draw
analogy to a weak topological insulator which is layers of
two-dimensional Z2 topological insulators stacked in real
space. As the surface states of weak topological insulators
are stable against disorder as long as it is spatially uniform on
average [48,57–59], we may expect similar stability against
disorder for helical surface modes of Z2 Weyl semimetals.
Moreover, weak antilocalization effects would drive the
surface to be metallic, while repulsive Coulomb interactions
can alter such metallic surface states into critical states [60].
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APPENDIX: EXISTENCE CONDITION OF
DIRAC MASS TERM

Considering the extension problem of Clifford algebras,
we can tell whether we can add a Dirac mass term to a given
massless Dirac Hamiltonian under symmetry constraints. In
this Appendix we discuss existence conditions of Dirac mass
for ten Altland-Zirnbauer symmetry classes. This is based on
the following idea:

In the classification scheme with Clifford algebras, the
existence condition of a particular generator ei (Dirac mass
term) is equivalent to classification of another generator of the
same type in Clifford algebra in which ei is removed.

First, let us briefly review classification of massive
Dirac Hamiltonians using Clifford algebras (for details, see
Ref. [25]). Table II summarizes the result of classification for
a massive Dirac Hamiltonian in d dimensions,

H =
d∑

i=1

kiγi + mγ0, (A1)

where γj (j = 0,1, . . . ,d) are gamma matrices. H belongs to
one of the Altland-Zirnbauer symmetry class which is specified

TABLE II. Ten Altland-Zirnbauer symmetry classes and their topological classification. Two complex and eight real symmetry classes
are characterized by the presence or the absence of time-reversal symmetry (T ), particle-hole symmetry (C), and chiral symmetry (�). Their
presence is indicated by the sign of squared operator, T 2 or C2, and by 1 for �; their absence is indicated by 0. For each class, Clifford algebra
of d dimensions, the relevant extension problem, the classifying space V , and its zeroth homotopy group at d = 0 are listed.

Class T C � Clifford algebra Extension V π0(V )|d=0

A 0 0 0 Cld+1 = {γ0,γ1, . . . ,γd} Cld → Cld+1 C0+d Z
AIII 0 0 1 Cld+2 = {γ0,�,γ1, . . . ,γd} Cld+1 → Cld+2 C1+d 0

AI +1 0 0 Cl1,d+2 = {Jγ0; T ,T J,γ1, . . . ,γd} Cl0,d+2 → Cl1,d+2 R0−d Z
BDI +1 +1 1 Cld+1,3 = {Jγ1, . . . ,J γd,T CJ ; C,CJ,γ0} Cld+1,2 → Cld+1,3 R1−d Z2

D 0 +1 0 Cld,3 = {Jγ1, . . . ,J γd ; C,CJ,γ0} Cld,2 → Cld,3 R2−d Z2

DIII −1 +1 1 Cld,4 = {Jγ1, . . . ,J γd ; C,CJ,T CJ,γ0} Cld,3 → Cld,4 R3−d 0
AII −1 0 0 Cl3,d = {Jγ0,T ,T J ; γ1, . . . ,γd} Cl2,d → Cl3,d R4−d Z
CII −1 −1 1 Cld+3,1 = {Jγ1, . . . ,J γd,C,CJ,T CJ ; γ0} Cld+3,0 → Cld+3,1 R5−d 0
C 0 −1 0 Cld+2,1 = {Jγ1, . . . ,J γd,C,CJ ; γ0} Cld+2,0 → Cld+2,1 R6−d 0
CI +1 −1 1 Cld+2,2 = {Jγ1, . . . ,J γd,C,CJ ; T CJ,γ0} Cld+2,1 → Cld+2,2 R7−d 0
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by the presence or absence of three generic symmetries: time-
reversal symmetry T , particle-hole symmetry C, and chiral
symmetry �. A set of gamma matrices (γj ) and symmetry
operators (� in class AIII; T and/or C and imaginary unit J

in real classes) form Clifford algebra as shown in Table II.
By examining the extension problem with respect to the Dirac
mass term, we can obtain classifying space V which is a space
of all possible Dirac mass terms under symmetry constraints.
Then the topological classification is found from its zeroth
homotopy group π0(V ) [the last column in Table II lists π0(V )
for 0-dimensional systems].

The type of topological indices (Z,Z2,0) characterizing
massive Dirac Hamiltonians determines whether we have a
unique Dirac mass γ0 or we have multiple Dirac masses
that anticommute with each other, as we explain below. That
is, topology of classifying space can be used to understand
uniqueness/multipleness of the Dirac mass term. When the
Dirac Hamiltonian H has only a single Dirac mass term mγ0

which is allowed by assumed symmetry constraints of the
symmetry class, the ground state of H for m > 0 and that
for m < 0 are topologically distinct, because they cannot be
connected without closing the bulk gap m. This corresponds
to the case when the zeroth homotopy group of the classifying
space V is nontrivial, i.e., Z or Z2. The difference between
Z and Z2 manifests itself if we double the system, H ⊗ σ0,
where σ0 is a 2 × 2 identity matrix. For the Z2 case, we
can find an extra mass term m′γ ′

0 that anticommutes with
H ⊗ σ0 (note that mγ0 is included in H ). Then the ground
states of H ⊗ σ0 with different signs of the mass m are
no longer topologically distinct, since we can adiabatically
deform the Dirac mass term as mγ0 ⊗ σ0 cos θ + m′γ ′

0 sin θ

(0 � θ � π ). On the other hand, when the zeroth homotopy
of the classifying space V is Z, we cannot find any extra mass
term that anticommutes with H ⊗ σ0, because two copies of
topologically nontrivial systems add up and the states with
different signs of the mass m are still distinct. When H has
more than one Dirac mass terms, the gapped ground states
of H can be adiabatically connected without closing the
energy gap. For example, if H has two Dirac mass terms,
mγ0 = m1γ0,1 + m2γ0,2 with {γ0,1,γ0,2} = 0, then the ground
states of H with mγ0 = +mγ0,1 and mγ0 = −mγ0,1 are not
topologically distinct, since we can connect them by the
homotopy

γ0(θ ) = cos θγ0,1 + sin θγ0,2, (0 � θ � π ). (A2)

In this case the classification of the symmetry class is trivial,
π0(V ) = 0.

Now let us turn to the existence condition of the Dirac
mass term γ0 for given kinetic gamma matrices and symmetry
constraints. Suppose that the extension problem with respect
to the mass term γ0 of the Dirac Hamiltonian [Eq. (A1)] has
the form

Clp,q = {e1, . . . ,ep; ep+1, . . . ,ep+q}
(A3)

→ Clp,q+1 = {e1, . . . ,ep; ep+1, . . . ,ep+q,γ0};
the relevant classifying space is Rq−p. (This example cor-
responds to symmetry classes with particle-hole symmetry;
see Table II.) The existence of γ0 is then determined by the

extension problem with one less generator,

Clp,q−1 = {e1, . . . ,ep; ep+1, . . . ,ep+q−1}
(A4)

→ Clp,q = {e1, . . . ,ep; ep+1, . . . ,ep+q−1,ep+q}.
If we denote the classifying space for this extension problem
by Ṽ , then Ṽ = Rq−p−1. Notice the change in the index of
the classifying space by −1. As we have seen, topology of the
classifying space Rq−p−1 for the extension problem of the gen-
erator ep+q tells us whether ep+q is unique or not, i.e., whether
there exists an extra operator ẽp+q that is the same type as ep+q

and anticommutes with ep+q . Since the extra operator ẽp+q can
be adopted as a Dirac mass term γ0, uniqueness/multipleness
of the operator ep+q corresponds exactly to absence/presence
of the Dirac mass term γ0 as follows.

If π0(Ṽ ) = Z, we cannot find any extra operator that
anticommutes with the generators e1, . . . ,ep+q and squares to
+1; hence γ0 does not exist. If π0(Ṽ ) = Z2, the existence of γ0

depends on the size of the Dirac Hamiltonian that we consider.
When a minimal Dirac Hamiltonian under given symmetry
constraints has the matrix form of dimension n, the dimension
of general Dirac Hamiltonians with the same symmetries is
given by kn, where k is an integer. A mass term γ0 can be
present in Dirac Hamiltonians of k even, while it cannot be
present in Dirac Hamiltonians of k odd. Finally, if π0(Ṽ ) = 0,
we can always find an extra generator; i.e., γ0 exists.

We can repeat the same discussion for class AI and AII.
For these classes the extension problem with respect to Jγ0

is of the form Clp,q → Clp+1,q , whose classifying space is
V = Rp−q+2 (see Table II). The extension problem with one
less generator similar to Eq. (A4) is Clp−1,q → Clp,q , for
which the classifying space is Ṽ = Rp−q+1 (note the change
in the index by −1). The existence of γ0 is judged from π0(Ṽ ).

Finally, the existence condition of γ0 for complex classes
A and AIII is obtained by replacing real Clifford algebras in
Eq. (A4) with complex algebras, i.e., Clq−1 → Clq , where
q = d for class A and q = d + 1 for class AIII.

In summary, when the classifying space for Eq. (A3) is
V = Rq (Cq), the classifying space for Eq. (A4) is given by
Ṽ = Rq−1 (Cq−1). Depending on the topology of Ṽ , we have
the following three cases regarding the existence of a Dirac
mass term γ0 in a Dirac Hamiltonian of kn dimensions, where
n is the minimal size of Dirac Hamiltonians in a given set of
symmetry constraints:

(1) π0(Ṽ ) = Z. No Dirac mass term γ0 exists for any integer
k.

(2) π0(Ṽ ) = Z2. No Dirac mass term γ0 exists for odd k,
while γ0 can exist for even k.

(3) π0(Ṽ ) = 0. At least one Dirac mass term γ0 can be
found for any k.

We note that, for each symmetry class, the existence
condition of a Dirac mass term in d-dimensional Dirac Hamil-
tonian is directly related to the classification of topological
insulators/superconductors in the same symmetry class in
d + 1 dimensions. This can be seen by noticing that the
change in the index q of the classifying space Rq by −1
(Cq by −1 = +1 mod 2) is equivalent to increasing the space
dimension d by +1 in Table II. For example, if a d-dimensional
system is a boundary of a topological insulator/superconductor
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in d + 1 dimensions, then the nontrivial boundary states
cannot be gapped. Naturally, this indicates that there is no
Dirac mass term for the gapless Dirac fermions on the
d-dimensional surface of a (d + 1)-dimensional topological
insulator/superconductor.

We also note that the existence condition of Dirac mass
terms discussed in this appendix gives a topological charge of

gap-closing points located at time-reversal invariant momenta
in the ten Altland-Zirnbauer symmetry classes. However, when
gap-closing points are not located on time-reversal invariant
momenta, their topological charge is related to the existence
condition of a complex class (A or AIII), because time-reversal
and particle-hole symmetries are not symmetries of a Dirac
Hamiltonian for a single gap-closing point.
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[42] T. Heikkilä, N. Kopnin, and G. Volovik, JETP Lett. 94, 233

(2011).
[43] Y. Tsutsumi, T. Mizushima, M. Ichioka, and K. Machida, J.

Phys. Soc. Jpn. 79, 113601 (2010).
[44] F. Wang and D.-H. Lee, Phys. Rev. B 86, 094512 (2012).
[45] F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 111,

056403 (2013).
[46] H. Yao and S. Ryu, Phys. Rev. B 88, 064507 (2013).
[47] S. A. Yang, H. Pan, and F. Zhang, arXiv:1402.7070.
[48] T. Morimoto and A. Furusaki, Phys. Rev. B 89, 035117 (2014).
[49] The extension problem in Eq. (32) is reduced to Cl0,2 → Cl0,3

as follows. First, Cl0,2 is isomorphic to the algebra of real 2×2
matrices R(2). That is, if we take the representation Cl0,2 =
{; σx,σz}, an element of Cl0,2 is written as a + bσx + icσy + dσz

with a,b,c,d ∈ R, which is a general form of a real 2×2 matrix.
Thus the extension problem in Eq. (32) is equivalent to Cl0,2 ⊗
R(2) → Cl0,3 ⊗ R(2). Next, R(2) can be discarded from the
above extension, because faithful representations of A ⊗ R(n)
in real matrices have a natural one-to-one correspondence with
those of A.

[50] We take the tensor product of Cl0,2 and each side of Eq. (40)
and make use of the following relations:

Clp,q ⊗ Cl2,0 � Clq+2,p,

i.e.,

{e1, . . . ,ep; ep+1, . . . ,ep+q} ⊗ {ẽ1,ẽ2; }
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The tensor product with Cl0,2 � R(2) does not change the
extension problem.
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