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The electronic structure of strongly correlated systems is usually calculated by using an effective model
Hamiltonian with a small number of states and an effective on-site interaction. The mode, however, neglects
the frequency dependence of the interaction, which emerges as a result of dynamical screening processes not
included in the model. The self-energy calculated in this kind of model within dynamical mean-field theory
(DMFT) is usually assumed to contain on-site components only. To study the validity of model calculations
for the simulation of realistic materials, we make a detailed comparison between the downfolded self-energy in
a model Hamiltonian with static and dynamic on-site interaction and the full ab initio self-energy for Fe and
SrVO3 within the GW approximation. We find that the model GW self-energy shows weaker k (momentum)
dependence than the ab initio GW self-energy, which is attributed to the lack of the long-range interaction and
of contributions from other electrons not included in the models. This weak k dependence is found to lead to
an artificial narrowing of the quasiparticle band structure. Moreover, this band narrowing is stronger for the
dynamic (frequency-dependent) interaction, due to a larger renormalization of the quasiparticle states. These
findings indicate a crucial role of the k dependence of the self-energy and dynamical screening for the electronic
structure of correlated systems. We also discuss the effects beyond the GW approximation for correlated systems
by comparing the GW and DMFT results.
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I. INTRODUCTION

Over the last decade there has been significant progress
in the electronic structure calculations of strongly correlated
materials owing to the successful merging of first-principles
band-structure methods and lattice Fermion model approaches.
One of the most important areas of progress in this field is
the development of dynamical mean-field theory (DMFT) [1],
which can treat strong intra-atomic interactions between
localized orbitals by mapping the lattice model to an effective
impurity problem. Starting from low-energy effective models
whose parameters may be determined from first principles,
this method offers a way to compute not only the one-
particle Green’s function and the self-energy but also the
response functions of real correlated materials at a reasonable
computational cost [2–4].

In order to construct more realistic models, works have been
done to include two important factors missing in conventional
models such as the Hubbard model: one is the dynamical
(frequency-dependent) aspect of the screened interaction
U [5], and the other is the long-range interaction. Only recently
the frequency dependence of U has begun to be included in
DMFT calculations [6–8], thanks to the development of new
impurity solvers which can handle frequency-dependent inter-
actions [9–11]. Related to the long-range interaction, recently
it was found [12,13] that the k (momentum) dependence of
the self-energy plays an important role in determining the
electronic structure of correlated materials within the GW

approximation (GWA) [14–16], although the relation between
the ab initio calculation and low-energy model calculation was
not yet investigated.

The frequency dependence of U and its long-range com-
ponent influence each other in a subtle way. A static U

is relatively short ranged and it is therefore reasonable to
assume that only on-site U is important. On the other hand, a
frequency-dependent U varies in range greatly depending on
energy. At low energy below the plasmon energy, the Coulomb
interaction is strongly screened so that an on-site assumption
may be valid but at high energy above the plasmon energy,
the screening effect is suddenly reduced so that U becomes
very long range, approaching the bare Coulomb interaction.
Clearly, a model with a frequency-dependent U ought to take
into account the long-range nature of U at high energy.

The purpose of this paper is to investigate how the two
factors, namely, the frequency dependence and long-range
component of U , affect the electronic structure of the corre-
lated systems. For this purpose, we make a detailed comparison
between the self-energy and quasiparticle band structure in the
ab initio calculation and in the low-energy effective models
within the GWA. We also make a comparison between the
GW and DMFT self-energies. The effective models are built
with an on-site interaction, which is either static or dynamic.
We show that both factors are indeed important in determining
the electronic structure of correlated systems; due to the lack
of a long-range component of U and the correlations with
the electrons not included in the models, the self-energy
in the on-site-only models exhibits a weaker momentum
dependence than the ab initio self-energy. We also show that
neglecting the frequency dependence of U results in smaller
renormalization effects of the correlated states. These factors
affect the bandwidth of these correlated systems in opposite
directions, and the overall effect amounts to a reduction of the
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bandwidth compared with the ab initio GW results by ≈30%
for frequency-dependent interaction and ≈10%–20% for static
interaction. In this work we choose spin-unpolarized Fe and
SrVO3 as test materials, which have been widely studied in
the literature [8,17–28], but we believe the results obtained in
this work are general for various correlated materials with
localized states. We also make a comparison between the
GW and DMFT self-energy in the static U model in order to
investigate vertex corrections or correlation effects in DMFT
beyond the GWA.

This paper is structured as follows: Section II outlines the
downfolded self-energy in first-principles and effective low-
energy models with static and dynamic interaction. Section III
compares the self-energy in ab initio and model calculations
within the GWA. In Sec. IV we discuss the correlation beyond
the GWA by comparing GW and DMFT results in the static
model, and in Sec. V we present our conclusions.

II. THEORY

A. Effective self-energy for correlated
systems from first principles

In electronic structure calculations of strongly correlated
systems, one is usually interested in only a small number of
localized states near the Fermi energy. These states, such as the
d orbitals of 3d systems, are assumed to be the most relevant
for the studied correlation problem and an effective model is
then built and solved in the Hilbert subspace spanned by them
and therefore denoted as “d” space.

Within such an approach, one actually divides the complete
Hilbert space into two subspaces: the d space which comprises
the localized states of interest and the other containing the rest
(“r” space) of the one-particle Hilbert space. In Ref. [29], a
rigorous approach based on Hedin’s equations is provided for
building low-energy effective models from the full many-body
Hamiltonian: By integrating out the r degrees of freedom, the
full Green’s function of the d electrons, Gd , can be related to
the noninteracting Green’s function for the d electrons, Gd

0 ,
via a Dyson’s equation as

Gd (1,2) = Gd
0 (1,2) +

∫
d(34)Gd

0 (1,3)�eff(3,4)Gd (4,2),

(1)
where the numbers denote both space and time coordinates,
i.e., 1 = (x1,y1,z1,t1).

Following Ref. [29], we introduce in Eq. (1) the downfolded
self-energy �eff of the electrons in the d space. This effective
self-energy consists of not only the term due to correlations
between the localized electrons in the d space but also a term
due to correlations between the electrons in the d and r spaces.
More precisely, the effective self-energy �eff consists of the
following three parts [29]:

�eff = �d + �rd + �drd, (2)

where �d is due to the correlations between the d electrons and
therefore corresponds to the self-energy calculated within the
effective low-energy model. On the contrary, the additional two
terms cannot be caught within the effective model description:
�rd describes the contribution from electrons in the r space
acting on the d space, and �drd comes from the hybridization

between d and r spaces. The last term �drd of Eq. (2) may be
neglected as a first approximation by choosing reasonable one-
particle reference states, which in this work are chosen to be
the Kohn-Sham eigenstates of density functional theory within
the local density approximation(LDA) [30]. The first two terms
of Eq. (2) can be calculated within the GW approximation
[14–16] and have then the following form [29]:

�d (1,2) = iGd
0 (1,2)W (1,2), (3)

�rd (1,2) = iGr
0(1,2)W (1,2), (4)

where Gr
0 is the noninteracting Green’s function for the

electrons in the r space, and W is the screened Coulomb
interaction. In correlated systems, the main low-energy struc-
ture of the self-energy is determined by �d , while �rd yields
high-energy corrections [5].

While performing the downfolding procedure introduced in
Ref. [29], the expression of the effective screened interaction
among the electrons of the d subspace emerges naturally.
Indeed, the screened interaction W is related to the bare
Coulomb interaction V and the polarization function P

according to

W (1,2) = V (1,2) +
∫

d(34)V (1,3)P (3,4)W (4,2)

= U (1,2) +
∫

d(34)U (1,3)Pd (3,4)W (4,2), (5)

where U is defined as

U (1,2) = V (1,2) +
∫

d(34)V (1,3)Pr (3,4)U (4,2). (6)

In the above equations, Pd is the polarization function due
to the electrons in the d subspace only, and Pr = P − Pd

is the polarization through r-r and r-d screening channels.
The introduced quantity U is the partially screened Coulomb
interaction and is related to the bare interaction V as in Eq. (6).
Equation (5) suggests that this time- or frequency-dependent
interaction U can be identified as the effective interaction in
the low-energy model. This quantity may be calculated within
the constrained random phase approximation (RPA) [31–33].

B. Low-energy dynamic model

From the previously described downfolding procedure [29],
one can build an effective low-energy model for the d electrons.
However, because of the frequency-dependent or retarded
interaction U , one can only write this effective theory in
the functional-integral formalism [34]. In one of the simplest
models within this formalism, only on-site retarded interaction
is considered and the effective action takes the following
form [5]:

Seff =
∫

dτ dτ ′
[ ∑

RR′nn′
c
†
Rn(τ )

[
∂

∂τ
− μ + hnn′ (R − R′)

]

× cR′n′(τ ′) + 1

2

∑
R

∑
nn′mm′

Unn′;mm′(τ − τ ′)

× c
†
Rn(τ )c†Rm(τ ′)cRm′ (τ ′)cRn′ (τ )

]
, (7)
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where R stands for the lattice site, n,m are the orbital indices,
and μ is the chemical potential. The Grassman variables
c
†
Rn and cRn are associated to the creation and annihilation

operators in the Wannier representation {wnR(r)} of the low-
energy model. In this expression, hnn′ (R − R′) are the matrix
elements of the one-particle Kohn-Sham Hamiltonian within
the LDA:

hnn′(R − R′) = 〈wnR|h|wn′R′ 〉 (8)

and Unn′;mm′ (τ ) is the on-site time-dependent interaction
matrix:

Unn′;mm′ (τ ) =
∫

d3r d3r ′w∗
nR(r)wn′R(r)U (r,r′,τ )

×w∗
mR(r′)wm′R(r′). (9)

While it includes all intra-atomic interaction, this model
neglects long-range or intersite (R �= R′) elements of the
interaction.

C. Low-energy static model

One can build an effective model for the electrons in the d

subspace which can take a Hamiltonian form by neglecting
the frequency dependence of the interaction U . This is
the commonly used Hubbard-like model with static on-site
interactions:

H =
∑

R,R′nn′
hnn′(R − R′)c†RncR′n′ (10)

+ 1

2

∑
R

∑
n,n′,m,m′

Unn′;mm′c
†
Rnc

†
RmcRm′cRn′ ,

where c
†
Rn and cRn are now the creation and annihilation

operators. In this model, the on-site interaction matrix U

corresponds to the static matrix elements of the screened
interaction [5]

Unn′;mm′ = Unn′;mm′ (ω = 0), (11)

where the frequency-dependent interaction Unn′;mm′ (ω) is
obtained by the Fourier transformation of Unn′;mm′ (τ ) in
Eq. (9). As discussed in Refs. [5,31], since the static effective
interaction, which is given in Eq. (11), is one order of
magnitude smaller than the bare Coulomb interaction, the
energy scale of the self-energy calculated with this static
interaction becomes much smaller than what is expected from
first principles.

D. Self-energy within the GWA

Both the dynamic and static models can be treated within
the GW approximation [14–16] but all quantities have to be
expanded in terms of the Bloch functions φkn constructed from
the Wannier functions wnR as

φkn(r) = 1√
N

∑
R

eik·RwnR(r), (12)

where N is the number of unit cells in the calculation. The
matrix elements of the effective interaction U (ω) with respect

to the Bloch functions have a general form

U
(k,k′)
nn′;mm′ (q,ω) =

∫
d3r d3r ′[φ∗

kn(r)φk+qn′(r)]∗U (r,r′; ω)

× [φ∗
k′m(r′)φk′+qm′(r′)], (13)

and they become independent of q, k, and k′, since in both the
dynamic and static models, the effective interaction has only
on-site components in the Wannier representation. The fully
screened interaction matrix W (q,ω) is therefore calculated as

W (q,ω) = [1 − U (ω)Pd (q,ω)]−1U (ω), (14)

where Pd is the polarization function due to the d electrons:

Pd nn′;mm′ (q,ω)

= 2
occ∑
kμ

unocc∑
k′ν

δk′,k+qC
∗
nμ(k)Cn′ν(k′)Cmμ(k)C∗

m′ν(k′)

×
[

1

ω − (εk′ν − εkμ) + iη
− 1

ω + (εk′ν − εkμ) − iη

]
.

(15)

Here η is a positive infinitesimal and the coefficients Cnμ(k)
relate φkn and the Kohn-Sham eigenstates ψkμ which are ob-
tained by diagonalizing the one-particle Hamiltonian hnn′(R),
as

ψkμ(r) =
∑

n

Cnμ(k)φkn(r). (16)

One can see that in the on-site-only models, the momentum
dependence of W (q,ω) comes only from Pd . In the case of the
static model, U (ω) in Eq. (14) is replaced by its static value
U (ω = 0).

For the model self-energy �d , we first calculate the
imaginary or anti-Hermitian part of it [35] by using the
relation [36]

〈φkn|Im �d (ω)|φkn′ 〉
=

∑
qμ

∫
d3r d3r ′φ∗

kn(r)ψk−qμ(r)Im W (r,r′,ω − εk−qμ)

×ψ∗
k−qμ(r′)φkn′(r′)

×
{

+θ (ω − εk−qμ)θ (εk−qμ − εF ) (ω > εF )

−θ (εk−qμ − ω)θ (εF − εk−qμ) (ω < εF ),
(17)

and then calculate the real or Hermitian part of the self-energy
via the Kramers-Kronig transformation:

〈φkn|Re �d (ω)|φkn′ 〉 = 〈φkn|�d
x |φkn′ 〉

− 1

π

∫ ∞

−∞
dω′ 〈φkn|Im �d (ω′)|φkn′ 〉

ω − ω′ sgn(ω′), (18)

where �d
x is the exchange part of the self-energy, and the Fermi

level corresponds to ω = 0. Since in our models U is local,
the momentum dependence of the self-energy comes from W

and Pd .

E. Self-energy within DMFT

DMFT is a quantitative method to handle electronic
correlations In a nutshell, this approach treats the solid as
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a set of single atoms embedded in an effective medium with
which electronic transfers take place, this effective medium
being self-consistently related to the rest of the solid. More
precisely, the lattice problem is mapped onto a generalized
Anderson impurity problem, whose solution yields a local
(on-site) Green’s function and a local self-energy that are
identified as the on-site projection of the lattice solution [1–4].

In standard single-site DMFT, the atomic part of the
impurity problem relies on an atomic multiorbital Hubbard
model:

H =
∑

R,R′mm′σ

hmm′(R − R′)c†Rmσ cR′m′σ + Hint, (19)

where σ denotes now explicitly the spin. The interaction term
Hint = HU + HJ is composed of a density-density term HU :

HU = 1

2

∑
R

∑
m,m′,σ

Uσσ
mm′nRmσ nRm′σ

+1

2

∑
R

∑
m,m′

U
↑↓
mm′(nRm↑nRm′↓ + nRm↓nRm′↑), (20)

where nRmσ = c
†
Rmσ cRmσ , and a nondensity-density term HJ

which contains the so-called “spin-flip” and “pair-hopping”
terms:

HJ = −1

2

∑
R

∑
m,m′

Jmm′ (c†Rm↑cRm↓c
†
Rm′↓cRm′↑ + H.c.)

− 1

2

∑
R

∑
m,m′

Jmm′ (c†Rm↑c
†
Rm↓cRm′↑cRm′↓ + H.c.). (21)

The introduced interaction parameters are related to the static
on-site effective interaction U in Eq. (11) by the following
relations [37]:

Uσσ̄
mm′ = Umm;m′m′ ,

Jmm′ = Umm′;m′m, m �= m′, (22)

Uσσ
mm′ = Umm;m′m′ − Umm′;m′m, m �= m′.

By treating the static model within DMFT, the effective self-
energy �d within DMFT is “local” in Wannier representation;
namely, when expanded in terms of the Wannier functions
wnR(r), the self-energy has only site-diagonal elements [38]:

〈wnR|�d (ω)|wn′R′ 〉 = δRR′�d
nn′(ω). (23)

In the reciprocal space, this implies that �d is k independent:

〈φkn|�d (ω)|φkn′ 〉 = �d
nn′(ω). (24)

Equation (24) can be verified by substituting φkn in Eq. (12)
into Eq. (24) and using Eq. (23).

Recently, methods have also been developed to include
dynamical screening and solve the dynamic model as defined
in Eq. (7) within DMFT [9–11]. First applications to the
dynamic model show a substantial band renormalization which
is not accounted for in the static model [6–8]. However, the
treatment of the dynamic model within DMFT is beyond the
scope of this work.

F. Aim/Principle of the study

The main purpose of this work is to compare the ab initio
self-energy within the GWA, with the effective self-energy
�d in Eq. (2), calculated in the model GW calculation
and in DMFT. Within the GWA, we can also compute
the d contribution of the self-energy �d = Gd

0W from first
principles without any ambiguity. In this work, we focus on
spin-unpolarized Fe and SrVO3 as test materials. The d space
in the model consists of the five d orbitals for Fe and does
not include the 4s band, whereas it contains only the three t2g

orbitals for SrVO3.
In the first part, the ab initio GW self-energy is directly

compared with the self-energy within the static and dynamic
models, whose parameters, including the effective interaction
U (ω), are calculated from first principles. In the second
part, we discuss the correlation effects for these systems by
comparing the self-energy in the static model calculated within
the GWA and DMFT.

III. COMPARISON OF DOWNFOLDED
SELF-ENERGY WITHIN THE GWA

A. Computational details

In this work, the LDA and ab initio GW calculations are
performed with the full-potential linearized augmented plane-
wave DFT code FLEUR [39] and the GW code SPEX [40]. We
employ the Perdew-Zunger parametrization [41] of the LDA
exchange-correlation functional. The lattice constants used in
this work are a = 5.42 bohr for bcc Fe and a = 7.26 bohr for
cubic SrVO3. In both systems 8 × 8 × 8 k-point sampling is
used. To compute the polarization and Green’s function in the
GWA, around 50 and 380 unoccupied bands are used for Fe and
SrVO3, respectively. As basis functions wnR for the models, we
use the maximally localized Wannier functions [42–44]. We
use a recently proposed symmetry-constrained routine [45]
to construct symmetry-adapted Wannier functions using a
customized version of the WANNIER90 library [46]. The
frequency-dependent screened interactions are calculated us-
ing the constrained RPA [31–33] implemented in the SPEX

code [40].
In the effective models, the self-energy correction induces a

large change in the chemical potential, due to the double count-
ing of the exchange-correlation effects. To fix this change,
in the GW calculations we use Hedin’s approach [14,47],
which amounts to adding the following term to the effective
Hamiltonian:

H ′ = −�
∑
Rn

c
†
RncRn, (25)

where the shift � is evaluated as

� = Re〈ψk′μ′ |�0(εk′μ′)|ψk′μ′ 〉. (26)

Here the prime (′) denotes the state at or closest to the Fermi
energy, and �0 is the GW self-energy calculated in the model
without this shift.
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FIG. 1. (Color online) On-site average diagonal matrix elements
of the screened interaction W (ω) for Fe and SrVO3. The dotted lines
show the values of the bare Coulomb interaction.

B. Results and discussion

1. Fully screened interaction W and self-energy

We first discuss the fully screened interaction W [Eq. (5)],
which is related to the GW self-energy through Eq. (17). In
Fig. 1 we plot the frequency dependence of the average on-site
value of the fully screened interaction defined as

W̄ (ω) = 1

Nd

∑
n∈d

〈wnRwnR|W (ω)|wnRwnR〉

= 1

Nd

∑
n∈d

∫
d3r d3r ′w∗

nR(r)wnR(r)W (r,r′,ω)

×w∗
nR(r′)wnR(r′), (27)

where Nd is the number of orbitals in the d subspace (i.e., Nd =
5 for Fe and Nd = 3 for SrVO3), for the ab initio and model
calculations. The high-energy structure of W (ω) is mainly
determined by the plasmonlike peaks at around 25 eV for Fe
and 15 eV for SrVO3, and above these energies the screening is
less effective and the screened interaction approaches the bare
(unscreened) Coulomb interaction. The dynamic model well
reproduces the high-energy part of the on-site fully screened
interaction of the ab initio calculation, while a deviation is seen
in the low-energy part of Fe at around 5–10 eV. The structure
seen in this region originates from particle-hole polarizations
between the d states of Fe modulated by the interaction term,
therefore this difference may indicate that for Fe there is a
large contribution of the intersite polarization process to the
screening. This deviation can also be due to the entanglement
between 3d and 4s bands in the ab initio calculation, which is
removed in our model calculations. The static model gives a
structure only in the low-energy region through particle-hole
excitations within the bandwidth of the correlated bands, and
for frequencies above ∼10 eV Re W (ω) in the static model
quickly goes to U (ω = 0), which in our calculations is 4.4
and 3.4 eV for Fe and SrVO3, respectively. The static (ω = 0)
values of these interactions are well explained by these models;
they are 0.7 and 0.9 eV for Fe and SrVO3, respectively.

We now investigate the frequency and momentum de-
pendence of the ab initio GW self-energy for localized
d states, which takes into account the full interaction. In
Figs. 2–4, we plot the momentum-dependent ab initio GW

self-energy projected onto d orbitals 〈φkn|�(ω)|φkn〉 (n ∈
t2g,eg), where φkn is given in Eq. (12), for Fe and SrVO3

at some high-symmetry points. In the figures we also plot
two additional quantities: (i) the self-energy correction to the
Kohn-Sham Hamiltonian 〈φkn|� − Vxc|φkn〉, which is more
relevant for usual GW calculations, especially for evaluating
the quasiparticle band structure, and (ii) the d contribution
to the self-energy �d = Gd

0W , which corresponds to the
self-energy calculated in the effective models.

In both systems, the real part of the full self-energy, shown
in the top-left panels of the figures, has a large k dependence,
and at some k points such as the N point in the case of Fe t2g ,
the self-energy has orbital dependence as well. By comparing
the full self-energy with its d contribution Gd

0W (top-right
panels), which shows a weaker k dependence, one can see
that the main contribution of this k dependence comes from
the exchange and correlation between electrons in the d and
r spaces �rd = Gr

0W . Since, in the Wannier representation,
the k dependence of the self-energy comes from its intersite
components 〈wnR|�|wn′R′ 〉 (R �= R′), this implies that �rd

has large intersite components. On the other hand, the d

components of the self-energy �d = Gd
0W exhibit a weaker k

dependence and therefore smaller intersite components than
those of �rd . In the Wannier representation, the intersite
components of �d are expressed as

〈wnR|�d |wn′R′ 〉 =
∑
R1R2

∑
mm′

Gd
R1m;R2m′

×〈wnRwmR1 |W |wm′R2wn′R′ 〉, (28)

where Gd
R1m;R2m′ is the matrix elements of Gd

0 with respect to
the Wannier orbitals, which shows that this small but nonzero
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,0). Right panels show the d contribution to the self-energy (�d = Gd
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parts of these quantities are measured relative to the corresponding values for k = � at ω = 0.

k dependence of �d can be traced back to the intersite matrix
elements of the screened interaction W .

By subtracting the exchange-correlation potential Vxc from
the full self-energy, as shown in the middle panels of the
figures, the large k dependence of the full self-energy is
largely canceled, which indicates that the contribution arising
from the r space may be well described by the static
exchange-correlation potential Vxc; however, the cancellation
is not perfect and the self-energy correction � − Vxc and the
d contribution of the self-energy Gd

0W have a different k
dependence. The difference between these two with respect
to k points is comparable to the bandwidth of the d states,
which can affect the quasiparticle energies. This result shows
that solving the effective models including the d electrons only
is not enough to reproduce the quasiparticle band structure
obtained from the ab initio GW results, without a proper
(nontrivial) momentum-dependent double-counting correction
term which effectively includes both the r-d correlations
and the exchange-correlation term Vxc. Although the present
calculations and discussions are based on the GWA, the true
effective self-energy is expected to have similar k dependence
if long-range exchange and correlation is taken into account.

In Figs. 5 and 6, we plot the self-energies calculated in
the static and dynamic models at some k points. To make a
comparison between ab initio and model calculations, in the
figures we also plot the on-site component of the self-energy

given by

�local
nn (ω) = 〈wnR|�(ω)|wnR〉

= 1

N

∑
k

〈φkn|�(ω)|φkn〉 (29)

obtained from the ab initio Gd
0W calculations. In contrast to

the full ab initio GW results shown in Figs. 2–4, we find
that in these models, which include only on-site interactions,
the self-energies show very weak k dependence, indicating
in these models the self-energy becomes almost local (site
diagonal). This small k dependence, which is only visible
at around −8 eV for Fe and −3 eV for SrVO3 in the static
model results, arises from the intersite polarization Pd through
the k-dependent particle-hole excitations, since the interaction
has on-site components only. A comparison between these
model self-energies and the ab initio, k-dependent self-energy
in Figs. 2–4 indicates that the long-range component of the
effective interaction has a larger impact on the momentum
dependence of the self-energy than the momentum dependence
of the polarization. As can be seen from the figures, the
local (on-site) part of the self-energy within the Gd

0W and
the dynamic model self-energy are found to be very close,
as this model takes into account the high-energy contribution
to the self-energy, namely, the r-d polarization and plasmon
excitations through the frequency dependence of U (ω). This is
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values for the t2g orbitals (Fig. 2) for k = � at ω = 0.

also consistent with the fact that the dynamic model reproduces
overall structures of the on-site part of the fully screened
interaction as shown in Fig. 1. The static model also reproduces
the low-energy structure of the ab initio results for Im �(ω),
as the low-energy structure of the imaginary part of the
self-energy, which is determined by the low-energy structure
of Im W (ω), is mainly determined by the excitations of the
electrons within the d subspace, as seen in Fig. 1. However,
Im �(ω) at high energy is essentially zero due to the missing
high-energy component of the screened interaction. Since
Im �(ω) of the static model has no high-energy component,
the real part of the self-energy is not well reproduced as can
be understood from the expression for Re �(ω) in Eq. (18).
The real part of the self-energy in the static model also
has a smaller slope compared to the ab initio Gd

0W one,
which leads to a smaller renormalization of quasiparticles and
this also affects the bandwidth of d states, as shown in the
next section. A similar conclusion was reached in Ref. [48].
This difference can also be important for discussing possible
satellite structures, as discussed in Ref. [5] in the case of Ni; in
the static GW result of Fe, a strong variation on Re �(ω) is seen
at around −10 eV, but this seems an artifact of using a static U .

2. Quasiparticle band structure

We now compare the quasiparticle band structures of Fe and
SrVO3 calculated from the model and ab initio self-energies.

We use a Wannier-interpolation technique [43,49] to calculate
the quasiparticle energies for d states at arbitrary k points.
In a previous work [13], it was found that ignoring the k
dependence of the full self-energy [i.e., �eff in Eq. (2)] causes
band narrowing of the correlated bands. We find that this
tendency also holds for the model results as shown in Fig. 7,
albeit the momentum dependence is weak. The static model
also yields a wider bandwidth than that of the dynamic model,
resulting in fortuitously better agreement with the ab initio
GW results. The quasiparticle renormalization is therefore
larger in the dynamic than in the static model. This larger
renormalization due to the dynamic screening is consistent
with recent DMFT calculations with frequency-dependent
interactions by Casula et al. and Werner et al. [6,7]. As seen
in Figs. 5 and 6, including the dynamic screening transfers
large weights from the quasiparticle peaks to high-energy
regions, resulting in a larger renormalization and hence a larger
band narrowing. The effects of frequency-dependent U and k
dependence of the self-energy tend to cancel each other so
that the static model results are closer to the ab initio GW

results. To analyze this effect more quantitatively, in Table I
we tabulate the bandwidth reduction of Fe and SrVO3 from the
LDA bandwidth. In the usual GWA, the bandwidth reduction
is around 0.8–0.9 for these systems, while if we use the local
(but full) self-energy, as done in Ref. [13], we get a larger
reduction of around 0.6. The results of the dynamical model
show a similar reduction, as the self-energy calculated in this
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model is very close to that of the localized GW self-energy,
whereas the static model gives a smaller reduction of ∼0.7. In
summary, for these systems the bandwidth within the GWA
is reduced by approximately 20% (13%) and 34% (28%)
for Fe (SrVO3) in the static model and the dynamic model,
respectively, compared to the ab initio GW calculation. This
difference in the bandwidth reduction between the full and
model calculations comes from the k dependence of the
self-energy which is not well accounted for in the usual model
calculations. The deviation is larger in Fe compared to SrVO3,
meaning that the nonlocal interaction is more important in
Fe. This result can be due to an itinerant character of the d

electrons in this system.

IV. COMPARISON BETWEEN THE GWA AND DMFT

A. Computational details for DMFT

In this work, the DMFT calculation is performed by using
the TRIQS libraries package [50]. For practical reasons, the
effective model is built out of the LDA calculations performed
with the electronic structure code WIEN2K [51], using the Wan-
nier projectors calculated with the interface WIEN2TRIQS [52].
The basis functions of the model wnR are thus not constructed
following the prescription of maximal localization, but by
promoting atomic orbitals to Wannier functions thanks to
a truncated expansion over Bloch functions followed by an

orthonormalization procedure. Whereas these two approaches
give similar results in the case of SrVO3 because the t2g

bands are well separated from others, some small discrepancies
may appear in the definition of d orbitals of paramagnetic Fe
because of their entanglement with the 4s band [53].

The quantum impurity problem has been solved by the
numerically exact continuous-time quantum Monte Carlo
(CTQMC) method in the strong-coupling formulation [54].
We perform calculations at room temperature (β = 1/kBT =
40 eV−1) and use typically around 16 × 106 Monte Carlo
sweeps and 35 (44) k points in the irreducible Brillouin zone
for SrVO3 (Fe). To take advantage of a maximal amount of
conserved quantum numbers, we keep only the density-density
terms defined in Eq. (20) for the local interaction Hint [55].

The reduced interaction matrices Uσσ̄
mm′ and Uσσ

mm′ in Eq. (20)
can be linked to the local effective Coulomb interaction
U (ω = 0) of the previous GW calculations using the rela-
tions in Eq. (22). However, we rather parametrize the local
interaction with a Hubbard term U and a Hund’s coupling
J so that the used double-counting corrections may be
well defined. These parameters are set in order to get the
best agreement between the calculated reduced interaction
matrices and the matrix elements of U (ω = 0) from our
previous GW calculations. For the three t2g orbitals or SrVO3,
we find U = 3.40 eV and J = 0.46 eV directly from a
Hubbard-Kanamori parametrization of the local interaction
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U (ω = 0). For the five d orbitals of Fe, we parametrize the
local interaction U (ω = 0) with Slater integrals F 0, F 2, and
F 4 while assuming the ratio F 2/F 4 = 0.63. This leads to the
values U = 3.37 eV and J = 0.97 eV thanks to the following
relations [37,56,57]:

U = F 0 and J = (F 2 + F 4)/14. (30)

In the Appendix, we list the obtained values of the reduced
interaction matrices Uσσ̄

mm′ and Uσσ
mm′ used in our model for both

compounds.
To remove the part of correlations that are already taken into

account in the LDA, we use the double-counting correction
referred to as the fully localized limit [58] for SrVO3:

�
σ,dc FFL
m,m′ =

[
U

(
Nc − 1

2

)
− J

(
Nσ

c − 1

2

)]
δmm′ , (31)

where Nσ
c is the spin-resolved occupancy of the correlated

orbitals and Nc = N
↑
c + N

↓
c . For Fe, we use the around mean-

field correction [59]:

�
σ,dc AMF
m,m′ =

[
U

(
Nc − 〈nc〉

2

)
− J

(
Nσ

c − 〈
nσ

c

〉)]
δmm′ , (32)

where 〈nσ
c 〉 is the mean value of the spin-resolved occupancy

of the orbitals and 〈nc〉 = 〈n↑
c 〉 + 〈n↓

c 〉.
Finally, since the CTQMC solver computes the Green’s

function on the imaginary-time axis, an analytic continuation
is needed in order to obtain results on the real-frequency axis.
This continuation of the impurity self-energy is performed
with an implementation of the maximum entropy method as
the mean-field version of the stochastic analytic continuation
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method [60] and yields real and imaginary parts of the retarded
self-energy.

B. Self-energy in the GWA and DMFT

We now compare the frequency dependence of the self-
energy for the static model of paramagnetic Fe and SrVO3,
calculated within the GWA and LDA + DMFT. In Figs. 8
and 9, we plot the physical (retarded) self-energy, which is
more natural in DMFT calculations than the time-ordered one
commonly used in the GWA. A major difference between
the GW and DMFT results in Fig. 8 is the position of the
peaks in Im �(ω); the DMFT result shows a peak at around
−3 eV for both orbitals and also a weaker peak at around
+3 eV for eg , while in the GW result for the static model,
the peaks are located at higher energy, and in the dynamic
model the peaks are further pushed away to a higher region
due to the high-energy structure of the frequency-dependent
interaction. This appears to be a general problem with the GWA
which tends to overestimate satellite binding energies. Indeed,
similarly, in Fig. 9, the peaks of Im �(ω) in DMFT are located
closer to ω = 0 than in the GWA for SrVO3; in the GW results,
both static and dynamic models show two peaks at around

TABLE I. Reduction of the bandwidth D from the LDA result
DGW

DLDA
averaged over all k points in various GW calculations.

The bandwidth at each k point is calculated as max({Ekμ},EF ) −
min({Ekμ},EF ), where Ekμ and EF are the quasiparticle energies and
the Fermi energy, respectively. The label GW (local) refers to the
result using the local GW self-energy as done in Ref. [13].

DGW

DLDA
GW GW (local) Dynamic model Static model

Fe 0.92 0.67 0.60 0.74
SrVO3 0.82 0.55 0.59 0.71

±3 eV, which originate from the peak at ≈2 eV in Im W (ω)
(Fig. 1) and are traced back to d-d particle-hole excitations, as
also discussed by Gatti et al. [28]. As shown in previous DMFT
works [8,24,26], the peaks in the DMFT self-energy produce
some satellite features in the spectral function at ≈±2 eV
known as Hubbard bands, while in the GWA within the static
model, these peaks being higher in energy, the corresponding
features are also located too high compared to experiment [61].
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FIG. 7. (Color online) Quasiparticle band structure of Fe and
SrVO3.
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Another noticeable difference between the GW and the
DMFT results for Fe is the nonzero Im �(ω) at ω = 0 in
the DMFT results, which is also reported in the previous
LDA + DMFT work by Katanin et al. [21]. This non-Fermi-
liquid behavior is stronger for eg orbitals, indicating that in
this system these orbitals are more correlated than t2g orbitals,
and this behavior is not captured in the GWA. Interestingly,
for the t2g orbitals both the DMFT and GW results with static
U show a similar slope of Re �(ω) near ω = 0, which may be
another indication of the itinerant character of the t2g orbitals.
As discussed in the previous section, including the frequency
dependence yields a larger renormalization effect, as seen
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FIG. 9. (Color online) Retarded self-energy of SrVO3 calculated
within the model GWA and DMFT. To make comparison easier the
data in the upper figure are shifted so that Re �(ω = 0) = 0.

from the slope of Re �(ω) in Fig. 8. Studying the effects of
dynamical screening on this non-Fermi-liquid behavior of this
system in DMFT would be an interesting subject, which will
be investigated in our future work.

Due to the low-energy peaks in Im �(ω) within DMFT,
the real part of the self-energy is expected to give a larger
slope of Re �(ω) near ω = 0 than the static GW result.
Since the DMFT self-energy does not have k dependence,
the renormalized factor calculated from this slope as Z =
[1 − ∂ Re �(ω)

∂ω
|ω=0]−1 yields directly the quasiparticle band

narrowing. On the contrary, since the peaks in Im �(ω) are
located higher in energy in the GW results, the GW result
yields a weaker renormalization effect. Indeed, for SrVO3, the
slope of Re �(ω) gives a renormalization of ∼0.5 for the t2g

bands, as observed in other DMFT calculations [24]. This is
comparable to the dynamic result, while the static GW result
is around 0.7. For Fe, we cannot draw a similar and clear
conclusion: While the slope of Re �(ω) near ω = 0 for the
t2g is similar in the DMFT and GW results with static U ,
the non-Fermi-liquid behavior of eg prevents one from clearly
evaluating the slope close to ω = 0.

The main difference between GW and DMFT can be
explained by neglecting higher-order terms of the self-energy
expansion with respect to W in the GWA. It is known
that including vertex correction via the cumulant expansion
improves the peak position of plasmon satellites [62,63]. As
seen in Fig. 1, the strongly correlated materials like SrVO3

show a low-energy peak in Im W (ω) due to particle-hole
excitations between localized electrons [28,64–66], and the
positions of these so-called “subplasmon” peaks may also
be corrected by the cumulant expansion. Indeed, recently
Gatti et al. applied GW + cumulant expansion to SrVO3 and
obtained improved spectra for the upper Hubbard band [28].
Moreover, as the GW calculation in this work is done
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calculated with the GWA and DMFT. The GW self-energy is
calculated from the band structure whose bandwidth is renormalized
by 0.5 from the LDA.

non-self-consistently starting from the LDA eigenstates, an-
other source of discrepancies between the DMFT and GW

results may be due to the inaccurate initial states (i.e., LDA
Kohn-Sham states) in the GWA calculation. To highlight
this effect, in Fig. 10 we plot the result of the static model
calculation within the GWA for SrVO3 by scaling the starting
one-particle bandwidth by 0.5, which yields approximately the
bandwidth given by the DMFT calculation. The positions of
the two peaks in Im �(ω) become closer to ω = 0 while they
are still larger than the DMFT ones. We get similar results for
Fe, but the non-Fermi-liquid behavior remains missing, since
it is a consequence of local correlations beyond the description
within the GWA. The effects of both the vertex correction and
the self-consistency are important ingredients to understand if
we want to perform a more “quantitative” comparison between
DMFT and the GWA in a future study.

V. SUMMARY AND CONCLUSIONS

Focusing on the 3d band of Fe and the t2g band of SrVO3,
we have performed three types of detailed GW calculations:
ab initio, dynamic model, and static model calculations. In
contrast to the static model, the dynamic model takes into
account the frequency dependence of U but both models
employ a local on-site interaction U . The ab initio calculations
take into account both the frequency dependence and intersite
components of U as well as the exchange and correlation
between the r and d states [i.e., �rd in Eq. (2)]. They may
be regarded as the “exact” results in this study and serve as a
benchmark for comparison. The main outcome is displayed in
Fig. 7 and Table I, from which the following conclusions can
be reached: (1) The difference in the bandwidth between the
ab initio and dynamic model quasiparticle band structures is
due to the k dependence of the self-energy that is essentially
missing in the dynamic model which includes only the d

electrons and an on-site interaction. The local character of
the dynamic model self-energy can be seen in Figs. 5 and 6
in which little difference is found between the dynamic model
self-energy and the local component of the d contribution of
the GW self-energy. Further evidence may be found in Table I
where the renormalization factors of the dynamic model are
close to those of the local GW . Our comparison between the
model and ab initio self-energies shows that this k-dependent
component of the self-energy mainly arises from both the
nonlocal component of U (ω) and the correlation between r and
d electrons [�rd in Eq. (2)] rather than from Gd

0 . Moreover,
this k dependence tends to widen the bandwidth, consistent
with previous findings [13]. In other words, a dynamic model
with on-site interaction only tends to overestimate the band
renormalization. (2) A new and unexpected result is found
for the static model. Although the static model neglects both
frequency dependence of U and intersite U , the quasiparticle
band structure shows a better agreement with the ab initio
result than the dynamic model, as may be seen in Fig. 7. The
reason for this can be traced back to a strong cancellation
between the effects of the frequency dependence and nonlocal
U . Frequency-dependent U increases correlation effects as
reflected in increased band renormalization, whereas nonlocal
or intersite U tends to widen the bandwidth. This cancellation
between the effects of the frequency dependence and nonlocal
U is in a way fortuitous but on the other hand it provides a
theoretical justification for the static model although a proper
and accurate model should include both frequency dependence
and nonlocal U as shown in a recent work [67].

We have also made a comparison between the self-energy
in the GWA and DMFT for the static model of these two
systems. A non-Fermi-liquid behavior of paramagnetic Fe and
some Hubbard satellites of SrVO3 are reported in DMFT but
are missing in the GWA because they are consequences of the
local correlations. This prevents from any general quantitative
comparison of the satellites in the self-energies and of the
bandwidth reduction within these two approaches. However,
a larger renormalization due to the dynamic screening is re-
ported in recent DMFT calculations with frequency-dependent
interactions by Casula et al. and Werner et al. [6,7]. This
suggests that the effects of the frequency dependence and
nonlocal U compensate each other in the static model within
the DMFT framework too. It would be interesting to compare
the dynamic and static models within DMFT for strongly
correlated systems, especially for paramagnetic Fe, to study
any effects of frequency dependence and intersite U on its
non-Fermi-liquid behavior.

Our findings motivate us to develop a method for re-
alistic calculations such as the GW + (extended) DMFT
method [68–71] which incorporates strong local correlations
between d electrons with the full (i.e., frequency-dependent
and long-range) screened interaction U , as well as the
correlations between the correlated d electrons and r electrons
missing in usual effective models. Work along this direction is
on its way.
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APPENDIX: REDUCED INTERACTION
MATRICES IN DMFT

Here we list the values of the reduced interaction matrices
used in our DMFT calculations. For the t2g orbitals of
SrVO3, there is a direct correspondence between the Hubbard-
Kanamori parameters and the static values of the effective
interaction U (ω = 0) obtained in the GW calculation:

U = Uσσ̄
mm = 3.40 eV,

(A1)
J = Jmm′ = 0.47 eV, m �= m′.

From these values, one obtains the following interaction
matrices:

Uσσ
mm′ (SrVO3) =

⎛
⎜⎝

0.00 2.00 2.00

2.00 0.00 2.00

2.00 2.00 0.00

⎞
⎟⎠ , (A2)

Uσσ̄
mm′ (SrVO3) =

⎛
⎜⎝

3.40 2.47 2.47

2.47 3.40 2.47

2.47 2.47 3.40

⎞
⎟⎠ . (A3)

The ordering of the orbitals in these matrices is dxy , dxz, and
dyz. The values are given in eV. In these expressions, Uσσ̄

mm′
for m �= m′ is obtained by the relation U − 2J = 2.47 eV
induced by the cubic symmetry of the system. For comparison,
the direct extraction of these matrix elements from the static
values of the effective interaction U (ω = 0) gives the value

Uσσ̄
mm′ = 2.42 eV, m �= m′. (A4)

The discrepancy of 2% comes from the deviation of the
Wannier functions from the atomic t2g orbitals.

For the d orbitals of paramagnetic Fe, we find U = 3.37 eV
and J = 0.97 eV, where U and J are related to the Slater
integrals thanks to the formulas given in Eq. (30). From these

values, the interaction matrices are the following:

Uσσ
mm′ (Fe) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.00 1.90 1.90 2.90 2.90

1.90 0.00 3.23 2.23 2.23

1.90 3.23 0.00 2.23 2.23

2.90 2.23 2.23 0.00 2.23

2.90 2.23 2.23 2.23 0.00

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A5)

Uσσ̄
mm′ (Fe) =

⎛
⎜⎜⎜⎜⎜⎜⎝

4.48 2.76 2.76 3.42 3.42

2.76 4.48 3.65 2.98 2.98

2.76 3.65 4.48 2.98 2.98

3.42 2.98 2.98 4.48 2.98

3.42 2.98 2.98 2.98 4.48

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A6)

The ordering of the orbitals in these matrices is d3z2−r2 , dx2−y2 ,
dxy , dxz, and dyz. The values are given in eV. For comparison,
the static values of the effective interaction U (ω = 0) obtained
in the GW calculation are given below, with the same ordering
of the orbitals:

Jmm′ (Fe) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.00 0.86 0.82 0.53 0.53

0.86 0.00 0.43 0.72 0.72

0.82 0.43 0.00 0.70 0.70

0.53 0.72 0.70 0.00 0.70

0.53 0.72 0.70 0.70 0.00

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A7)

Uσσ̄
mm′ (Fe) =

⎛
⎜⎜⎜⎜⎜⎜⎝

4.62 2.91 2.82 3.41 3.41

2.91 4.62 3.61 3.02 3.02

2.82 3.61 4.32 2.92 2.92

3.41 3.02 2.92 4.32 2.92

3.41 3.02 2.92 2.92 4.32

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A8)

The discrepancies observed between the parametrized
matrices and the calculated values of U (ω = 0) within con-
strained RPA may introduce small quantitative differences in
the features observed in the self-energy but are not expected
to modify its general behavior discussed in this work.
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