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Continuous transition between fractional quantum Hall and superfluid states
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We develop a theory of a direct, continuous quantum phase transition between a bosonic Laughlin fractional
quantum Hall state and a superfluid, generalizing the Mott insulator to superfluid phase diagram of bosons to
allow for the breaking of time-reversal symmetry. The direct transition can be protected by a spatial symmetry,
and the critical theory is a pair of Dirac fermion fields coupled to an emergent Chern-Simons gauge field. The
transition may be achieved in optical traps of ultracold atoms by starting with a ν = 1/2 bosonic Laughlin state
and tuning an appropriate periodic potential to change the topology of the composite fermion band structure.
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Introduction. One of the most celebrated examples of
a continuous quantum phase transition is between a Mott
insulator (MI) and a superfluid (SF) of bosons [1,2]. Over
the last two decades, this transition has been successfully
characterized, both theoretically and experimentally. In ad-
dition to the Mott insulator and the superfluid, it is expected
that a fractional quantum Hall (FQH) state can be realized in
strongly interacting bosonic systems, such as in optical traps of
ultracold-atomic gases [3]. This raises a fundamental question
of whether it is also possible to transition continuously
between FQH states and Mott insulators or superfluids. While
theories of continuous transitions between FQH states and
Mott insulators have been developed [4–7], it has not been
addressed whether the FQH state can directly and continuously
transition to a superfluid as the kinetic energy of the bosons is
increased relative to their interaction energy.

In this paper, we develop a theory of such a continuous
transition, between a ν = 1/2 bosonic Laughlin state and a
superfluid, thereby providing a more general picture of the
boson phase diagram (Fig. 1). Since the superfluid is described
by an order parameter while the FQH state is a topological
phase without a local order parameter, such a transition is
conceptually quite exotic [8]. Realizing it in the laboratory
would be an experimental example of a continuous quantum
transition in a clean system (unlike QH plateau transitions)
which lies outside the Ginzburg-Landau paradigm. Here, we
will specialize to the case with fixed average particle number.
We find that generically, in the absence of any additional
symmetries besides particle number conservation, continuous
transitions occur between the FQH state and Mott insulator or
the Mott insulator and the superfluid. However in the presence
of certain spatial symmetries, there may be a direct, continuous
transition between the FQH state and the superfluid.

A simple way to understand the basic idea is through the
composite fermion [9] framework. The ν = 1/2 Laughlin state
can be understood in terms of composite fermions attached
to one flux quantum each, such that the mean-field state of
composite fermions is a ν = 1 integer quantum Hall (IQH)
state. An externally applied periodic potential can change the
band structure of the composite fermions such that they occupy
bands with a total Chern number C. When C = 1, the state
is still the ν = 1/2 FQH state. However, when C = 0, the
resulting state is a Mott insulator, and, as we explain below,
when C = −1, the resulting state is a superfluid. Thus the
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FIG. 1. (Color online) Proposed phase diagram and
renormalization-group flows including the Mott insulator,
superfluid, and ν = 1/2 Laughlin FQH state, for fixed average
particle number. We have defined m± ≡ m1 ± m2 [see Eq. (7)];
m− is a symmetry-breaking field, so the direct transition between
the FQH state and the SF can occur if the symmetry is preserved.
The red points on the horizontal and vertical axes indicate the three
stable phases, while the blue points at the origin and the diagonals
indicate the unstable critical fixed points.

transitions between these states can be understood as Chern-
number-changing transitions of the composite fermions. The
critical theories for such transitions consist of gapless Dirac
fermions coupled to a Chern-Simons (CS) gauge field.

Effective field theory constructions. In order to develop our
theory, we need to provide a field-theoretic description that
can naturally interpolate between the states of interest. To do
this, we will use the parton/projective construction [10]. For
the Laughlin FQH state, the Mott insulator, and the superfluid,
the parton construction is essentially equivalent to the com-
posite fermion construction, although the former is preferable
because it can describe a wider class of FQH states [11] and
can be formulated even in the absence of a background external
magnetic field [12]. In this paper we will consider the situation
where the bosons feel an external magnetic field, because it
is more directly relevant to ultracold-atom proposals, though
the theory can be generalized to cases without an external
magnetic field. We write the boson operator b(r) as

b(r) = f1(r)f2(r), (1)

where f1 and f2 are charge 1/2 fermions. This construction
introduces an SU(2) gauge symmetry [13]. Since the fi carry
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charge 1/2, they effectively see half as much magnetic field;
thus for bosons at ν = 1/2, the density of fi is such that their
effective filling fraction is νfi

= 1. To describe the ν = 1/2
Laughlin state, we assume a mean-field ansatz that breaks the
SU(2) gauge symmetry to U (1) and where fi form νfi

= 1
IQH states. Letting a denote the emergent U (1) gauge field
and A the background external gauge field, integrating out f1

and relabeling a → a + 1
2A gives

L= f
†
2 iD0f2 − 1

2meff

f
†
2 D2f2 + 1

4π
εμνλaμ∂νaλ + δL, (2)

where the covariant derivative is Dμ = ∂μ − iaμ − iAμ, and
δL includes additional interactions, external potentials, etc.
This is the same theory obtained by the flux-attachment and
flux-smearing mean-field approximation in the composite
fermion theory, where f2 is the composite fermion. At
energies well below the gap of the f1 state, a hole of f1 can be
created by inserting 2π flux; thus, for energies below the gap
of the f1 state, the boson b can be represented by the operator

b = M̂f2, (3)

where M̂ is an instanton operator that creates 2π flux of a. Inte-
grating out f2, which is assumed to form a νf2 = 1 IQH state,
and relabeling a → a − 1

2A leads to the following effective
action, to lowest order in the gauge fields and their derivatives:

L = 2

4π
εμνλaμ∂νaλ + 1

2

1

4π
εμνλAμ∂νAλ. (4)

This gives the correct Hall conductance and reproduces the
correct topological degeneracies of the ν = 1/2 Laughlin
state [13].

Now suppose that δL is chosen in such a way that the
lowest band for f2 has a general Chern number, C. As we will
discuss below, this may occur in the presence of an externally
imposed periodic potential. Integrating out the fermions in
Eq. (2) results in the following effective theory, to lowest order:

L= εμνλ

[
C + 1

4π
aμ∂νaλ + C

4π
Aμ∂νAλ + C

2π
Aμ∂νaλ

]
. (5)

When C = 0, (5) is simply L = 1
4π

εμνλaμ∂νaλ, which de-
scribes a gapped state with a unique ground state on all closed
manifolds. The gapped f2 excitations are attached to a unit of
flux, so they are bosonic excitations. After projecting onto the
physical Hilbert space by following the analyses in Ref. [10],
it can be verified that there are also no gapless protected edge
states. Such a gapped state with solely bosonic excitations
and unique ground-state degeneracies is a topologically trivial
Bose-Mott insulator. This result can also be cast within the
composite boson language [4], where the original boson is
considered to be a composite boson φ attached to two units
of flux. Performing the flux-smearing approximation gives
composite bosons in no net magnetic field. The 〈φ〉 �= 0 and
〈φ〉 = 0 states correspond to the FQH state and Mott insulator,
respectively. This is just the bosonized description of the
C = 1 and C = 0 composite fermion description of these
states.

Since a is a dynamical gauge field, to describe a gapped
state, the gauge fluctuations must be gapped and, to describe a
fractionalized state, the gauge theory must be at a deconfined

fixed point. Since CS gauge theories are gapped [14] and
represent deconfined quantum field theories [15,16], the above
construction can be used to represent FQH states. However,
when C = −1, from (5) we see that there is no CS term for a.
Restoring the Maxwell terms to (5), and performing a shift of
variables a → a − 1

2A, the effective action is perturbatively,
to lowest order, given by

L = 1

2π
εμνλAμ∂νaλ + 1

g2
1

f 2 + 1

g2
2

F 2 + 1

g2
3

f F, (6)

where the Maxwell term is f 2 ≡ fμνf
μν , and similarly for

the last two terms, and we have assumed Lorentz invariance
for simplicity. Since there is no CS term εμνλaμ∂νaλ, we
must reconsider whether the gauge fluctuations are gapped.
Without the CS term, in 2+1 dimensional compact U (1) gauge
theory, instantons proliferate and condense at low energies,
yielding a contribution e−S0M̂ + H.c. to the effective action
[17]. This induces a gap for a. However this term cannot
be added to (6). From the mutual CS term εμνλAμ∂νaλ, we
see that flux of a carries electric charge. M̂ , which instantly
adds 2π flux, instantly causes a local depletion of the charge
density; to satisfy charge conservation, it must create a current
j ∼ δ(t), which costs an infinite action. Thus instantons alone
are suppressed at energies below the gap of the fermion states
[18,19]. Since M̂ creates a hole in the parton IQH states,
the only possible instanton term that might be added to the
effective action at low energies, below the fermion gap, is of
the form M̂f

†
1 f

†
2 + H.c. The fermion operators fill in the hole

created by the flux insertion, thus keeping the charge density
uniform. Such a term is gauge-invariant if under a gauge trans-
formation fi → eiγ /2fi , A → A − ∂γ , M̂ → eiγ M̂ . Such a
term does not gap out the gauge field, and leads to spontaneous
symmetry breaking of the fermion number conservation [20].
Proliferation of these allowed instantons may be viewed as
the mechanism within the gauge theory by which the fermion
number conservation is spontaneously broken [20].

From the action (6), we see that magnetic fluctuations of a

are charged under the external gauge field, which implies that
they correspond to density fluctuations [18]. Thus a is dual
to the superfluid Goldstone mode. In fact, (6) is dual to the
standard superfluid action if instantons are ignored [18,21,22],
as can be seen by introducing ξμ ≡ 1

2π
εμνλ∂νaλ and a

Lagrange multiplier ϕ to enforce the constraint ∂μξμ = 0, and
subsequently integrating out ξμ. This yields L ∝ (∂ϕ − A)2.
Alternatively, integrating out a in (6) yields the standard
superfluid response L ∝ Aμ(δμν − pμpν

p2 )Aν . We conclude that
when f2 fills bands with C = −1, the resulting state is a
superfluid.1 In the Appendix, we give a further discussion
of how such a construction can describe a compressible state.

We note that within this effective field theory description,
a deformation of the composite fermion band structure that
causes the bands to overlap will result in a compressible

1While this appears surprising, we note that it is implicit in [6],
where it was argued that the 3D XY critical point can be fermionized.
However, where there is overlap, some of our results differ from
those of Ref. [6]. Similarly, [18] uses an equivalent construction in a
different context, for an XY Néel state.
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non-Fermi-liquid state, with a composite fermion Fermi
surface [23].

Since the theory here derives from a parton construction,
there is a natural candidate series of many-body wave functions
that can interpolate through the different phases, given by
projecting the mean-field Slater determinant wave functions
of f1 and f2 to the same coordinates.

Critical theory. The critical theories between the FQH state,
MI, and SF therefore occur when the composite fermion f2

bands touch and their net total Chern number changes. The
transition between the SF and the ν = 1/2 FQH state occurs
when the total Chern number of f2 changes from 1 to −1. This
can happen either at a quadratic band touching or at two Dirac
cones; the generic, stable case is two Dirac cones, because
quadratic band touchings are marginally unstable to repulsive
interactions [24]. To describe this, let ψ(r) be a two-component
fermion that describes the two f2 bands that are involved
in the transition, so that at low energies, f2(r) ∼ cT (r)ψ(r),
where c(r) is a two-component scalar function of r; i.e.,
at low energies f2(r) is a linear combination of the two
bands described by ψ . Near the transition, at low energies
ψ(r) ∼ ∑2

i=1 eiKirψi(r), where the Dirac points occur at
momenta Ki and ψi are the two-component fermions obtained
by linearizing about the Dirac points. The critical theory is

L = 1

4π
εμνλaμ∂νaλ + ψ̄iγ

μDμψi + miψ̄iψi, (7)

for i = 1,2, ψ̄i = ψ
†
i σ

z, γ0 = σz, γx = σx , γy = σy , where
σi are the Pauli matrices. When both mi < 0, we obtain the
superfluid state, when mi > 0, we obtain the FQH state, and
if mi have opposite signs, then we have the Mott insulator
(see Fig. 1).

Critical points occur when some mi = 0.2 In the absence
of any symmetries, the generic transition from FQH to SF
therefore is through the Mott insulator. However, certain spatial
symmetries may force m1 = m2 (see below), in which case
there is a single tuning parameter that tunes between the
superfluid and the FQH state.

Integrating out a Dirac fermion with mass m coupled to a
gauge field a yields a CS term sgn(m)

2
1

4π
εμνλaμ∂νaλ. Thus, we

consider the following Lagrangian [25]:

LNf ,k = Nf k

4π
εμνλaμ∂νaλ +

Nf∑
i=1

[ψ̄iγ
μDμψi + mψ̄iψi]. (8)

The MI-SF transition is described by L1,1/2, the FQH-MI
transition is described by L1,3/2, and the FQH-SF transition
is described by L2,1/2 (see Fig. 1). This “fermionization” of
the 3D XY transition was already conjectured in [6]. A crucial
point is that the FQH-MI transition is different from the MI-SF
transition because of the coefficient of the CS term, which
affects the critical properties [5,6].

2Note that in addition, chemical potential terms μiψ
†
i ψi are relevant

operators that lead to a composite Fermi liquid. Nevertheless, spatial
symmetries can impose μi = μ, and if particle number is held
fixed, as in cold-atom settings, the composite Fermi liquid can be
avoided and one can tune through these transitions with a single mass
parameter.

The critical exponents can be computed through a large
Nf expansion, which has already been performed [6,26],
motivated by the case Nf = 1. This is a relativistic transition,
with dynamic critical exponent z = 1. The correlation length
exponent ν is defined by ξ ∼ m−ν , where ξ is the correlation
length and m is the tuning parameter. ν can be determined by
the dimension of the mass term. In the large-Nf limit, it was
found to be [6,26]

ν−1 = 1 + 512φ(1 − 2φ)

3π2(1 + φ)3

1

Nf

+ O
(
1
/
N2

f

)
, (9)

where φ = ( 2π
16k

)2, although for Nf = 1 the leading 1/Nf

correction was found [6] to be insufficient for accurately giving
the 3D XY value of ν−1 ∼ 1.5. For the FQH-SF transition,
Nf = 2, k = 1/2, we expect the large-Nf expansion to be
more reliable.

At low energies the boson operator is b ∼ M̂ψ , so the
scaling dimension �b of b must be found by analyzing
the dimension of the monopole operator combined with the
fermion. If there are Nf Dirac points in the Brillouin zone, at
momenta Ki , for i = 1, . . . ,Nf , then ψ(r) ∼ ∑

i e
iKirψi(r).

So far, the scaling dimension of an operator like M̂ψi is known
only in the Nf → ∞ limit. In that limit, the scaling dimension
of b is [27] �b = Nf (0.265...).

The order parameter exponent β for the superfluid is
defined by 〈b〉 ∼ mβ . Following the arguments in Ref. [1],
β can be seen to obey a generalized hyperscaling relation:
β = ν�b. Additionally, from general hyperscaling arguments,
the superfluid susceptiblity scales like χ ∼ mν(2�b−d−z).

The scaling of the compressibility and conductivity follow
from current-current correlation functions, which do not
acquire any anomalous dimensions, and thus are similar to
other two-dimensional transitions with z = 1 [28,29]:

�μν(k) =
(

δμν + kμkμ

k2

)
�e(k) + εμνλkλ�o(k). (10)

Near the critical point, �μν ∼ ∫
ddxdt〈Jμ(x,t)Jν(0,0)〉 ∼

ξ 1−d . Therefore, �e(k) ∼ k and �o(k) ∼ O(k0) at the crit-
ical point. From this we conclude that the compressibility
vanishes at the critical point at zero temperature, while the
conductivities are universal constants that can be computed
in the large-Nf limit [6,30]. Therefore the dc longitudinal
resistivity ρxx is zero on either side of the transition, but is a
universal nonzero number of order h/e2 at the transition, while
the dc Hall resistivity ρxy is zero on the superfluid side, h/2e2

on the FQH side, and a universal number of order h/e2 at the
critical point.

The temperature dependence of the polarization tensor at
the critical point can be found by replacing k,ω by T . It
follows that the compressibility at the transition scales like
κ ∼ T , while the conductivity is temperature independent at
the transition. Finally, from general scaling considerations we
can conclude that the specific heat scales like Cv ∼ T 2.

Physical realizations. The transition described here is
generic, and therefore can occur in principle in many different
physical realizations involving strongly interacting systems of
bosons. A particularly promising venue to realize bosonic FQH
states is in optical traps of ultracold atoms [3], where strongly
interacting bosons in a background effective magnetic field
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FIG. 2. (Color online) Evolution (schematic) of composite
fermion bands as a periodic potential is turned on and tuned in an
appropriate way. Red labels filled states and blue labels empty states.
The flat bands on the far left indicate the Landau levels indexed by n.

can be realized. Now consider adding an external periodic
potential Vpp(r) with flux 2πp/q per plaquette. This induces
a term δHpp = Vpp(r)b†(r)b(r) in the Hamiltonian of the
bosons. Assuming that the composite fermion effective theory
is the correct low-energy description,3 the boson is represented
by b = M̂f2, and therefore b†b ∝ f

†
2 f2, because M̂†M̂ ∝

1 + αf 2 + · · · , where f 2 is the Maxwell term for a, α is
a constant, and · · · indicate higher order derivatives of the
gauge field. Therefore, to leading order, the composite fermion
effective action obtains a contribution

δLpp ∝ Vpp(r)f †
2 f2(r). (11)

Such a periodic potential may be used to induce the Chern
number of the composite fermions to change, as sketched in
Fig. 2. For small Vpp, the Landau levels split into p subbands.
As Vpp is increased, the top subband of the filled LL may even-
tually touch the bottom subband of the next empty LL, causing
a change in the total Chern number of the filled bands. Spatial
symmetries can force the Chern number to change by two
units, causing a continuous FQH to superfluid transition. The
necessary spatial symmetry depends on the nature of the Vpp.
There can be many ways this can happen, and the most optimal
one depends on the given experimental setup. One example is
to turn on a honeycomb lattice with 2π flux per plaquette. In
the limit of large Vpp, we can pass to the tight-binding limit
with nearest and next-nearest neighboring hopping, with two
low-lying bands with Chern number ±1 for the two bands [31].
If the Chern number of the bottom band is 1, it is possible in
principle to achieve this regime without closing the energy
gap. As the second neighbor hopping is tuned through zero,
there will be two band touchings, causing the Chern number
to change directly from 1 to −1. It is the C3v symmetry of
the honeycomb lattice that protects the two Dirac cones in this
case when the second neighbor hopping is zero [31].

Conclusions and discussion. We have presented a theory
of a continuous transition between a Bose superfluid and a
bosonic 1/2-Laughlin state. Remarkably, the theory predicts
that the direct continuous transition is only possible in the
presence of a spatial symmetry. When this symmetry is broken,

3This may not be the case if the gaps of the parton f1 and f2 bands
are nearly equal.

the transition splits into two continuous transitions, with an
intervening Mott insulator.

The superfluid we consider exists in a system with strong
time reversal symmetry breaking (e.g., strong magnetic field).
The reason that long-range phase coherence is possible in the
presence of a strong magnetic field is the existence of a periodic
potential. This gives a bandwidth to the single particle boson
dispersion; when the bandwidth is strong compared to the in-
teractions, the bosons condense into the bottom of the band. If
the minimum of the band dispersion is not at zero momentum,
the superfluid order parameter varies in space as set by the pe-
riodic potential, while simultaneously possessing long-range
phase coherence. Since time-reversal symmetry is broken, one
expects that the ground state of the superfluid will possess
nonzero currents, as allowed by the symmetry. The critical
point therefore also strongly breaks time-reversal symmetry.

Furthermore, we note that in order to properly also describe
the Mott-insulating state, the theory presented here requires the
bosons to be at integer filling of the lattice set by the periodic
potential. If the bosons were instead at fractional filling, then
the existence of the topologically trivial Mott insulator would
require spontaneous breaking of the translation symmetry.
Our theory does not include the more complicated physics
associated with such spontaneous translation symmetry
breaking in the phase diagram. Developing a proper critical
theory that takes these effects into account is therefore a
subject of future work.

Finally, we would like to make some cautionary remarks.
The field theory presented here captures the asymptotic
low energy properties of a putative superfluid-FQH
transition. However, as is common in the theory of critical
phenomena, the theory cannot reliably predict when such a
continuous transition will occur in a microscopic model. In
particular, when a periodic potential is applied to the bosons
microscopically, the resulting periodic potential felt by the
composite fermions in the effective long-wavelength theory
is difficult to accurately predict. In other words, the exact
δLpp in Eq. (11) contains a structure factor, which is difficult
to reliably compute in general, relating the microscopic
periodic potential Vpp to that felt by the composite fermions.
Furthermore, our work can of course not rule out the possibility
of a different way for the superfluid-FQH transition to occur,
which would be described by a different critical theory.

This work leaves a number of interesting questions open
for future work. This includes more accurate estimates of the
critical exponents of the transition, finding microscopic models
where these continuous transitions are realized, including
the case of fractional filling of the periodic potential, and
studying the projected wave functions to show that they behave
as predicted by the field theory. In particular, the idea that
projecting a Chern number +1 free fermion band insulator
with a Chern number −1 free fermion band insulator to obtain
a bosonic wave function of a superfluid seems quite intriguing
and deserving of further exploration.
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APPENDIX: COMPRESSIBILITY OF SLAVE PARTICLE/
COMPOSITE FERMION CONSTRUCTION

OF SUPERFLUID STATE

In this section we will study in some more detail how
the parton construction of the superfluid state manages to
be compressible. As discussed in the main text, the parton
construction of the superfluid state is as follows. We rewrite
the boson operator as

b(r) = f1(r)f2(r), (A1)

where fi are fermions. Next, we consider a mean-field ansatz
where f1 forms a band insulator with Chern number 1, while f2

forms a band insulator with Chern number −1, and suppose
that these band insulators are created by the application of
an external periodic potential. As discussed in the main text,
such a construction yields a superfluid state for the bosons,
because the emergent U (1) gauge field a is gapless and can be
associated with the dual of the superfluid Goldstone mode.

Since the fermions form band insulators due to an external
periodic potential, by themselves they have a preferred density,
which is set by the number of fermions per unit cell. Therefore
it is not clear that the resulting state will be compressible, as
changing the density would appear to cost a finite amount of
energy. However, as we will explain below, such a construction
does indeed yield a compressible state.

The zero-temperature compressibility κ of a quantum
system is defined as

κ−1 = ∂μ

∂n
= V

∂μ

∂N
= V

∂2E

∂N2

∼ N
E(N + δ) − 2E(N ) + E(N − δ)

δ2
, (A2)

where μ is the chemical potential, n is the density, V is the
volume, and E(N ) is the ground-state energy for N particles,
and the above derivatives are taken at constant volume. Thus
we estimate the compressibility as

κ−1 ∼ N�2(N,δ)

δ2
, (A3)

where

�2(N,δ) ∼ E(N + δ) − 2E(N ) + E(N − δ). (A4)

The system is incompressible at zero temperature if, when we
take δ ∼ √

N and N → ∞, N�2(N,δ)
δ2 → ∞ at fixed number

density. In other words, the system is compressible at zero
temperature if

lim
N→∞

�2(N,
√

N ) < ∞. (A5)

The choice δ ∼ √
N is for convenience; more generally, one

must take the limit δ,N → ∞ with δ/N → 0.
In our slave-particle construction above, it was argued in

the main text that the gauge field fluctuations of a are gapless.

Therefore consider a system of fermions with a filled band
with a nonzero Chern number, and subject it to a magnetic
field that can vary with essentially zero energy cost. We now
consider the energy Ef (N,φ), which is the ground-state energy
of the fermionic sector of the parton theory, with N particles,
and with additional φ flux quanta of a added to the system.
Since the flux φ is a dynamical quantity, and the gauge field a

is gapless, the ground-state energy E(N + δ) ≈ Ef (N +δ,δ),
where the optimal φ ∼ δ is approximately the additional
number of particles added to the system.

Now, we would like to know the fate of

κ−1 ∼ N�
φ

2 (N,δ)

δ2
, (A6)

where now

�
φ

2 (N,δ) ∼ Ef (N + δ,δ) − 2Ef (N,0) + Ef (N − δ, − δ).

(A7)

When the fermions fill a Landau level, �
φ

2 (N,
√

N ) < ∞ as
N → ∞. This is because the ground-state energy of a filled
lowest Landau level is eBN/2m, where we set � = c = 1.
From this, it follows that �φ

2 (N,δ) ∼ δ2

A
, where A is the area of

the system, so that κ−1 ∼ N/A, which is bounded as N → ∞
at fixed average number density N/A. Thus the Landau level
problem gives a compressible state, if we allow the magnetic
field to vary arbitrarily. This makes sense, since the density is
only tied to the magnetic field, and once the magnetic field can
vary arbitrarily, so can the density.

Now consider a Chern insulator, such as Haldane’s honey-
comb model with the lowest band filled [31]. We would like
to know whether

lim
N→∞

�
φ

2 (N,
√

N ) < ∞. (A8)

If so, we can then conclude that the parton Chern insulator
construction of the superfluid will also be compressible if the
gauge field a is gapless.

To establish that (A8) is true for such a situation, consider
a continuum system with a constant magnetic field, i.e., a
Landau level problem, and consider adding a small periodic
potential. Let λ parametrize the strength of the periodic
potential, and consider �

φ

2 (N,δ,λ), where the last argument
just parametrizes the value of λ in the Hamiltonian. Clearly
for small λ � eB/m, we must have

lim
N→∞

�
φ

2 (N,
√

N,λ) < ∞. (A9)

Furthermore, as long as we do not close the energy gap,
continuously changing λ must always preserve the above
inequality. This is because as long as we do not close the
energy gap, the ground-state energy in the thermodynamic
limit is analytic in λ, and so the above inequality must continue
to be satisfied as λ is changed infinitesimally.

Now, we know that it is possible to, for instance, slowly turn
on a honeycomb lattice potential with 2π flux per plaquette,
such that even in the limit that the periodic potential is much
stronger than eB/m, we do not close the energy gap. In this
limit, we end up with two bands, and if the lower band has
Chern number +1, then it is possible to adiabatically evolve
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from the continuum Landau level to this situation. For the
Chern insulator with the lower band having C = 1 and 2π

flux per plaquette, it follows that (A8) is satisfied, because we
never had to close the energy gap as we increased the periodic
potential. Flipping the sign of the second nearest neighbor
hopping in such a model can flip the Chern number. We expect
therefore that as long as C = 1 or C = −1 for the bottom
band, (A8) will remain true.

We conclude that Chern insulators, in addition to filled
Landau levels, will satisfy (A8) and are therefore compressible
if the magnetic field is allowed to vary arbitrarily. Since the
fluctuations of the emergent U (1) gauge field are gapless in the
parton construction of the superfluid, the magnetic field can
indeed vary arbitrarily, so we see that the parton construction
of the superfluid state is indeed compressible when the gauge
fluctuations are taken into account.
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