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Nontrivial topological states on a Möbius band
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In the field of topological insulators, the topological properties of quantum states in samples with simple
geometries, such as a cylinder or a ribbon, have been classified and understood during the past decade. Here we
extend these studies to a Möbius band and argue that its lack of orientability prevents a smooth global definition
of parity-odd quantities such as pseudovectors. In particular, the Chern number, the topological invariant for the
quantum Hall effect, lies in this class. The definition of spin on the Möbius band translates into the idea of the
orientable double cover, an analogy used to explain the possibility of having the quantum spin Hall effect on
the Möbius band. We also provide symmetry arguments to show the possible lattice structures and Hamiltonian
terms for which topological states may exist in a Möbius band, and we locate our systems in the classification
of topological states. Then, we propose a method to calculate Möbius dispersions from those of the cylinder,
and we show the results for a honeycomb and a kagome Möbius band with different types of edge termination.
Although the quantum spin Hall effect may occur in these systems when intrinsic spin-orbit coupling is present,
the quantum Hall effect is more intricate and requires the presence of a domain wall in the sample. We propose
an experimental setup which could allow for the realization of the elusive quantum Hall effect in a Möbius band.
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I. INTRODUCTION

Since topological insulators have been proposed theoreti-
cally [1–3] and observed experimentally [4,5], the notion of
topology has received a growing interest from the condensed-
matter physics community. The motivation for this interest
resides on the great potential for technological use of systems
exhibiting quantized currents that are robust against disorder,
due to their topological protection.

From a theoretical perspective, the topological protection
is understood in terms of topological invariants. In two-
dimensional electron gases in magnetic fields, the protected
quantum Hall (QH) conductivity is governed by the TKNN
integer [6], a specific case of a Chern number. For the quantum
spin Hall (QSH) effect, the equivalent topological invariant
is the spin Chern number [7]. Classification of gapped free
fermionic Hamiltonians in the presence of the fundamental
discrete symmetries (time-reversal, particle-hole, and chiral)
through the corresponding topological invariant is provided by
the so-called tenfold way [8,9].

The bulk-boundary correspondence [10] relates the Chern
number of a bulk two-dimensional system and the number of
edge modes in a finite system. Thus, the topological properties
are conveniently determined by identifying the edge states
in the dispersion of a quasi-one-dimensional system, i.e., a
system which is infinite in one direction and finite in the other.
This configuration could be thought of as a cylinder, where the
translational symmetry in the infinite direction is encoded as
periodic boundary conditions [11–13].

Here we raise the question as to whether the topological
properties still exist when we consider a Möbius band instead
of a cylinder. The Möbius band, which is an object with
a topologically nontrivial geometry, is very appealing for
physicists. Although the topology of the Möbius band is fairly
simple, the actual shape of a physical Möbius band is far from
trivial: A parametrization of this object that minimizes the

bending and stretching of its constituent material can be found
only through numerical calculation [14]. Topological effects of
the “twist” on the quantum states in Möbius ladders have been
reported [15]. Topological properties of the Möbius geometry
have recently been emulated electronically in capacitor-
inductor networks [16]. The fascination is also fueled by
the recent experimental progress in graphene nanoribbons.
For graphene Möbius ribbons, theoretical predictions of the
electronic [17–22], magnetic [23,24], and thermal [25] prop-
erties have been made, often in connection to structural and
geometrical properties. Similar studies have been performed
for boron nitride ribbons [26]. The experimental realization of
sufficiently wide Möbius ribbons in these materials has not yet
been reported, but should be considered possible, in the light
of the successful realization of NbSe3 Möbius ribbons [27].

The most apparent difference between the cylinder and the
Möbius band is that the latter has only a single edge, whereas
the former has two. Differences in the electronic topological
properties are to be expected in view of the interpretation of
the invariants in terms of edge currents. Furthermore, several
ingredients in the topological analysis require the surface to
be orientable [28]. For example, one cannot apply a uniform
perpendicular magnetic field to a nonorientable surface as the
Möbius band, which inevitably leads to problems if we try
to probe the QH invariant on this surface. On the other hand,
the two spin degrees of freedom provide a possibility for the
existence of the QSH effect on the Möbius band [29].

In this work, we focus on the role of (non)orientability.
Generally, it is impossible to define a pseudovectorial field
smoothly on a nonorientable surface; the impossibility of
applying a uniform perpendicular magnetic field on the Möbius
band is a specific example. A local definition of such quantities
is always possible, but the topology of the surface may
prevent them to be defined globally in a smooth way. In
particular, the Chern number behaves in this way and therefore
requires the choice of an orientation, which cannot be done
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FIG. 1. (Color online) Two configurations of the Möbius band
with magnetic fields (gray arrows) and edge currents (red arrows).
(a) Möbius band with a magnetic field perpendicular to the surface
and of constant magnitude. At one transversal domain wall it changes
sign. There are currents through the bulk at the domain wall. (b)
Möbius band subjected to a uniform magnetic field in the embedding
space, indicated by the large arrow. The component perpendicular to
the surface, indicated by the arrows on the surface, varies smoothly
(cosinelike). The bulk currents are not indicated.

continuously on the Möbius band (see Fig. 1). The direct
connection of the Chern numbers to Hall conductivity provides
yet another argument against the existence of a QH effect on the
Möbius band.

The spin- 1
2 degrees of freedom constitute two copies of

each point of the base space, one for each spin component.
In a cylindrical geometry, this construction yields two dis-
connected cylinders. For the Möbius band, the spin space
is its orientable double cover (ODC), the unique orientable
manifold that has a two-to-one mapping to the base space.
The ODC of the Möbius band has a single connected
component, unlike the cylindrical case. The notion of the
ODC is central to the existence of the QSH effect on the
Möbius band. Thus, we analyze the compatibility of the usual
Hamiltonian terms, such as Zeeman effect and Rashba and
intrinsic spin-orbit (SO) coupling, with the construction of
the ODC.

The absence of the QH effect (and the usual Chern number)
on the Möbius band suggests that the usual classification of
the topological invariants [8,9] does not apply to the Möbius
band. The “twist” of the Möbius band is interpreted in terms
of a (glide) reflection symmetry, which alters the nature of
the topological invariants. Recently, Chiu et al. [30] have
extended the tenfold way to spaces with reflection symmetries.
The nature of the topological invariants depends on the
presence of the reflection symmetry and whether it commutes
or anticommutes with time-reversal and charge-conjugation
symmetry (if present). Here we analyze these commutation
properties for the specific case of the Möbius band, and we
show that our findings are compatible with those of Ref. [30].

The outline of the article is as follows. In Sec. II, we
elaborate on the nonorientability of the Möbius band together
with the role of pseudovectorial quantities. We propose several
nonuniform magnetic field configurations to generate local
QH effects on the Möbius band. The ODC construction
is analyzed in connection to the QSH effect. In Sec. III,
we discuss the symmetry properties of the lattice and of
the terms in the Hamiltonian. We show that our results are
compatible with the extended topological classification. We
propose a way to compute band structures for the Möbius
band in Sec. IV, and we show several examples of them.
We conclude with a discussion, in Sec. V, proposing a

way to realize the magnetic field configurations discussed
earlier.

II. TOPOLOGICAL ARGUMENTS

A. Quantum Hall effect on the Möbius band

The QH effect arises in two-dimensional electron gases
subjected to a perpendicular magnetic field. Its hallmark is
that the Hall conductance σxy , defined by the in-plane current
response to a perpendicular (in-plane) voltage, is quantized in
units of e2/h. Both in experimental and theoretical analysis,
the Hall measurement is generally performed on an orientable
two-dimensional surface, such as a rectangle or a cylinder.
These surfaces allow one to choose a single globally defined
orientation. This choice fixes the sign of the Hall conductivity,
which is therefore a well-defined quantity.

A nonorientable surface like the Möbius band has the prop-
erty that one cannot choose a global orientation. Orientations
can be chosen locally, but it is not possible to connect them
continuously on the whole surface. For any observable quantity
to be well-defined, it must be independent of the choice of
orientation, i.e., invariant under a change of orientation. We
test this property by obtaining its behavior under the parity
transformation (x,y) → (x,−y), since this mapping reverses
orientation. Parity-odd quantities do not have an unambiguous
definition: They change sign under a change of orientation,
and thus they are orientation dependent.

The Hall conductance σxy , defined by Jx = σxyEy and
Jy = −σxyEx , where J and E are the current density and
electric field, respectively, and the subscripts x and y label the
components, is not invariant under a parity transformation of
space: This transformation inverts the sign of σxy . Thus, the
Hall conductance is ill-defined on the Möbius band. The Chern
number, which is closely related to the Hall conductivity,
shares this property. It is defined as the integral of the Berry
curvature, which in turn is the curl of the Berry connection.
The definition of the curl requires a choice of orientation,
so that the definition is ambiguous on a nonorientable
surface [31].

A similar reasoning may be used for the perpendicular
magnetic field that conventionally generates the QH effect.
The magnetic field is a pseudovector, meaning that it changes
sign under a parity transformation. As a consequence, one
cannot apply a uniform magnetic field to a Möbius band. It
remains possible to apply local magnetic fields, i.e., fields that
depend on the spatial coordinates.

The piecewise definition of the Hall conductivity provides
the possibility for currents along the edge even on a nonori-
entable surface. Let us consider two classes of configurations
on the Möbius band. First, assume a perpendicular magnetic
field depending on the x (longitudinal) coordinate. In this
case, we locally have two counterpropagating edge modes.
The currents propagate clockwise on half of the edge and
counterclockwise on the other half. In Fig. 1, we show two
examples of such configurations. In panel (a), the magnetic
field is everywhere perpendicular to the surface and constant,
except at one line spanning the band from one edge to the
other. At this line, the direction of the magnetic field inverts,
and for this reason we name it a domain wall. At the domain

235112-2
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wall, currents flow through the bulk [29]. In Fig. 1(b), the
magnitude of the perpendicular magnetic field is equal to
the perpendicular component of a “background” magnetic
field, i.e., a uniform magnetic field in the embedding space.
In the coordinate system of the surface, the magnetic field
dependence is cosinelike; thus, it is smooth except where
the orientation is discontinuous. Transverse currents that exist
everywhere on the surface destroy the quantization of the edge
currents. In both examples, the average edge current, defined
as the integral of the current over the full edge divided by the
length, is zero.

We may also probe the Hall conductivity in a different
manner. As explained in Ref. [32], a QH fluid in the Corbino
geometry (an annulus) may be pierced through the central hole
by an infinitely thin solenoid. As the flux inside the solenoid
is increased adiabatically by one flux quantum h/e, a circular
current is generated inside the annulus, which, in turn, induces
a Hall voltage. In this situation, the electric charge on the
inner and outer boundaries is ±σxyh/e. Thus, a charge of ne

on the boundary indicates that the Hall conductivity is equal
to (the integer) n times the conductivity quantum e2/h. When
we repeat this thought experiment for the Möbius band, with
a solenoid flux tube through the central hole, the adiabatic
flux change induces a circular current. However, as opposed to
separate inner and outer boundaries in the Corbino geometry,
here there is only one boundary. Conservation of the boundary
charge requires that it vanishes, and thus we infer that the Hall
conductivity does so as well.

Second, we consider a magnetic field that is uniform in
the longitudinal direction, but dependent on the transversal
coordinate y. The parity transformation property requires
that the perpendicular component Bz of the magnetic field
satisfies Bz(−y) = −Bz(y). In particular, on the centerline
y = 0 (i.e., halfway between two edges, seen locally), the field

x
y

z

B

B

x

y

(a)

(b) (c)

FIG. 2. (Color online) QH state on the Möbius band with a
longitudinal cut. (a) The Möbius band is cut in two by the centerline
(blue). Magnetic fields (gray arrows) have opposite directions on both
sides of the centerline. (b) Cut-open model of (a). The pairs of yellow
and purple edges should be identified in order to obtain the Möbius
band shown in (a). The red and blue arrows along the edges indicate
the propagation direction of the edge currents in the presence of the
magnetic field B. (c) The Möbius band cut at the centerline yields a 4π

twisted ribbon. The edge currents and magnetic fields are indicated
as in (a).

must vanish. One particularly interesting example is Bz(y) =
Bz sgn(y); see Figs. 2(a) and 2(b). In this configuration, Hall
currents propagate on the edges in one direction and on the
centerline in the opposite direction. Without affecting the
topological transport properties, we can cut the Möbius band
at the discontinuity on the centerline. The resulting surface is
homeomorphic (topologically equivalent) to a ribbon with a
4π twist; see Fig. 2(c). This manifold is orientable and has
two separate (disconnected) edges. Thus, this configuration is
equivalent to a cylinder with a uniform perpendicular magnetic
field, with oppositely propagating edge currents on both edges.
We note that one of the edges is the original edge of the Möbius
band; the other is the centerline cut.

If we would perform a Hall measurement on half of the
ribbon, by probing the area between the edge and the center-
line, we would find a nonzero Hall conductivity. If we probe the
Möbius band as a whole, we find a zero total Hall conductivity,
because the contributions from either side of the centerline
cancel. The zero total Hall current is intuitive from the fact that
the two edge currents locally copropagate [see the red arrows
in Fig. 2(a)]. The solenoid thought experiment described
above has an interesting outcome in this configuration: By
adiabatically increasing the flux in the solenoid through the
central hole, one generates a circular current through the whole
band. The current induces the charges 2ne on the centerline
and −2ne on the edge, associated with the Hall conductivity
of magnitude ne2/h and opposite signs on opposite sides.
This example shows that one should make a clear distinction
between local (piecewise) Hall currents and the total Hall
current. Thus, the statement that the Möbius band does not
admit a total nonzero Hall current remains valid, even with a
local field configuration.

B. Quantum spin Hall effect on the Möbius band

In conventional systems, the QSH effect can be understood
from treating spin-up and spin-down particles being subjected
to equally large but opposite magnetic fields. Although
uniform magnetic fields and nonzero total Hall currents are
forbidden on the Möbius band, QSH-like states do exist
there [29].

Spin refers to two internal degrees of freedom at each point
in space. Locally, there are two copies of the space, usually
labeled with spin-up and spin-down, but we may consider more
generally any two spins connected by time-reversal symmetry.
In the description of the QSH effect on a cylinder, the two
copies are defined globally. There is a spin-up and a spin-down
cylinder, and there is no continuous spatial transformation that
can turn a spin-up into a spin-down and vice versa. In theory,
the same construction could be used to make two disconnected
copies of the Möbius band, but, because neither of the two
copies admits a nonzero Hall current, this construction cannot
explain the existence of the QSH-like state.

An alternative way to assign locally two copies of the
Möbius band is known as the ODC. The ODC of a manifold M

constitutes the manifold D, consisting of points (r,o) for each
r ∈ M and o one of the two orientations, together with the
two-to-one covering map from D to M defined by (r,o) �→ r.
This cover exists and is unique for any nonorientable surface.
(For orientable manifolds, the double covering map also exists
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(a)

(b) (c)

FIG. 3. (Color online) QSH-like state on the Möbius band with
the double-covering description. (a) Double covering of the Möbius
band where the two copies are separated by a small distance. We
indicate the edge currents as in Fig. 2. The circular arrows on the
surface determine the “chirality” of the Haldane flux. (b) Cut-open
version of the double cover. The chirality of the Haldane fluxes
and the edge currents are indicated. We recall that the two copies
spatially coincide in reality and that the offset is for mere illustrational
purposes. (c) The double cover is homeomorphic to the 4π twisted
band. Again, we indicate the chirality of the Haldane flux and the
edge currents. The edge-state configuration is identical to the one
shown in Fig. 2, thus proving their topological equivalence.

and is trivial.) The two local copies at each point r are
interpreted as the two spin components. As shown in Fig. 3,
the double cover of the Möbius band is homeomorphic to the
4π twisted ribbon, an orientable surface.

Suppose that we subject the double cover (or equivalently,
the 4π twisted ribbon) to a Haldane-like flux configuration on
the honeycomb lattice, which is characterized by a vanishing
total flux, but which still generates a QH effect [33]. The
Haldane flux has a well-defined chirality, defined by the
direction of the edge currents it induces. We stress that these
notions are unambiguous on the ODC because it is orientable.
Then, by virtue of the covering map, the two components at
each point on the Möbius band are subjected to two Haldane
fluxes of opposite chirality. This configuration essentially
defines the intrinsic SO coupling term of Kane and Mele
[1,2], which induces the QSH effect: The two edge modes at
each edge counterpropagate, and the edge modes of matching
components at both sides of the ribbon counterpropagate as
well; see Fig. 3. An important difference with the QSH state in
the cylindrical case is that the spin labels cannot be assigned
globally, because the double cover has only one connected
component. Indeed, a translation once around the central hole
in the Möbius band, i.e., such that the longitudinal coordinate
is the same as before, maps spin-up to spin-down and vice
versa. The spin flip connected to this single rotation has been
observed in measurements of the time-resolved dynamics in rf
circuits emulating the Möbius band [16].

By comparing Figs. 2(c) and 3(c), we find that the QSH
effect on the Möbius band is topologically equivalent to the
configuration with a longitudinal cut. In both cases, the total
Hall conductivity vanishes. However, there is an important
difference in the interpretation. In the spinful case, there are

two edge states, whereas in the spinless case there is only one;
the other one is “hidden” in the bulk along the centerline. Only
in the spin model can one speak of a spin Chern number and
a nonzero QSH conductivity (the sign of which may be fixed
from the mapping to the 4π ribbon).

III. HAMILTONIAN AND LATTICE SYMMETRIES

A. Lattice symmetries

Not all lattices can be placed on the Möbius band in a regular
manner: When “gluing” a ribbon into a Möbius band, the result
should not show any signs of a “cut” where the gluing has taken
place. In other words, the lattice on the Möbius band shows
nontrivial (discrete) translational symmetries. For this reason,
the original lattice must have at least one axis of reflection sym-
metry. Fortunately, the lattice structures most commonly stud-
ied in the context of the quantum (spin) Hall effect have this
property. Even more interestingly, these lattices generally have
two inequivalent axes of symmetry, which means that a ribbon
can be glued into a Möbius band in at least two different ways.

Typically, when one studies the edge states on a cylinder,
one considers a ribbon in the x direction and one identifies
all sites related by the discrete translation (x,y) �→ (x + a,y),
where a is such that (x + a,y) is a point on the lattice if and
only if (x,y) is. For a Möbius band, we identify sites related
by the glide reflection G:(x,y) �→ (x + a,−y). Generally, the
reflection allows only two possible edge directions, because
the edge must be parallel to one of the symmetry axes. This
should be contrasted to the cylindrical case where the edge can
be in any direction.
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FIG. 4. (Color online) Construction of honeycomb Möbius
bands from a ribbon. The left and right edges are “glued together”
such that the blue numbers on the left- and right-hand sides coincide.
This construction is possible due to the invariance under the glide
reflection, with a translation indicated by the dotted arrow and the
reflection perpendicular to this arrow. The dashed rectangle indicates
a bulk unit cell with the four sublattice labels. The dotted rectangle
is a ribbon unit cell. The four panels show zigzag and armchair, with
“even” and “odd” widths.
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Let us discuss the honeycomb lattice as a first example.
In Fig. 4, we show zigzag-edge and armchair-edge ribbons
with different widths, together with a glide reflection that
defines the identification (“gluing”) that leads to a Möbius
band. The reflection part of the glide reflection dictates that the
elementary (bulk) unit cell is rectangular. The lattice vectors
are parallel to the coordinate axes and hence perpendicular
to each other. For both the zigzag and the armchair bands,
we therefore need to choose a unit cell with four sites. In
comparison, for the cylindrical case, the lattice vectors need
not be perpendicular and can therefore be described with a
two-site unit cell in the zigzag-edged case [11,13].

For computing a ribbon dispersion, we treat all sites in a
rectangular region spanning from bottom to top edge, that we
call the ribbon unit cell. For the gluing, we distinguish two
cases where the transverse direction can be described by an
integer number of bulk unit cells or not, which we call “even”
and “odd”, respectively. These labels refer to the number of A

and B sites in the transverse direction, being 2w and 2w − 1
in the even and odd cases, respectively, where w is an integer
that denotes the width of the ribbon. (The total number of sites
in the transverse direction is 4w and 4w − 2, respectively.)
Numbering the bulk unit cells i = 1, . . . ,w from top to bottom
(where there is only “half” a unit cell for i = w in the odd
case), the identification induced by the glide reflection G can
be characterized as

(Ai,Bi,A
′
i ,B

′
i) ↔ (Bī,Aī,B

′̄
i
,A′̄

i
) (zigzag, even),

(Ai,Bi,A
′
i ,B

′
i) ↔ (B ′̄

i
,A′̄

i−1,Bī−1,Aī) (zigzag, odd),
(Ai,Bi,A

′
i ,B

′
i) ↔ (A′̄

i
,B ′̄

i
,Aī,Bī) (armchair, even),

(Ai,Bi,A
′
i ,B

′
i) ↔ (Aī,Bī,A

′̄
i−1,B

′̄
i−1) (armchair, odd),

(1)

where (Ai,Bi,A
′
i ,B

′
i) denote the four sites of unit cell i, and

ī is shorthand for w + 1 − i. We note the differences in
the invariance of the sublattice labeling. The four possible
actions of the glide reflection are generated by the exchanges
(A,A′) ↔ (B,B ′) and (A,B) ↔ (A′,B ′), forming a Z2 × Z2

group structure. The transformation (A,B) ↔ (A′,B ′) pre-
serves the “color” of the sites, where the pairs (A,A′) and
(B,B ′) each have a single color (see Fig. 4). The reflection is
color preserving for the armchair and color inverting for the
zigzag case.

This discussion also applies to other lattice structures
known for showing topological effects, e.g., the dice [34], Lieb
[35,36], and kagome [37] lattices; see Fig. 5. These examples
all have three atoms per unit cell in the bulk lattice. The dice
lattice could be considered as a honeycomb lattice with one
extra site in each unit cell. For the Möbius band, a six-site unit
cell must be taken, but the action of the glide reflection on
the sublattice structure is analogous to that of the honeycomb
lattice. The Lieb lattice has two inequivalent symmetry axes
under an angle of 45◦. The Möbius band with a straight edge
requires only three sites per unit cell, whereas the one with a
zigzag edge requires six; see Figs. 5(c) and 5(d), respectively.
The kagome lattice has the peculiarity that there is no “color”
preserving glide reflection. In other words, the kagome lattice
is chiral: The left-handed and right-handed version cannot be
mapped onto each other by translation and rotation.
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FIG. 5. (a), (b) The dice lattice. (c), (d) The Lieb lattice. (e), (f)
The kagome lattice. The letter labels indicate a possible choice of
the unit cell with sublattice labeling. The dotted lines indicate the
next-nearest-neighbor (intrinsic SO) coupling. The numbers on the
left and right of each lattice indicate how a strip with this lattice
structure should be “folded” into a Möbius band: The left and right
edges should be glued together such that the corresponding number
symbols coincide.

B. Symmetries of the Hamiltonian

The construction of the Möbius band requires not only the
lattice to be invariant under the glide reflection, but also the
Hamiltonian of the system must satisfy this property. For
the Hamiltonian terms involving spin, such as the Zeeman
term, as well as the intrinsic and the Rashba SO coupling, we
need to map the two spin components into the two components
of the double cover of the Möbius band. Recall that a local
mapping is always possible, but the possibility of performing
this mapping for the Hamiltonian term depends on whether
it can be defined globally in a continuous way. Thus, the
Hamiltonian must be invariant under the transformation T =
Gσx defined by the simultaneous action of the aforementioned
glide reflection G and a “spin flip”, the latter being equivalent
to an exchange of the two components of the double cover. In
other words, the Hamiltonian must commute with the action of
T . This property may be seen as analogous to the cylindrical
case, where the Hamiltonian is invariant under translation by
the periodicity. Because applying T twice defines a pure trans-
lation, the allowed Hamiltonian terms for the Möbius band are
a subset of those of the cylinder. This observation motivates
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why we discuss several terms that are commonly studied in
the context of the quantum (spin) Hall effect on the cylinder
[12,13] and derive whether they are symmetric under T as well.

First, ordinary nearest-neighbor hopping in the absence
of a magnetic field is invariant under a glide reflection and
can therefore appear in the tight-binding Hamiltonian for the
Möbius band. If the hopping would be subject to a magnetic
flux through the lattice, it would pick up complex phase factors
eiθjk , as

HNN = −t
∑

〈j,k〉
eiθjk c

†
j ck, (2)

where the sum is over nearest-neighbor sites j and k, t is
the hopping amplitude, and ci (c†i ) denotes the annihilation
(creation) operator on site i. The glide reflection leaves θjk

invariant. The reflection does invert rotational sense; i.e., it
transforms clockwise to counterclockwise rotation and vice
versa, so that the flux through a loop, given as the sum of the
hopping phases in counterclockwise direction, flips its sign.
Configurations where Bz(−y) = −Bz(y) are possible if we
choose θj ′k′ = θjk , where the reflection maps sites j and k

onto j ′ and k′, respectively.
The Zeeman term HZ = −tZ

∑
c
†
j σzck anticommutes with

transformation T and is therefore not allowed on the Möbius
band. Alternatively, one could argue that the Zeeman term
requires a global “labeling” of the spin-up and spin-down
components, which we have proven not to exist because the
double cover consists of one connected component.

A staggered sublattice potential, as used by, e.g., Kane and
Mele [1], can be applied only if it is compatible with the
reflection properties. In the terminology of Sec. III A, the
reflection must be “color preserving”. For honeycomb ribbons,
this property is satisfied only for the armchair configuration,
as shown by Eq. (1).

The SO terms are characterized by a coupling between the
spin degrees of freedom and the momentum of the charge
carriers. The Rashba SO term on a lattice can be written as

HR = −itR
∑

〈j,k〉
c
†
j

(
σxd

y

jk − σyd
x
jk

)
ck

= tR
∑

〈j,k〉

[
c
†
j,↑

(
dx

jk − id
y

jk

)
ck,↓ + c

†
j,↓

(
dx

jk + id
y

jk

)
ck,↑

]
,

(3)

where (dx
jk,d

y

jk) denotes the vector from site j to k, and
ck = (ck,↑,ck,↓) is a spinor. The latter form of HR in Eq. (3)
shows the invariance under the combined glide reflection
[which acts as (dx,dy) �→ (dx,−dy)] and spin flip. The
intrinsic SO coupling acts as a next-nearest-neighbor term,

HI = −itI
∑

〈〈j,k〉〉
νjkc

†
j σzck

= −itI
∑

〈〈j,k〉〉
νjk(c†j,↑ck,↑ − c

†
j,↓ck,↓), (4)

where νjk is the sign of dx
jld

y

lk − d
y

jld
x
lk with (dx

jl,d
y

jl) and
(dx

lk,d
y

lk) the nearest-neighbor vectors that connect sites j and
k via an intermediate site l. The invariance of this term follows
from the fact that νjk changes sign under reflection, while spin

flip also acts as a sign change. We thus find that both the Rashba
and intrinsic SO coupling terms are allowed to appear in the
tight-binding Hamiltonian on the Möbius band. Real next-
nearest-neighbor hopping [38] is closely related to intrinsic
SO, but does not contain the spin flip that is essential for the
invariance under the reflection. Hence, the real next-nearest-
neighbor hopping term is forbidden on the Möbius band.

On an armchair-edged honeycomb ribbon, the Hamiltonian
proposed in Ref. [11] with nearest-neighbor hopping Eq. (2),
together with a third-neighbor hopping H ′ = −t ′

∑
j,k c

†
j ck

for site pairs (j,k) along the diagonals of the hexagons
parallel to the x axis, is glide-reflection symmetric (assuming
no magnetic flux) and can therefore be defined on the
Möbius band. Interestingly, the parameter t ′ can be varied
continuously, which effectively changes the lattice geometry
between the square lattice (t ′/t = 1), the honeycomb lattice
(t ′/t = 0), and the π -flux lattice (t ′/t = −1) [11]. Similarly,
a zigzag-edge ribbon with third-neighbor hopping parallel to
the y axis can be tuned to the same square and π -flux lattices.

C. Topological classification

Having argued based on orientability that the Möbius band
does not admit QH, but does admit QSH-like states, one could
ask the question where the system would fit in the classification
of topological insulators [8,9]. In this classification, the nature
of the topological invariant is determined by the symmetry
properties under the time-reversal, particle-hole, and chiral
symmetry operations. Recently, it has been shown that if, in
addition, the system is reflection symmetric, the topological
invariant can be different [30]. The topological invariant
depends on whether the reflection operator commutes or
anticommutes with the time-reversal, particle-hole, and/or
chiral symmetry transformations, whichever is present.

In the classification table of Ref. [30], the relevant di-
mensionality is 2, and the symmetry class is either A (no
time-reversal, no particle-hole, and no chiral symmetry) or AII
(time-reversal symmetry only, and the time-reversal operator
� squares to −1). For the A class in two dimensions the Z
topological invariant that classifies the QH effect in absence
of the reflection symmetry is turned into a trivial invariant
for a reflection invariant system. This result is consistent with
the idea that a uniform QH effect cannot exist in a reflection
symmetric system like the Möbius band. We note that the
classification does not encompass local field configurations,
and as such does not contradict the existence of a local QH
effect in the example with the longitudinal cut of Sec. II.

For reflection symmetric systems in the AII class, the
topological invariant can be either trivial or Z2 depending on
whether the transformation T = Gσx commutes or anticom-
mutes with time-reversal � [30]. In our case, the time-reversal
symmetry operator acts as

� = e−iπσy/2K = −iσyK, (5)

where K denotes complex conjugation. Writing T = XPσx ,
where X is the translation part of the glide reflection, P is
the parity transformation mapping (x,y) into (x,−y), and σx

encodes the spin flip. Thus, anticommutation follows by virtue
of

T −1�T = −iPX−1σxσyKσxXP = iσyK = −�. (6)
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As a result, we find that the topological invariant is of Z2

type, identical to the one that characterizes the QSH effect in
non-reflection-symmetric systems. This result does not mean
that the topological state in the Möbius band necessarily is
the QSH state, but only that it is similar in nature. In this
case, the interpretation of the spin Chern number in terms of
spin-up and -down is not possible, contrarily to the usual QSH
state.

The topological classification of Ref. [30] allows for a
generalization of the results presented here, such as topological
superconductors in two dimensions and topological insulators
in higher dimensions. We refrain from further discussion in
this direction as we consider it to be outside the scope of this
article.

IV. BAND STRUCTURES

A. Method

In this section, we show the dispersions for a Möbius band
subjected to a magnetic flux with a domain wall along the
longitudinal centerline, as well as for the case of intrinsic SO
coupling; cf. Figs. 2(a) and 3(a), respectively. The computation
of the band structures and edge-state dispersion on the Möbius
band is done by diagonalizing the corresponding Hamiltonian
on a cylinder and halving the number of degrees of freedom,
as described below. This procedure is possible because the
Hamiltonian commutes with the transformation T defined by
composition of glide reflection and spin flip. Each eigenstate is
doubly degenerate: Each eigenstate |ψ〉 of the Hamiltonian has
a partner eigenstate T |ψ〉 with the same eigenvalue. Naturally,
the eigenstates could be labeled by their eigenvalue of T ,
which takes the values +1 and −1 for T -even and T -odd
states, with eigenspaces spanned by (1/

√
2)(|ψ〉+ T |ψ〉) and

(1/
√

2)(|ψ〉 − T |ψ〉), respectively. Whereas the Hilbert space
for the cylinder contains T -even as well as T -odd states,
the latter are unphysical in the Möbius band because all
states here must be invariant under T . Thus, the spectrum
of the Möbius band is found by discarding all T -odd
states.

The computation of the dispersions proceeds as follows.
As a starting point, we take the Hamiltonian for the cylindrical
case, including the spin degrees of freedom. For the spin-down
components, we substitute y → −y while keeping kx . (Here
it is required that the spin components are uncoupled.) Instead
of diagonalizing the resulting Möbius band Hamiltonian HMB,
we diagonalize HMB(α) = HMB + αT , where α is a parameter
larger than the difference between the maximum and minimum
energy of the dispersion of HMB. This method automatically
resolves the degeneracy between any pair of degenerate
eigenstates, without having to explicitly diagonalize T for
each twofold degenerate eigenspace of HMB. The (uniquely
defined) T -even and T -odd states of the pair at energy En have
(HMB + αT ) eigenvalues En + α and En − α, respectively.
By choosing α to be large, the T -even and T -odd states
become completely separated, and the T -odd states can
then be discarded straightforwardly. The eigenstates found
with this procedure do not depend on the value of α, by
virtue of the fact that HMB and T share a common basis of
eigenstates.

B. Quantum Hall effect on a Möbius band with a longitudinal
domain wall or cut

In Figs. 6(a) and 6(b), we show the dispersions for the
Möbius band subjected to a magnetic flux with a longitudinal
domain wall. For illustrational purposes, we choose 1/3 of a
flux quantum per hexagon. In order to compute this dispersion,
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zigzag even; longitudinal domain wall

zigzag even; longitudinal cut
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FIG. 6. (Color online) Dispersions of the Möbius band of the
honeycomb lattice with zigzag edges, subjected to a magnetic flux
of 1/3 flux quantum per hexagon, with opposite signs on both sides
of the centerline. (We set the bond length to unity.) The edge states
localized on the centerline are shown in blue, and those on the Möbius
edge are shown in red. On the right-hand side, we sketch the lattices
with the flux phases assigned on the bonds: n arrows indicate a phase
factor eiθjk = eiπnφ for the hopping in the direction of the arrows,
where φ is the flux in units of the flux quantum h/e. The dispersions
and flux configurations are shown for (a) a longitudinal domain wall
in an odd-sized zigzag ribbon, (b) a longitudinal domain wall in an
even-sized ribbon, and (c) a longitudinal cut in an even-sized ribbon.
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we have taken the ordinary Hamiltonian for a cylindrical
ribbon and assigned hopping phases θjk (see Fig. 6) such that
the flux through the bottom half and the top half have opposite
signs. The hexagons on the centerline are not subjected to flux.
The hopping strengths for the bonds crossing the centerline
are equal to t , i.e., equal to the magnitude of all other hopping
amplitudes. This configuration of a longitudinal domain wall
should be contrasted to that of a longitudinal cut, where
the bonds across the central line are cut; i.e., their hopping
amplitudes are null. The resulting dispersion for the latter case
is shown in Fig. 6(c).

We interpret the resulting dispersions by studying the
edge states in the bulk gap at E/t = 1. (The other bulk
gaps show qualitatively similar results.) In the domain-wall
configuration [Figs. 6(a) and 6(b)], we find edge states on the
edge of the Möbius band, shown in red. They are twofold
degenerate, because of the extra degrees of freedom included
in order to describe the Möbius geometry. Alternatively,
one could explain the number of two by recalling that at
each x (longitudinal) coordinate of the Möbius band there
are two edges. The edge states at the centerline (colored
blue) propagate in the opposite direction. This pair of edge
states is not degenerate, because they overlap and hybridize,
which causes an energy splitting lifting the degeneracy. As a
consequence, the spectrum has no vertical axis of reflection
symmetry (k → −k). The combination of the magnetic flux
(being chiral) and the different natures of the edge and
the longitudinal domain wall is the cause of this symmetry
breaking.

This result can be contrasted to the configuration where the
central line is cut [Fig. 6(c)]. In that case, the Möbius edge
and the central line become equivalent because they have the
same shape. No hybridization occurs between the two copies
of the central-line edge states; i.e., the blue dispersions remain
degenerate as well. In fact, the complete dispersion is a twofold
degenerate copy of the honeycomb ribbon at 1/3 flux [13],
because at each longitudinal coordinate, we have two equal
honeycomb ribbons under that same flux.

It is important to realize that the domain-wall and the cut
case share their topological properties. The hopping amplitude
at the central line can be tuned adiabatically from t to 0,
without closing any of the bulk gaps. Thus, no topological
transition takes place: The number of edge states inside each
bulk gap remains the same. The same is true if one compares
the domain-wall configuration for the even and odd case.
The distinction between these two cases is merely due to
the possibility of a cut; in odd-width zigzag ribbons, the cut
cannot be made. The similarity of the topological properties is
expected with the bulk-boundary correspondence in mind.

C. Quantum spin Hall effect on a Möbius band with intrinsic
spin-orbit coupling

It has already been argued that a QSH-like state exists
on a Möbius strip, both by considering the Haldane model
for the graphene case and, more generally, by looking at
the topological classification in Ref. [30]. Since the intrinsic
SO coupling term in the Hamiltonian is reflection symmetric
[see Eq. (4)], its implementation is relatively straightforward;
no domain walls of any kind are necessary. Using the methods

honeycomb
zigzag edge armchair edge

−2

0

2

−π 0 π

E/t

k
−π 0 π

k

kagome
zigzag edge straight edge

−2

0

2

4

−π 0 π

E/t

k
−π 0 π

k

FIG. 7. (Color online) Dispersions of the Möbius band made
from a honeycomb lattice with zigzag and armchair edges and made
from a kagome lattice with zigzag and straight edges. The colors red
and blue indicate the QSH-like edge states, i.e., two opposite “spins”
propagating in opposite directions on the edge. The strength of the
intrinsic SO term is set to tI = 0.1t .

described in Sec. IV A, we calculated the dispersions for a
Möbius band with intrinsic SO coupling. In Fig. 7, the results
are shown for the honeycomb and kagome lattice structures; in
both cases the two possible edge configurations are shown. The
colors in Fig. 7 are determined from the product of the spin
and location: The red curves indicate the two right-moving
edge currents on the bottom edge of one and on the top edge of
the other component of the double cover (which corresponds
to the opposite spin). Similarly, the blue curves correspond to
the left-moving edge currents; cf. Fig. 3(a). After the T -odd
states have been projected out, we observe only a single
(i.e., nondegenerate) left-moving and a single right-moving
edge current. Since there are no hybridization effects, this
projection merely removes the twofold degeneracy of the
cylindrical spectrum. These results agree with the evidence
for the existence of QSH-like states based on topological
arguments of Sec. II and based on the extended classification
of topological invariants.

Rashba SO coupling in the honeycomb ribbon [Eq. (3)] can
be included in a straightforward manner. As expected from
the methods described above, it has a similar effect as in the
cylindrical case: Rashba SO coupling by itself does not open
a gap. In the presence of intrinsic SO coupling, the Rashba
coupling decreases the size of the topological gap or opens a
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trivial one, depending on its strength [1]. The conservation
of vertical spin is broken in this case, but this does not
destroy the QSH-like state, similar to what is observed for the
cylinder.

V. DISCUSSIONS

In this paper, we show how topological effects can be
described on Möbius bands by using the ODC of the band. This
procedure allows us to relate the Möbius system to a system on
the cylinder with a reflection symmetry. Through this mapping,
a topological classification for states on the Möbius band was
obtained. In general, a QH phase does not exist on the Möbius,
but a QSH state is possible.

Furthermore, we provide a systematic treatment of the
various Hamiltonians that can be fitted seamlessly on a Möbius
band, with examples for different kinds of lattices, such as
honeycomb (graphene), Lieb, kagome, and dice lattices. In
addition, a physical motivation for the absence or existence of
QH and QSH effects in the graphene lattice was given as an
example, based on the Hamiltonian symmetries; the magnetic
term that usually generates a QH effect cannot exist on the
Möbius strip while the intrinsic SO coupling that generates the
QSH effect can. Furthermore, the possibility of inducing chiral
edge states without time-reversal symmetry by using magnetic
fields with domain walls was explored in detail to show the
interplay between the nontrivial topology of the Möbius band
and external interactions.

The experimental setup for the observation of the QH effect
on a Möbius band can be envisaged in the following way. Let
us consider a graphene layer and add an insulating layer on
top of it. Then through the longitudinal center of the band

[the blue curve in Fig. 2(a)] we attach a lead, which is isolated
from the graphene sample by the insulating layer. The next step
is to fold the graphene ribbon by performing a twist and to bind
the ends of the ribbon, such that a Möbius band is created. Now,
we drive a strong current through the lead. As a consequence,
a magnetic field will be generated, which is “entering” in the
lowest part of the band and “exiting” in the upper part. Because
the lead has been folded together with the graphene ribbon,
the so-constructed magnetic field has the properties studied
here and generates a longitudinal domain wall, as shown
in Fig. 2(a).

Although we have provided a thorough description of
topological states of matter in nontrivial surfaces, such as the
Möbius band, there is still much left to future investigations.
One possible venue is to describe other nonorientable systems,
of a different nature or dimensionality, using the extended
topological classification. Many of the possible topological
phases on the Möbius strip, particularly those belonging to
topological superconductors, have not been examined yet.
Finally, the investigation of topological defects and more
intricate types of domain walls, as well as effects of curvature,
represent fascinating themes, for which this work will serve as
a basis.
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