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We investigate the Hubbard model on the anisotropic triangular lattice with two hopping parameters t and
t ′ in different spatial directions, interpolating between decoupled chains (t = 0) and the isotropic triangular
lattice (t = t ′). Variational wave functions that include both Jastrow and backflow terms are used to compare
spin-liquid and magnetic phases with different pitch vectors describing both collinear and coplanar (spiral) order.
For relatively large values of the on-site interaction U/t ′ � 10 and substantial frustration, i.e., 0.3 � t/t ′ � 0.8,
the spin-liquid state is clearly favored over magnetic states. Spiral magnetic order is only stable in the vicinity
of the isotropic point, while collinear order is obtained in a wide range of interchain hoppings from small to
intermediate frustration.
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I. INTRODUCTION

Since the pioneering work by Fazekas and Anderson 40
years ago [1], where magnetically disordered states (the
so-called spin liquids) were proposed as alternative ground
states to standard ordered phases in magnetic systems, the field
of frustrated magnetism has evolved as an important branch
in condensed matter physics. The main motivation is that
several unconventional features may arise when magnetism is
suppressed at very low temperatures, such as fractionalization
of quantum numbers or topological degeneracy, to mention
a few.

After four decades, our understanding on the subject is still
rather incomplete: on the theoretical side, more effort is needed
to clarify which are the microscopic models that may sustain
spin-liquid ground states and which are suitable diagnostics to
detect the presence of exotic properties; on the experimental
side, it is important to synthesize and characterize new
materials that may present both strong electronic interactions
and suitable magnetic frustration.

Organic charge-transfer salts, based on molecules such
as (BEDT-TTF)2 or Pd(dmit)2, represent important examples
where the interplay between electronic itineracy, strong corre-
lation, and geometrical frustration leads to various interesting
phenomena [2]. In these systems, the building blocks are given
by extended molecular orbitals of dimerized molecules that
are arranged in stacked triangular lattices. By varying the
applied pressure and temperature, as well as the nature of the
cation associated with these materials, they may show metallic,
superconducting, or insulating properties [3,4]. Whenever a
single orbital for each dimer is considered, the low-temperature
behavior of these materials may be captured by a single-
band Hubbard model on the anisotropic triangular lattice,
with half-filled density and relatively large on-site Coulomb
repulsion [4–6].

Besides these organic systems, also Cs2CuBr4 and
Cs2CuCl4 have a crystalline structure in which (magnetic)
copper atoms lie on weakly coupled triangular lattices. In spite
of being isostructural and isoelectronic, these two materials
have completely different magnetic behavior. While the Br

compound shows spiral magnetic ordering with well-defined
magnon excitations [7], Cs2CuCl4 shows spin-liquid behavior
over a broad temperature range with fractional spin excitations
as revealed by inelastic neutron scattering experiments [8].
At very small temperatures, i.e., below TN = 0.62 K, the
existence of a tiny interlayer coupling stabilizes a true three-
dimensional magnetic order. Also in this case, the low-energy
properties of these materials may be captured by considering
correlated electrons with highly reduced kinetic energy and
strong Coulomb repulsion, possibly including different 3d

orbitals of the copper atoms in the Br compound [9]. Cs2CuBr4

and Cs2CuCl4 are the end-member compounds of the family
Cs2CuCl4−xBrx which shows a variety of magnetic properties
when x is changed [10]. The distinct low-energy behaviors
are generically attributed to the respective different degrees
of frustration, which are determined in turn by the respective
ratios between the interchain and intrachain couplings in the
underlying anisotropic triangular lattice.

Motivated by the rich phenomenology of these materials,
we study the single-band Hubbard model on the anisotropic
triangular lattice:

H = −
∑
i,j,σ

tij c
†
i,σ cj,σ + H.c. + U

∑
i

ni,↑ni,↓, (1)

where c
†
i,σ (ci,σ ) creates (destroys) an electron with spin σ on

site i and ni,σ = c
†
i,σ ci,σ is the electronic density; U is the

on-site Coulomb repulsion and tij is the hopping amplitude,
including an intrachain t ′, along a1 = (1,0), and an interchain
t , along a2 = (1/2,

√
3/2) and a3 = a2 − a1; see Fig. 1(a).

In the following, we consider clusters with periodic bound-
ary conditions defined by the vectors T1 = la1 and T2 = la2,
in order to have l × l lattices with L = l2 sites. The half-filled
case, which is relevant for the aforementioned materials, is
considered here.

One important difference between organic salts and
Cs2CuCl4−xBrx is the degree of frustration given by the
ratio between inter- and intrachain couplings. In the case of
organic salts, t ′/t < 1, thus implying a truly two-dimensional
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FIG. 1. (Color online) Illustration of the anisotropic triangular
lattice (a); solid and dashed lines denote hopping amplitudes t ′ and
t , respectively. Spin patterns for the spiral with θ ′ = 2θ (b) and for
collinear (c) states.

(frustrated) lattice geometry; by contrast, in the case of
Cs2CuCl4−xBrx , t/t ′ < 1, thus leading to a more one-
dimensional (but frustrated) regime. When considering the
strong-coupling limit, the comparison between neutron scatter-
ing experiments and theoretical calculations suggested that the
ratio between inter- and intrachain super-exchange couplings
is J/J ′ � 0.74 and 0.33 for Cs2CuBr4 [11] and Cs2CuCl4 [8],
respectively, while the interlayer coupling J⊥ in Cs2CuCl4 is
estimated to be smaller than 10−2J . Similar values for J and
J ′ in both materials have been also found from the temperature
dependence of the magnetic susceptibility [12]. Going back to
the Hubbard model, these ratios are equivalent to t/t ′ � 0.86
and 0.57, mostly in agreement with a density-functional theory
(DFT) study of microscopic models for these compounds [9].
By using electron spin resonance spectroscopy, very recent
evaluations of the superexchange couplings suggested smaller
values of J/J ′ in both Br and Cl compounds, i.e., J/J ′ � 0.4
and 0.3, respectively [13]. Despite quantitative differences
in the superexchange couplings (especially for the Br com-
pound), all these observations indicate that Cs2CuCl4 is more
one-dimensional than Cs2CuBr4.

Here, we focus our attention on the region with t/t ′ <

1, completing our recent work that analyzed the opposite
case with t ′/t < 1 [14–16]. As discussed above, the region
t/t ′ < 1 is suitable for describing Cs2CuCl4−xBrx . Although
these systems are Mott insulators with electrons almost
fully localized on copper atoms, investigating the insulating
behavior and a possible metal-to-insulating transition with
the more general Hubbard model may unveil unforeseen new
phenomena driven by the interplay of strong correlation and
frustration; these aspects, as described below, have been only
marginally investigated in the past.

A substantial body of theoretical work has treated the
anisotropic triangular lattice in the region 0 � t/t ′ � 1, how-
ever mostly in the infinite-U limit, i.e., when only spin degrees
of freedom are present. For quasi-one-dimensional lattices, it
has been suggested that spins may display a collinear pattern,

in sharp contrast with what is found in the classical limit [17],
where spins of neighboring chains form an angle of 90◦.
This claim has been originally proposed by a renormalization
group approach [18] and then supported by density-matrix
renormalization group (DMRG) calculations on a three-leg
spin tube [19].

Incommensurate magnetism has been suggested by a
functional renormalization group study to appear in a small
region close to the isotropic point, with a spin-liquid state
characterized by commensurate magnetic correlations be-
ing stabilized when moving towards the one-dimensional
limit [20]. The existence of an essentially one-dimensional spin
liquid phase in a wide regime of interchain couplings has been
also obtained by the variational Monte Carlo approach, based
on Gutzwiller projected mean-field states [21–23]. A relatively
extended one-dimensional disordered phase has been also
suggested by exact diagonalizations [24] and by spin-wave
approaches [25], while a one-dimensional dimer phase comes
out from the SU(N) Hubbard-Heisenberg model, solved in the
large-N limit [26]. DMRG calculations using pinned fields on
the boundaries found incommensurate spin-spin correlations
all the way from the isotropic point to the limit of decoupled
chains [27], suggesting a more classical scenario with a pitch
vector that continuously changes with J/J ′. In this respect,
also Dzyaloshinskii-Moriya interactions have been proposed
to be relevant in stabilizing spiral magnetic order with respect
to the collinear one [28].

In contrast to the Heisenberg-model investigations, not so
many studies have been performed directly on the Hubbard
model on the anisotropic triangular lattice for t/t ′ < 1. We
mention mean-field [29] and variational Monte Carlo [30]
approaches, suggesting a magnetically ordered ground state
for large on-site interactions. Instead, calculations within the
variational cluster approximation suggested that an extended
spin-liquid phase may be present close to the isotropic point
t = t ′ [31–33]. Finally, a possible spin-liquid region close
to the metal-insulator transition has been suggested for the
Hubbard model on the isotropic point, for example by the
strong-coupling approach of Ref. [34].

Here, we consider improved variational wave functions,
pursuing the approach used previously [15] to study the
case with t ′/t < 1. In order to consider the relevant phases
that have been proposed for the Heisenberg model, we
take into account correlated variational wave functions that
may describe magnetic and spin-liquid states, as well as
metallic or superconducting phases. In particular, concerning
the magnetic case, we consider both wave functions having
collinear magnetic correlations as well as states with spiral
order, where the latter ones are constructed by starting from the
states obtained at the Hartree-Fock level [35,36] and including,
in a second step, many-body correlations. In this way, we are
able to treat different magnetic and nonmagnetic states on
the same level and determine which state is stabilized for
a given value of frustration t/t ′ and Coulomb repulsion U .
We would like to mention that variational approaches may
contain, as a matter of principle, a bias towards ordered states.
However, very accurate results are obtained in a wide regime
of frustration when using, as in the present work, generalized
Gutzwiller wave functions with long-range Jastrow terms and
backflow corrections [37,38].
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The paper is organized as follow: in Sec. II, we discuss
the form of the variational wave functions used in this work;
in Sec. III, we present our numerical calculations; finally, in
Sec. IV, we draw the conclusions.

II. NUMERICAL METHODS

The variational wave functions that are used to draw the
phase diagram as a function of t/t ′ and U/t ′ are given by

|�〉 = JsJd |�0〉, (2)

where Js and Jd are conventional spin-spin and density-
density Jastrow terms:

Js = exp

[
1

2

∑
i,j

ui,j S
z
i S

z
j

]
, (3)

Jd = exp

[
1

2

∑
i,j

vi,j ninj

]
; (4)

ui,j and the vi,j (that includes the on-site Gutzwiller term
vi,i) are pseudopotentials that can be optimized for every
independent distance |Ri − Rj | in order to minimize the
variational energy and Sz

i is the z component of the spin
operator on site i. |�0〉 is constructed starting from a generic
mean-field Hamiltonian and then considering backflow cor-
relations [37,38]. In particular, we will consider two possible
mean-field Hamiltonians in order to describe either magnetic
or paramagnetic states.

As far as the former ones are concerned, we perform the
unrestricted Hartree-Fock decoupling of Eq. (1) as described
in Ref. [15]. We then obtain the decoupled Hamiltonian:

HAF = −
∑
i,j,σ

tij c
†
i,σ cj,σ + H.c.

+U
∑

i

[〈ni,↓〉ni,↑ + 〈ni,↑〉ni,↓]

−U
∑

i

[〈c†i,↑ci,↓〉c†i,↓ci,↑ + 〈c†i,↓ci,↑〉c†i,↑ci,↓]

−U
∑

i

[〈ni,↑〉〈ni,↓〉 − 〈c†i,↑ci,↓〉〈c†i,↓ci,↑〉]. (5)

This Hamiltonian contains 4L independent mean-field param-
eters: 〈ni,↑〉, 〈ni,↓〉, 〈c†i,↑ci,↓〉, and 〈c†i,↓ci,↑〉 for i = 1, . . . ,L

which have to be computed self-consistently. We impose the
spin order to be coplanar in the x-y plane; i.e., we look
for solutions with 〈ni,↑〉 = 〈ni,↓〉, which reduces the number
of independent parameters to 3L. The ground state is then
obtained by diagonalizing the mean-field Hamiltonian (5).

In general, a regular spin pattern in the x-y plane can be
described by two angles θ and θ ′, defining the relative orien-
tation of two neighboring spins along a2 and a1, respectively.
Here, we focus on the insulating region of the phase diagram
where, according to previous calculations for the Heisenberg
model [17], the optimal Hartree-Fock solutions display a spiral
magnetic order, which may be parametrized through a single
angle θ ∈ [π/2,2π/3], with θ ′ = 2θ ; see Fig. 1(b). A pitch
angle of θ = 2π/3 corresponds to the 120◦ order, suitable for
t = t ′, while θ = π/2 corresponds to antiferromagnetic order

along the chains with hopping t ′, the spins of neighboring
chains forming an angle of 90◦ (appropriate for the limit
t → 0). Besides this class of spiral states, we also consider
states with collinear order, i.e., with θ ′ = π and θ = 0 or π ;
see Fig. 1(c).

We would like to mention that, in principle, also states with
generic angles θ and θ ′ would be possible; however, as shown
in Sec. III, we do not find any insulating region of the phase
diagram where they give lower energies than the previous
two magnetic states with θ ′ = 2θ or with collinear patterns.
Moreover, we do not find any evidence of a metallic phase
with magnetic order.

Within this class of wave functions, both the spin and
density Jastrow factors of Eqs. (3) and (4) are important for the
correct description of the low-energy properties. In particular,
the spin term is fundamental to reproduce the spin-wave
fluctuations above the mean-field state [39,40].

For the nonmagnetic states (both metallic and insulating),
we consider an uncorrelated wave function given by the ground
state of a BCS Hamiltonian [41–44]:

HBCS =
∑
k,σ

ξkc
†
k,σ ck,σ +

∑
k

�kc
†
k,↑c

†
−k,↓ + H.c., (6)

where the free-band dispersion ξk and the pairing amplitude
�k are parametrized in the following way:

ξk = −2t̃ ′ cos(k · a1) − 2t̃[cos(k · a2)

+ cos(k · a3)] − μ, (7)

�k = 2�′ cos(k · a1) + 2�[cos(k · a2)

+ cos(k · a3)], (8)

with the effective hopping amplitude t̃ , the effective chemical
potential μ, and the pairing fields � and �′ being variational
parameters to be optimized (t̃ ′ gives the scale of energy of
the mean-field Hamiltonian). In spite of the fact that we
checked various symmetries for the pairing term, including
both complex and nontranslational invariant possibilities (see
below), the best pairing function of Eq. (8) is found to have the
s + dxy symmetry [29] in all the range t/t ′ < 1. In this regard,
the symmetry of the variational state that is optimized in the
presence of backflow and Jastrow terms agrees with previous
calculations treating simpler wave functions [29,30].

In this case, we do not consider the spin Jastrow factor (3),
since we do not want to break the spin SU(2) symmetry, retain-
ing only density correlations (4). The latter ones allow us to
obtain a nonmagnetic Mott insulator for a sufficiently singular
Jastrow factor vq ∝ 1/q2 (vq being the Fourier transform of
vi,j ), while vq ∝ 1/q is found in a metallic/superconducting
phase [45,46]. The wave function for the spin-liquid phase is
the generalization to the Hubbard model of the fully projected
BCS state that has been introduced by Anderson to describe
the so-called resonating valence bond (RVB) state in the
Heisenberg model [47].

We finally point out that the mean-field states obtained
from Eqs. (5) and (6) are supplemented by backflow terms,
where each orbital that defines the unprojected states is taken
to depend upon the many-body configuration, in order to
incorporate virtual hopping processes [37,38]. This procedure
is a size-consistent and efficient way to improve the correlated
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wave functions on the lattice. Given the presence of Jastrow
and backflow terms, the optimization of the variational wave
functions by energy minimization and the calculations of
all physical quantities must be performed by using quantum
Monte Carlo techniques [48].

III. RESULTS

The ground-state phase diagram as a function of the
interchain hopping t and of the Coulomb interaction U is
reported in Fig. 2, as obtained by comparing the energies
of magnetic and nonmagnetic wave functions. For small
electron-electron interaction U/t ′ the ground state is metallic;
the best state is obtained by starting from the mean-field
Ansatz of Eq. (6) with very small pairing terms � and �′
and vq ∝ 1/q.

The ground state turns out to be insulating for larger values
of U/t ′, being either a spin liquid or magnetic. In the former
case, the wave function is still described by the BCS Ansatz,
with sizable pairing having an s + dxy symmetry and vq ∝
1/q2. In the latter case, the best variational state is constructed
starting from the magnetic mean field (5) that may have spiral
or collinear order, with the collinear one being stabilized in a
wide region for t/t ′ � 0.8. In the following, we describe in
detail the properties of the different phases.

We point out that on finite-size lattices with periodic-
boundary conditions, only the set of pitch angles commen-
surate with the lattice size is accessible. Nonetheless, it is
possible to reach a quite detailed understanding in the evolution
of the wave vector describing ordered states. For l × l clusters,
the allowed values are θ = 2πn/l, with n being an integer. In
this work, we will use lattice sizes ranging from 14 × 14 to
20 × 20.

U/t'
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FIG. 2. (Color online) Schematic phase diagram of the Hubbard
model on the anisotropic triangular lattice with t/t ′ < 1, as obtained
by variational Monte Carlo. In the spiral-order region, the optimal
pitch angle ranges from 0.6π to 2π/3, with the 120◦ ordered state
θ = 2π/3 being stable at the isotropic point. In the gray region
0.8 � t ′/t � 0.85 the nature of the magnetic order cannot be reliably
determined.

A. Magnetic states

We find that in a remarkably wide region, i.e., for t/t ′ � 0.8,
the collinear state has a variational energy that is lower than
the spiral wave function, while for 0.8 � t/t ′ � 1 the spiral
state is lower in energy. The optimal pitch angle is obtained by
looking for the lowest energy state among a set of angles close
to the value predicted by Hartree-Fock; see Fig. 3. We have
also verified that states with nontrivial generic angles θ and θ ′
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FIG. 3. (Color online) Upper panels: Variational Monte Carlo energies of the spiral state as a function of the pitch angle θ for U/t ′ = 16
and t/t ′ = 0.9 (left panels) and t/t ′ = 0.7 (right panels). We show data for the largest lattice size to which each angle may be accommodated.
Lower panels: The same as in the upper panels, but for the Hartree-Fock calculations. In the upper panels, we also show for comparison the
energy of the spin-liquid (horizontal solid black line) and of the collinear state (horizontal dotted blue line) on an L = 18 × 18 lattice size.
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FIG. 4. (Color online) Upper panel: Hartree-Fock (red circles)
and variational (blue squares) energies of the optimal spiral state as
a function of t/t ′ for U/t ′ = 16. Lower panel: The pitch angle θ

(in units of π ) of the optimal spiral state as a function of t/t ′ for
U/t ′ = 16. The data for t > t ′ are taken from Ref. [15]. The vertical
line denotes the isotropic point with t = t ′ and θ = 2π/3. The gray
regions denote the values of t/t ′ where, according to variational
Monte Carlo calculations at U/t ′ = 16, the spin-liquid state has an
energy lower than the spiral one. Together with our Hartree-Fock and
variational Monte Carlo calculations, we show for comparison the
results for the Heisenberg model from Ref. [17] and from Ref. [27].
In the latter case, two different sets of data are shown in the regime
t/t ′ > 1, corresponding to 4n and 4n + 2 widths of the cylinders that
are used in the DMRG calculations.

do not provide a lower variational energy in the intermediate
regime t/t ′ � 0.8.

Collinear and spiral states are not connected continuously
and a first-order phase transition could consequently occur
between them; however, we cannot exclude that a very sharp
crossover (with generic angles θ and θ ′) appears in a narrow
region around t/t ′ � 0.8. The energies are too close to allow
a reliable discrimination.

In Fig. 4, we present the evolution of the energy and of
the pitch angle θ of the optimal spiral state as a function of
t/t ′ for U/t ′ = 16, in the range where spiral order is relevant.
The energy gain when Jastrow and backflow corrections are
added to the mean-field wave function is nonnegligible (about
0.03t ′ independently from t). Most importantly, the pitch
angle is only slightly affected by the inclusion of electron
correlations through the Jastrow and the backflow terms
for t/t ′ < 1. This behavior is quite different from the case
with t ′/t < 1, which we also include in Fig. 4, where the
correlation factors renormalize the mean-field angle more
strongly [15].

B. Spin-liquid state

After optimization, the paramagnetic Ansatz has vanish-
ingly small pairing terms for small Coulomb interactions,

leading to a metallic phase for U < Uc(t); as expected, we
find that Uc(t) → 0 for t/t ′ → 0, monotonically increasing
up to the isotropic point t = t ′, where Uc(t = t ′) � 8.5 [49].
By increasing the electron interaction, the paramagnetic state
turns insulating, because of the Jastrow factor that changes
from vq ∝ 1/q to vq ∝ 1/q2. In this regime, the pairing terms
� and �′ of Eq. (8) become finite, with the s + dxy symmetry
in all the range t/t ′ < 1; indeed, both complex or dx2−y2

symmetries are never found to be optimal. These results are
in good agreement with previous variational Monte Carlo
calculations [30], where however a small region with dx2−y2

symmetry has been obtained close to the isotropic point. This
discrepancy could be due to the more accurate treatment of
electronic correlations in our approach.

Our result contrasts with variational calculations on the
Heisenberg model, where two different spin liquids have
been proposed, one with s + dxy symmetry for small frus-
trating regimes and another with a 2 × 1 unit cell close
to the isotropic point [21]. Instead, in the Hubbard model,
the Ansatz with an extended 2 × 1 unit cell in the mean-
field state cannot be stabilized for finite electron-electron
repulsion. We emphasize that, within the Heisenberg model,
the energy difference between these two wave functions
is very small (about 0.001J ′) and, therefore, it is highly
probable that in the presence of density fluctuations the more
symmetric state that does not break translational symmetry is
preferred.

We would like to point out that the spin-liquid state has
strong one-dimensional features. Indeed, typical ratios for the
pairings � and �′ are never larger than 0.1 for a wide range of
interchain hoppings (i.e., for 0.1 � t/t ′ � 0.9), indicating that
the pairing occurs essentially along the chains with hopping
t ′. The relative sign of � and �′ changes around t/t ′ = 0.5,
with �/�′ > 0 for t/t ′ < 0.5 and �/�′ < 0 for t/t ′ � 0.5;
nevertheless, the mean-field spectrum is always gapless at four
Dirac points, with the precise location of the Dirac points being
dependent on the optimal value of the variational parameters.
The one-dimensional nature of the spin-liquid phase is further
confirmed by looking at the spin-spin correlations for the
variational state:

S(q) = 1

L

∑
m,l

eiq(m−l)
〈
Sz

mSz
l

〉
, (9)

where Sz
m is the z component of the spin operator on site m.

Results are reported for t/t ′ = 0.6 and U/t ′ = 16, which is
well inside the spin-liquid region, in Fig. 5. S(q) exhibits an
extended line of maxima with qx = π , clearly indicating the
one-dimensional character of the wave function. This fact is
particularly remarkable given the relatively large interchain
hopping. Moreover, these maxima do not diverge with L,
showing that only short-range order is present. A strong
one-dimensional character of the spin-liquid phase comes out
also from a mean-field study based on Majorana fermions [50].
A very anisotropic magnon dispersion has been also proposed
by a series expansion calculation [51].

It is important to stress the fact that the existence of the
spin-liquid phase is due to the presence of a frustrating hopping
t between the chains. Indeed, if one-dimensional chains
were coupled with an unfrustrated hopping, such to form
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FIG. 5. (Color online) Spin structure factor S(q) computed with
the spin-liquid wave function for t/t ′ = 0.6 and U/t ′ = 16. Results
are reported in the first quarter of the Brillouin zone, 	 = (0,0),
K = (4π/3,0), and M = (0,2π/

√
3).

an anisotropic square lattice with tx �= ty , all the insulating
phase would be immediately ordered with a commensurate
Néel order.

C. Renormalization of the Fermi surface

We present now some results on the properties of the Fermi
surface in the metallic phase, as well as the underlying Fermi

surface in the insulating part of the phase diagram. In the
upper panels of Fig. 6, we report the Fermi surface ξk = 0 in
the metallic phase, close to the metal-insulator transition, for
three values of the ratio t/t ′, compared to the noninteracting
case at U = 0. Our results show only a weak renormalization
of the Fermi surface, due to interaction.

However, we would like to remark that the spin-spin
correlations S(q), defined in Eq. (9), show a tendency toward
one-dimensionality when increasing the Coulomb repulsion
U also in the metallic phase; see Fig. 7. This result sug-
gests that, even though the renormalization of the Fermi
surface is quite small in the metallic phase, this is sufficient
to induce a noticeable change of the spin-spin structure
factor.

The concept of Fermi surface can be also generalized
to systems that become gapped because of some symmetry
breaking or electronic correlation, leading to the idea of
an underlying Fermi surface [52]. Within our variational
approach, the underlying Fermi surface can be easily de-
fined and corresponds, like in the metallic phase, to the
locus of the highest occupied momenta ξk = 0, when the
pairing is set to zero [53]. The lower panels of Fig. 6
show that the underlying Fermi surface in the spin-liquid
region is strongly renormalized compared to the noninter-
acting case, leading to a quasi-one-dimensional behavior.
This result suggests that the collinear phase appearing at
intermediate values of U/t ′ may be due to an instability
of the spin-liquid region, and thus being a strong-coupling
phenomenon.
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FIG. 6. (Color online) Upper panels: Fermi surface in the metallic phase (solid red lines) compared to the noninteracting results at U = 0
(dashed black lines). Data are shown for three different values of t/t ′, close to the metal-insulator transition. Lower panels: Underlying Fermi
surface in the spin-liquid region (solid red lines) compared to the noninteracting results (dashed black lines). Data are shown at U/t ′ = 16, for
three different values of t/t ′. The Brillouin zone of the triangular lattice is marked by blue lines.
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FIG. 7. (Color online) Spin-spin correlations S(q) in the metallic phase for U = 0 and t/t ′ = 0.6 (left panel) and for U/t ′ = 4 and
t/t ′ = 0.6 (right panel). Results are reported in the first quarter of the Brillouin zone, 	 = (0,0), K = (4π/3,0), and M = (0,2π/

√
3).

D. Phase diagram

By comparing the energies of magnetic and nonmagnetic
wave functions, we can obtain the zero-temperature phase
diagram reported in Fig. 2. A few remarks are necessary to
clarify some aspects of it. First of all, as mentioned above,
given the fact that only a limited number of pitch angles
are available on finite clusters, relatively large size effects
are seen for spiral states. In various cases, the energy per
site is not monotonic with L, showing that the true angle
may be captured by some clusters but not by others. Even if
these oscillations are never huge, i.e., of the order of 0.001t ′ for
the sizes considered here, this fact makes it difficult to deter-
mine the precise boundary between spirals and other phases.

Still, within our approach it is possible to obtain solid results
in specific regimes. In particular, it is clear that a magnetically
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FIG. 8. (Color online) Upper panel: Variational energies of the
optimal spiral (blue squares) and spin-liquid (black diamonds) states
as a function of the inverse system size 1/L, for U/t ′ = 16 and
t/t ′ = 0.9. The energy of the 120◦ order with θ = 2π/3 is shown for
comparison. Lower panel: Variational energies of the collinear (blue
triangles) and spin-liquid (black diamonds) states as a function of the
inverse system size 1/L, for U/t ′ = 16 and t/t ′ = 0.6.

disordered phase is present for relatively large electron-
electron interactions and intermediate interchain hoppings.
As an example, for t/t ′ = 0.6 and U/t ′ = 16, the lowest
variational energy is achieved by the spin-liquid state with the
BCS Ansatz; see Fig. 8. Here, the energies for the spin-liquid
state are compared with the ones of the collinear state as
a function of the cluster size, the spiral state being much
higher in energy for all possible pitch angles (see Fig. 3).
This is the typical outcome that appears for U/t ′ � 10 and
0.3 � t/t ′ � 0.8.

When the ratio t/t ′ is reduced, the situation becomes
less clear, since close to the one-dimensional limit both the
collinear and the BCS states are very close in energy. For
example, for t/t ′ = 0.1 we obtain E/t ′ = −0.3269(1) (for
U/t ′ = 8) and E/t ′ = −0.1715(1) (for U/t ′ = 16) for both
variational Ansätze; therefore, we cannot determine whether
the spin-liquid phase persists down to t → 0 or not. We
should point out that since for t/t ′ = 0.1 the spin-liquid
phase is no longer energetically favored at large values of
U/t ′, our results do not exclude that the ground state of
the Heisenberg model close to the one-dimensional limit has
(collinear) magnetic order, as predicted by Refs. [18,19]. It
must be also emphasized that in the one-dimensional limit
both the BCS and the collinear state do not possess magnetic
long-range order, since here the fluctuations generated by the
Jastrow factor are sufficient to destroy the order present at the
mean-field level [39]. On the other hand, whenever a coupling
between chains is present, the magnetic order should not be
destroyed by the Jastrow factor.

For t/t ′ � 0.9, the wave function with spiral order becomes
competitive with both spin-liquid and collinear ones for a
nontrivial angle θ/π that is about 0.6. The trend is clear despite
pronounced size effects, that are due to the relatively small
number of angles that are commensurate with the lattice size;
see Figs. 3 and 8.

IV. CONCLUSIONS

In summary, we analyzed the half-filled Hubbard model
on the anisotropic lattice in the range of parameters t/t ′ < 1
by considering variational wave functions that include
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both Jastrow and backflow terms and are able to describe
spin-liquid and magnetic states with different pitch vectors
on the same footing. For large values of the interaction U/t ′
and moderate to large interchain hoppings 0.3 � t/t ′ � 0.8
a spin-liquid state with strong one-dimensional features and
four Dirac points stabilizes with respect to any magnetic
state considered here. However, close to the isotropic point,
magnetic states with nontrivial spiral order are more favorable.
Interestingly, close to the metal-insulator transition, a collinear
order stabilizes in a wide region of t/t ′, in sharp contrast
with what is found in the classical limit. Our calculations are
also relevant for the experimental results on the compounds
Cs2CuBr4 and Cs2CuCl4, showing that in the strong coupling
regime spiral magnetic order is stabilized close to the

isotropic point, while a spin-liquid state emerges for smaller
values of t/t ′.
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