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Temperature dependence of the pair coherence and healing lengths for a fermionic superfluid
throughout the BCS-BEC crossover
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We calculate the pair correlation function and the order parameter correlation function, which probe,
respectively, the intrapair and interpair correlations of a Fermi gas with attractive interparticle interaction, in
terms of a diagrammatic approach as a function of coupling throughout the BCS-Bose-Einstein condensation
(BEC) crossover and of temperature, both in the superfluid and normal phase across the critical temperature Tc.
Several physical quantities are obtained from this calculation, including the pair coherence and healing lengths,
the Tan’s contact, the crossover temperature T ∗ below which interpair correlations begin to build up in the normal
phase, and the signature for the disappearance of the underlying Fermi surface which tends to survive in spite
of pairing correlations. A connection is also made with recent experimental data on the temperature dependence
of the normal coherence length as extracted from the proximity effect measured in high-temperature (cuprate)
superconductors.
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I. INTRODUCTION

Pairing between fermions with opposite spins is at the
essence of the theory of superconductivity [1]. In this con-
text, Cooper pairs represent the building blocks on which
macroscopic coherence is built up [2]. Roughly speaking, at
zero temperature, the wave function �(ρ,R) ≈ φ(ρ) �(R) of
a Cooper pair contains information about the internal structure
of the pair through φ(ρ) and about its center-of-mass motion
through �(R), where ρ = r − r′ and R = (r + r′)/2 are the
relative and center-of-mass coordinates of the pair, in the order.

Two different lengths can be then associated with the spatial
variations over the coordinates ρ and R. They are usually
referred to as the pair coherence length (ξpair) and healing
length (ξphase), and represent, respectively, the size of a Cooper
pair and the spatial modulation of the pairs when subject to
an external spatially varying disturbance [3]. Experimentally,
the importance of the pair coherence length was first revealed
by Pippard through the need for nonlocal electrodynamics, so
that the pair coherence length is sometimes referred to as the
Pippard coherence length [4]. The healing length, on the other
hand, has emerged from the Ginzburg-Landau differential
equation and is associated with the spatial fluctuations of
the superconducting order parameter (it sets, for instance, the
spatial variation inside an Abrikosov vortex lattice close to
the critical temperature [5]). In both cases, a weak-coupling
superconductor was considered for which Cooper pairs are
strongly overlapping.

With the advent of the BCS-Bose-Einstein condensation
(BEC) crossover [6] it became possible to follow the con-
tinuous evolution, from a situation where fermion (Cooper)
pairs are strongly overlapping (which corresponds to the BCS
weak-coupling limit), to a situation where fermion pairs form
a dilute gas of composite bosons (which corresponds to the
BEC strong-coupling limit). At zero temperature, in the BCS
limit, one thus expects ξphase to coincide with ξpair (apart
possibly from a multiplicative factor of order unity due to
their independent definitions), while in the BEC limit where

the size of a pair shrinks to molecular dimensions, one expects
ξphase to be much larger than ξpair. This expectation has been
explicitly confirmed by numerical calculations done separately
for ξpair [7,8] and ξphase [8–11]. No calculation has, however,
been performed to establish the temperature dependence of
these two lengths throughout the BCS-BEC crossover, both
below and above the critical temperature Tc for the superfluid
transition (with the exception of the work of Ref. [12], where
ξpair was obtained in weak-coupling below Tc within a BCS
decoupling). Purpose of the present paper is to fill this gap.

Albeit pictorially appealing, the wave function of a Cooper
pair is strictly speaking an ill-defined concept, at least up
to the point that the pairs become nonoverlapping composite
bosons when approaching the BEC limit of the crossover. Quite
generally, in the context of the many-body problem what can be
addressed is the information about the intrapair correlations
established between fermions of opposite spins and about the
interpair correlations relating different pairs. The first one
can be obtained from the pair correlation function g↑↓(ρ) that
depends on the relative coordinate ρ of the pair, and the second
one from the correlation function 〈�(R) �(R′)〉 of the order
parameter �, which depends on the difference R − R′ of the
center-of-mass coordinates of different pairs (we consider a
homogeneous system throughout). We shall show that these
correlation functions can be obtained, both below and above
Tc, in terms of a common diagrammatic structure (which we
shall keep at a minimal level to include the essential effects
of pairing fluctuations), where only the variables at the end
points of a common two-particle Green’s function are set in
different ways to identify the two functions.

The key new physical results that we will obtain in this
way can be summarized as follows. (i) The length ξpair, which
is obtained from g↑↓(ρ), is basically a decreasing function of
temperature for given coupling (kF aF )−1 and remains finite
at the corresponding value of Tc. [Here, aF is the two-body
scattering length and kF is the Fermi wave vector related to
the density n by kF = (3π2n)1/3 (in the following, we shall
consider a spin-balanced system).] The rate of the decrease
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of ξpair turns out to be progressively less rapid when passing
from the BCS to the BEC regimes. This appears to be in line
with a recent experimental finding for the normal coherence
length ξN measured in the normal phase from the proximity
effect occurring in a SS′S superconducting Josephson junction
[13], once ξN is identified with ξpair above Tc and to the
extent that a stronger interparticle coupling is attributed to
the underdoped with respect to the optimally-doped regime
of the high-temperature (cuprate) superconductor used in the
experiment.

(ii) The length ξphase, which is obtained from the correlation
function of the order parameter, is always larger than ξpair

below Tc for any coupling (provided the two independent
definitions of ξphase and ξpair are suitably adjusted in the extreme
BCS limit at zero temperature so as to have a single significant
length in that limit [9,14]). In addition, ξphase diverges at Tc

thus identifying the critical temperature.
(iii) Above Tc, ξphase decreases more rapidly than ξpair

for increasing temperature at a given coupling, such that
a crossing of these two quantities is bound to occur at a
certain temperature T ∗. On physical grounds, T ∗ has then the
meaning of a crossover temperature below which independent
pairs (whose partners are correlated over a finite length ξpair)
begin to build up an interpair correlation extending over the
length ξphase. Precursor pairing phenomena (like, for instance,
pseudogap effects [15]) are thus expected to occur only
below T ∗.

(iv) Besides the length ξpair, a detailed knowledge of the
function g↑↓(ρ) provides also information about the underly-
ing Fermi surface (if any) through its spatial oscillations. This
information can be related to the occurrence of a finite value
of the Luttinger wave vector kL, which can also be identified
by the dispersion of the single-particle spectral function [16].

(v) Interest in the pair correlation function g↑↓(ρ) has
recently been revived in the context of the Tan’s contact C,
which is a measure of the number of fermion pairs in the
two spin states at small separation and connects a number of
universal relations involving the properties of a system with
short-range dynamics [17,18]. By the present approach, we
correctly reproduce not only the leading limiting behavior
limρ→0g↑↓(ρ) = C/(4πρ)2 where the coupling does not ex-
plicitly enter, but also the next subleading term −C/(8π2aF ρ)
that contains the scattering length aF (here, ρ = |ρ|).

(vi) The pair correlation function is not a response function
and thus is not bound to satisfy conservation criteria. As a con-
sequence, when using diagrammatic methods to calculate it,
strictly speaking one cannot be guided by standard procedures
of “conserving approximations” [19,20]. In this context, we
shall find it relevant to revive an argument given by Bell some
time ago [21], about a “sum rule,” which should apparently be
obeyed by g↑↓(ρ) once integrated over ρ, but that in reality is
satisfied in this sense only in the high-temperature (classical)
limit.

For completeness, we mention that the internal structure
of Cooper pairs at finite temperatures was also considered in
Ref. [22] through a diagrammatic pairing approach for the
pair correlation function which bears some similarities to the
present one. However, in Ref. [22], use was made of a different
pairing theory (built on a quasi-two-dimensional single-band
Hamiltonian in a lattice to make contacts with the physics

of the cuprates) and calculations were limited to the spatial
profile of g↑↓(ρ) at two specific values of the temperature in
the normal phase, thus making essentially no reference to the
physics of the BCS-BEC crossover with ultracold gases. None
of the issues (i)–(vi) listed above were then discussed or even
addressed in Ref. [22].

The paper is organized as follows. In Sec. II, the pair
correlation function for intrapair correlations is obtained in
terms of the many-body diagrammatic structure, and then
explicitly calculated by going beyond the standard BCS
approximation below Tc such that a pairing approximation
results correspondingly also above Tc. Information about the
pair coherence length ξpair, the Luttinger wave vector kL,
and the Tan’s contact C is then extracted from the pair
correlation function for all temperatures both below and above
Tc and for all couplings throughout the BCS-BEC crossover. A
comparison is also made of the temperature dependence of ξpair

at various couplings with the available experimental data on
the proximity effect in the normal phase of high-temperature
(cuprate) superconductors. In Sec. III, the correlation function
of the order parameter describing interpair correlations is
obtained in terms of the same diagrammatic structure, and
calculated again for all temperatures both below and above
Tc and for all couplings throughout the BCS-BEC crossover
to obtain the healing length ξphase. The different temperature
dependence resulting for ξpair and ξphase at given coupling is
then exploited to identify a crossover temperature T ∗ below
which pairing effects are expected to become significant
in physical quantities. Section IV gives our conclusions.
Appendix A reconsiders an argument given originally by Bell
at T = 0 about the correct way to interpret a sum rule for
g↑↓(ρ), and rephrases it into the terminology used in the
present paper, in order to extend it to all temperatures and to
check it numerically within the present approach. Appendix B
derives analytically the expressions of the asymptotic behavior
of ξpair and ξphase at high temperature. Appendix C discusses
the relationship between ξN and ξpair or ξphase.

II. THE PAIR CORRELATION FUNCTION
AND THE ASSOCIATED LENGTH ξpair

In this section, we calculate the spatial profile of the pair
correlation function as a function of coupling and temperature
in terms of a diagrammatic approach, from which information
can be obtained on several physical quantities that are of
interest to the BCS-BEC crossover.

The physical system we are considering is a gas of fermions
of mass m with two equally populated spin components
that mutually interact via a short-range attraction v0 δ(r − r′)
where v0 < 0. In what follows, we regularize this interaction
in terms of the scattering length aF in a standard way, by
introducing an ultraviolet wave-vector cutoff k0 such that in the
expression [23]

m

4πaF

= 1

v0
+

∫ k0 dk
(2π )3

m

k2
(1)

k0 → ∞ and v0 → 0 at the same time so as to keep aF at a
desired value (we set � = 1 throughout).

224508-2



TEMPERATURE DEPENDENCE OF THE PAIR COHERENCE . . . PHYSICAL REVIEW B 89, 224508 (2014)

A. General formalism

Quite generally, the pair correlation function for opposite-
spin fermions is defined by

g↑↓(ρ) =
〈
ψ

†
↑

(
R + ρ

2

)
ψ

†
↓

(
R − ρ

2

)

×ψ↓

(
R − ρ

2

)
ψ↑

(
R + ρ

2

)〉
−

(
n

2

)2

, (2)

where ψσ (r) is a fermion field operator with spin component
σ = (↑,↓) and 〈· · · 〉 is a thermal average. In Eq. (2), the
dependence on the center-of-mass coordinate R drops out for
the homogeneous system we are considering.

To deal with the superfluid and normal phases on the same
footing, it is convenient to introduce at the outset the Nambu
representation of the field operators, whereby �1(r) = ψ↑(r)
and �2(r) = ψ

†
↓(r) with Nambu index � = (1,2). Introducing

further the time ordering operator Tτ for imaginary time τ , the
expression (2) can be rewritten in the form

g↑↓(ρ) +
(

n

2

)2

= 〈Tτ [�(1)�(2)�†(2′)�†(1′)]〉

= G2(1,2; 1′,2′), (3)

with the following compact notation for the variables:

1 = (ρ/2,τ,� = 1),

2 = (−ρ/2,τ++,� = 2),
(4)

1′ = (−ρ/2,τ+,� = 2),

2′ = (ρ/2,τ+++,� = 1),

where τ+ signifies that τ is augmented by a positive infinites-
imal η = 0+.

Quite generally, the two-particle Green’s function G2 in
Eq. (3) can be represented in terms of the single-particle
Green’s function G and the many-particle T matrix, in the
form [24]

G2(1,2; 1′,2′)

= G(1,1′)G(2,2′) − G(1,2′)G(2,1′)

−
∫

d3456G(1,3)G(6,1′)T (3,5; 6,4)G(4,2′)G(2,5),

(5)

which is represented pictorially in Fig. 1.
With the external variables given by Eq. (4), the second

term on the right-hand side of Eq. (5) equals (n/2)2 and thus
cancels with the second term on the left-hand side of Eq. (3).
At the same time, the first term on the right-hand side of
Eq. (5) equals G12(ρ,τ = 0−)2, where G12 is the anomalous
single-particle Green’s function, which is nonvanishing only
in the superfluid phase below Tc. Interaction lines will appear
explicitly in the last term on the right-hand side of Eq. (5)
through the many-particle T matrix, whose presence is thus
essential to get meaningful results for g↑↓(ρ) in the normal
phase above Tc. In the following, we shall discuss the use of
different approximations for the calculation of G2, and thus of
g↑↓(ρ) according to Eq. (3).

1

1′ 2

2′ 1

2

2′

1′

2′1

1′ 2

1

1′ 2

2′3 4

6 5

=

+

+

Τ

G
2

FIG. 1. (Color online) Diagrammatic representation of the two-
particle Green’s function G2 given by Eq. (5), in terms of the single-
particle Green’s function G and the many-particle T matrix. The
arrows point from the second to the first argument of G, and the
variables stand for the set 1 = (r1,τ1,�1), and so on.

B. Results within the BCS decoupling

The simplest approximation for the pair correlation function
below Tc consists in retaining only the first term on the right-
hand side of Eq. (5) such that g↑↓(ρ) = G12(ρ,τ = 0−)2, and
in further approximating G12 by its mean-field BCS expression
as follows:

G12(ρ,τ = 0−) =
∫

dk
(2π )3

eik·ρ kBT
∑

n

eiωnηG12(k,ωn)

= �

∫
dk

(2π )3
eik·ρ [1 − 2fF (E(k))]

2E(k)
, (6)

where G12(k,ωn) = �/(E(k)2 + ω2
n). Here, kB is the

Boltzmann constant, ωn = (2n + 1)πkBT (n integer) a
fermionic Matsubara frequency at temperature T , � the
temperature-dependent BCS gap, E(k) = [ξ (k)2 + |�|2]1/2

with ξ (k) = k2/(2m) − μ, where μ is the chemical potential,
and fF (ε) = [exp (ε/kBT ) + 1]−1 is the Fermi function.

Accordingly, within the BCS decoupling, we write for the
volume integral of the distribution g↑↓(ρ):

∫
dρ g↑↓(ρ) = �2

4

∫
dk

(2π )3

[
1 − 2fF (E(k))

E(k)

]2

, (7)

and for its second moment

∫
dρ ρ2 g↑↓(ρ) = �2

4

∫
dk

(2π )3

∣∣∣∣∇k

{
[1 − 2fF (E(k))]

E(k)

}∣∣∣∣
2

(8)

(we have taken � to be real without loss of generality). The
pair coherence length ξpair is then obtained as follows in terms
of the above two integrals:

ξ 2
pair =

∫
dρ ρ2 g↑↓(ρ)∫
dρ g↑↓(ρ)

. (9)

In particular, at zero temperature, one may exploit the
analytical results of Ref. [8], to obtain for the volume integral
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FIG. 2. (Color online) (a) BCS pair coherence length ξpair(T = 0)
at zero temperature in units of the inverse of the Fermi wave vector
k−1

F (full line, left scale) and BCS critical temperature T BCS
c in units

of the Fermi temperature TF = k2
F /(2mkB ) (dashed line, right scale)

vs the coupling (kF aF )−1. (b) BCS pair coherence length ξpair(T ) in
units of ξpair(T = 0) vs the temperature T in units of the respective
BCS critical temperature T BCS

c at various couplings.

of Eq. (7) the expression:

∫
dρ g↑↓(ρ) −−−−→

(T →0)

(2m�0)3/2

16
√

2π

√√√√ μ

�0
+

√
1 +

(
μ

�0

)2

,

(10)

where �0 = �(T = 0). This coincides with the expression of
the condensate fraction of a Fermi gas reported in Ref. [25].

The second moment of the distribution g↑↓(ρ) (and thus
ξpair) can also be obtained analytically for any coupling
throughout the BCS-BEC crossover using the results Ref. [8].
In particular, in the weak-coupling BCS limit [such that
(kF aF )−1  −1], ξpair equals 1.11 ξ0, where ξ0 = kF /(πm�0)
is the Pippard coherence length, while in the strong-coupling
BEC limit [such that (kF aF )−1 � +1], ξpair reduces to the
radius aF /

√
2 of the two-body bound state [7]. For later

reference, the coupling dependence of ξpair at T = 0 is reported
as the full curve of Fig. 2(a). Note that at unitarity [where
(kF aF )−1 = 0] the value of kF ξpair(T = 0) is approximately
unity, meaning that the pair size is of the order of the
interparticle distance.

At finite temperature, ξpair can be obtained numerically from
the expressions (7)–(9). It turns out that the temperature depen-
dence of ξpair is rather weak over the entire temperature interval
from zero up to the BCS critical temperature T BCS

c . This occurs
not only in the weak-coupling regime (as already pointed out
in Ref. [12]) but also at stronger couplings, in such a way that
ξpair always reaches a finite value at T BCS

c . It turns further out
that the temperature dependence of ξpair follows approximately

a “law of corresponding states” irrespective of the coupling
value, once ξpair(T ) is expressed in units of ξpair(T = 0) and
T is in units of T BCS

c . This is shown in Fig. 2(b) for a number
of coupling values about unitarity, from which one sees that
at the critical temperature ξpair decreases to only about 80% of
its value at T = 0. However, this kind of universal feature will
not survive the inclusion of pairing fluctuations beyond mean
field, to be considered in Secs. II C and II D.

The above results have been obtained with the temperature-
dependent values of � and μ, which solve numerically the
coupled BCS equations for the gap

− m

4πaF

=
∫

dk
(2π )3

{
[1 − 2fF (E(k))]

2E(k)
− m

k2

}
(11)

and, for the density,

n =
∫

dk
(2π )3

{
1 − ξ (k)

E(k)
[1 − 2fF (E(k))]

}
. (12)

Recall in this context that the strong variation of μ when
passing from the BCS to the BEC limits plays a crucial role in
the physics of the BCS-BEC crossover [6].

The finite value reached by ξpair upon approaching the
critical temperature from below requires one to go beyond
the simple BCS decoupling and include explicitly pairing
fluctuations even in the superfluid phase, as represented by the
presence of the many-particle T matrix in Fig. 1. Otherwise,
when extrapolated to the normal phase, the simple BCS
decoupling would yield g↑↓(ρ) = 0 and correspondingly ξpair

could not be extracted from it.
An additional (and possibly more stringent) reason to

include diagrams representing pairing fluctuations also in
the superfluid phase stems from the short-range behavior of
g↑↓(ρ), which is related to the Tan’s contact [17,18]. To see
this, let us consider the ρ → 0 limit of the expression (6),
which we manipulate as follows:

�

∫
dk

(2π )3
eik·ρ [1 − 2fF (E(k))]

2E(k)

= �

∫
dk

(2π )3
eik·ρ m

k2

+�

∫
dk

(2π )3
eik·ρ

{
[1 − 2fF (E(k))]

2E(k)
− m

k2

}
−−−−→
(ρ→0)

= m �

4π ρ
+ �

∫
dk

(2π )3

{
[1 − 2fF (E(k))]

2E(k)
− m

k2

}
+ · · ·

=
(

m�

4π

) (
1

ρ
− 1

aF

+ · · ·
)

, (13)

where in the last line we have made use of the BCS gap
equation (11). The short-range behavior of g↑↓(ρ), which
results from Eq. (13) is then given by

g↑↓(ρ) −−−−→
(ρ→0)

(
m�

4π

)2 (
1

ρ2
− 2

ρ aF

+ · · ·
)

, (14)

where the factor (m�)2 represents the value of the Tan’s
contact C within the BCS approximation. Note that the
dominant short-range behavior of g↑↓(ρ) in Eq. (14) stems
from the ultraviolet behavior of the integral over the wave
vector in Eq. (13).
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FIG. 3. (Color online) (a) Series of ladder diagrams for the T

matrix in the broken-symmetry phase. Conventions for four-momenta
and Nambu indices are specified. Here, the dots delimiting the po-
tential (dashed lines) represent τ3 Pauli matrices. Only combinations
with �L �= �

′
L and �R �= �

′
R occur owing to the regularization (1) that

we have adopted for the potential. (b) Fermionic self-energy diagram
associated with the expression (31) below in the broken-symmetry
phase.

The problem here is that, in the BCS limit, � (and thus
C) is exponentially small in the coupling (kF aF )−1, while one
would expect on physical grounds the correct value of C in this
limit to be (2πaF n)2, being it associated with a mean-field shift
[26]. Diagrams corresponding to pairing fluctuations over and
above the BCS decoupling are therefore required to recover
the expected value of C. A related question is whether these
additional diagrams may also somewhat modify the values
of ξpair, which was obtained within the BCS decoupling, as
discussed next.

C. Inclusion of pairing fluctuations below Tc

We pass now to include the effect of the last term on the
right-hand side of Eq. (5), which contains the many-particle
T matrix. Following Refs. [24] and [27], we approximate this
term by the series of ladder diagrams in the broken-symmetry
phase which are depicted in Fig. 3(a). Here, the interaction
potential is taken to be of the short-range (contact) type and
the lines represent the BCS single-particle Green’s functions
in Nambu notation:

G11(k,ωn) = −G22(−k, − ωn) = − ξ (k) + iωn

E(k)2 + ω2
n

,

(15)

G12(k,ωn) = G21(k,ωn) = �

E(k)2 + ω2
n

.

Making use of the convention I ↔ (� = 1,�
′ = 2) and

II ↔ (� = 2,�
′ = 1) for the pairs of spin indices, the

four independent elements of the T matrix are then given
by (−TI,I(q) TI,II(q)

TII,I(q) −TII,II(q)

)

= 1

A(q)A(−q) − B(q)2

(
A(−q) B(q)

B(q) A(q)

)
. (16)

In this expression, we have set −A(q) = 1
v0

+ �11(q) and
B(q) = �12(q), where

�11(q) =
∫

dk G11(k + q)G11(−k),

(17)

�12(q) =
∫

dk G12(k + q)G12(−k)

are particle-particle-like bubbles. Here and in the following,
we adopt the four-vector notation k = (k,ωn) and q = (q,�ν)
(�ν = 2πkBT ν (ν integer) being a bosonic Matsubara fre-
quency), and the short-hand notation∫

dk =
∫

dk
(2π )3

kBT
∑

n

(18)

with a similar expression for the four-integral over q. Note that
the wave-vector integral occurring in the definition of �11(q)
is ultraviolet divergent, in such a way that

R11(q) ≡ �11(q) −
∫

dk
(2π )3

m

k2
= −A(q) − m

4πaF

(19)

is well-behaved, where the regularization (1) has been utilized
to obtain the last equality.

The series of ladder diagrams for the T matrix depicted in
Fig. 3(a) is familiar in the context of gauge invariance in the
response of a superconductor to an external electromagnetic
field [1], which can quite generally be preserved provided the
diagrammatic approximation one adopts is “conserving” in
the sense of Baym and Kadanoff [19,20]. As we have already
mentioned, however, no conservation law is associated with
the pair correlation function (3) of interest here, which can
also be seen from the way the end variables (4) are arranged in
the two-particle Green’s function where no time dependence
appears (we shall return to this point more extensively in
Appendix A).

When the above approximate form of the T matrix is used
in the expressions (3)–(5), the pair correlation function below
Tc acquires the following form:

g↑↓(ρ) = G12(ρ,τ = 0−)2 −
∑

�3�4�5�6

∫
dkdk′dq ei�νηei(k−k′)·ρG1�3 (k + q)G�62(k) T

�3�4
�6�5

(k,k′; q)G�41(k′ + q)G2�5 (k′)

−→ G12(ρ,τ = 0−)2 −
∫

dkdk′dq ei�νηei(k−k′)·ρ[G11(k + q)G22(k) TI,I(q)G11(k′ + q)G22(k′)

+G11(k + q)G22(k) TI,II(q)G21(k′ + q)G21(k′) + G12(k + q)G12(k) TII,I(q)G11(k′ + q)G22(k′)

+G12(k + q)G12(k) TII,II(q)G21(k′ + q)G21(k′)], (20)
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where G12(ρ,τ = 0−) is given by the mean-field expression
(6). This is the form of g↑↓(ρ) in terms of which we will
calculate the effects of intrapair correlations with the inclusion
of pairing fluctuations below Tc.

In particular, the short-range behavior of g↑↓(ρ), which is
contributed by pairing fluctuations, can be obtained from the
expression (20) in the following way. Let us consider the factor
that occurs in that expression:

∫
dk eik·ρ G11(k + q)G22(k)

= −
∫

dk eik·ρ G11(k + q)G11(−k) = −
∫

dk
(2π )3

eik·ρ m

k2

−
∫

dk
(2π )3

eik·ρ
[
kBT

∑
n

G11(k + q)G11(−k) − m

k2

]

−−−−→
(ρ→0) − m

4πρ
− R11(q) (21)

with the notation of Eqs. (17) and (19), since in the limit
ρ → 0, we are allowed to set eik·ρ = 1 in the last integral
of Eq. (21) after it has been regularized. Note that, here
too, the dominant spatial short-range behavior stems from the
ultraviolet behavior of the integral over the wave vector. By a
similar token, we are allowed to set in the other factor occurring
in the expression (20):

∫
dk eik·ρ G12(k + q)G12(k) −−−−→

(ρ→0) �12(q) (22)

since this integral is convergent and does not require regular-
ization. Collecting the results (21) and (22), we then obtain for
the short-range behavior of the fluctuation contribution in the
expression (20):

g↑↓(ρ) − G12(ρ,τ = 0−)2 −−−−→
(ρ→0)

−
∫

dq ei�νη

[
TI,I(q)

(
m

4πρ
+ R11(q)

)2

−2 TI,II(q)

(
m

4πρ
+ R11(q)

)
�12(q) + TII,II(q) �12(q)2

]

� −
(

m

4πρ

)2 ∫
dq ei�νη TI,I(q)

−2

(
m

4πρ

) ∫
dq ei�νη[TI,I(q) R11(q) − TI,II(q) �12(q)].

(23)

Further manipulation of the last factor within braces in
terms of the matrix elements (16) and of the relation (19)
yields

TI,I(q) R11(q) − TI,II(q) �12(q)

= A(−q)
(
A(q) + m

4πaF

) − B(q)2

A(q)A(−q) − B(q)2
= 1 − m

4πaF

TI,I(q).

(24)

In this way, Eq. (23) reduces to the simple result:

g↑↓(ρ) − G12(ρ,τ = 0−)2 −−−−→
(ρ→0)

−
( m

4π

)2
∫

dq ei�νη TI,I(q)

(
1

ρ2
− 2

aF ρ
+ · · ·

)
.

(25)

Following Ref. [26], we then identify the pre-factor of
Eq. (25) with the fluctuation contribution to the (square of
the) high-energy scale �∞, namely,

�2
∞ = −

∫
dq ei�νη TI,I(q) , (26)

such that (m �∞)2 is the corresponding fluctuation contribu-
tion to the contact C.

Grouping together the mean-field contribution (14) and
the fluctuation contribution (25), we obtain eventually for the
short-range behavior of g↑↓(ρ) below Tc:

g↑↓(ρ) −−−−→
(ρ→0)

( m

4π

)2 (
�2 + �2

∞
) (

1

ρ2
− 2

aF ρ
+ · · ·

)
,

(27)

where now the factor m2(�2 + �2
∞) is identified with the Tan’s

contact C [28].
The character of universality, which is intrinsic to the

Tan’s contact [17,18], implies that the same value of C that
enters the pair-correlation function (27) at short distances
characterizes also the tails of the wave-vector distribution
n(k) with n = ∫

dk
(2π)3 n(k), such that C = lim|k|→∞|k|4n(k).

[An explicit comparison between the these two independent
ways of obtaining the contact will be reported in Fig. 4(b)
below as a function of coupling at zero temperature.] In the
present context, the above argument implies that n(k) cannot
merely correspond to the expression within braces in the BCS
density equation (12), but should necessarily contain also the
contribution of pairing fluctuations below Tc.

Accordingly, we are led to replace the BCS density equation
(12) with the modified density equation discussed in Ref. [27],
whereby

n = 2
∫

dk
(2π )3

kBT
∑

n

eiωnη G11(k,ωn) (28)

with

G11(k,ωn) = 1

iωn − ξ (k) − σ11(k,ωn)
(29)

and

σ11(k,ωn) = �11(k,ωn) + �2

iωn + ξ (k) + �11(−k, − ωn)
.

(30)

In the above expression, the self-energy �11 is given by

�11(k) =
∫

dq TI,I(q)G11(q − k) (31)

with the short-hand notation (18), TI,I given by Eqs. (16) and
(17), and G11 still of the BCS form (15). The self-energy (31) is
represented diagrammatically in Fig. 3(b). On the other hand,
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FIG. 4. (Color online) (a) Pair coherence length ξpair(T = 0) at
zero temperature in units of the inverse Fermi wave vector k−1

F vs
the coupling (kF aF )−1, obtained within mean field (dashed line) and
with the inclusion of pairing fluctuations, where the gap and chemical
potential are calculated either at the mean-field level according to
Eqs. (11) and (12) (dotted line) or with the inclusion of fluctuations
according to Eqs. (11) and (28) (full line). (b) Coupling dependence
of the Tan’s contact C at T = 0, as obtained in terms of only the gap
� at the mean-filed level (dashed line) and with the further inclusion
of the high-energy scale �∞ given by Eq. (26) (full line). The dots
represent the values of C that were obtained in Ref. [29] from the tail
of the wave-vector distribution n(k).

according to Ref. [27], the gap equation maintains the BCS
form (11). As a consequence, new pairs of values for � and μ

are obtained by solving Eqs. (28) and (11) for given coupling
and temperature below Tc, values, which have to be inserted
into the expression (20) for g↑↓(ρ).

Correspondingly, the pair coherence length ξpair is obtained
by entering the expression (20) into the definition (9). Besides
the mean-field contributions (7) to the volume integral and (8)
to the second moment of the distribution g↑↓(ρ), the fluctuation
terms in the expression (20) contribute to these quantities as
follows. Let

�̃11(k; q) ≡ kBT
∑

n

G11(k + q)G11(−k),

(32)
�̃12(k; q) ≡ kBT

∑
n

G12(k + q)G12(−k),

such that

�11(q) =
∫

dk
(2π )3

�̃11(k; q),

(33)

�12(q) =
∫

dk
(2π )3

�̃12(k; q).

The fluctuation part δg↑↓(ρ) ≡ g↑↓(ρ) − G12(ρ,τ = 0−)2 of
the pair correlation function then contributes the terms∫

dρ δg↑↓(ρ)

= −
∫

dq ei�νη TI,I(q)
∫

dk
(2π )3

�̃11(k; q)2

+ 2
∫

dq ei�νη TI,II(q)
∫

dk
(2π )3

�̃11(k; q) �̃12(k; q)

−
∫

dq ei�νη TII,II(q)
∫

dk
(2π )3

�̃12(k; q)2 (34)

to the volume integral of g↑↓(ρ), and the terms∫
dρρ2δg↑↓(ρ)

= −
∫

dqei�νηTI,I(q)
∫

dk
(2π )3

[∇k�̃11(k; q)]2

+ 2
∫

dq ei�νηTI,II(q)

×
∫

dk
(2π )3

[∇k�̃11(k; q) · ∇k�̃12(k; q)]

−
∫

dq ei�νη TII,II(q)
∫

dk
(2π )3

[∇k�̃12(k; q)]2 (35)

to its second moment.
The results of this calculation are shown in Fig. 4(a)

where the coupling dependence of ξpair at zero temperature is
reported, without (dashed line) and with (dotted and full lines)
the inclusion of pairing fluctuations on top of mean field. Here,
the inclusion of pairing fluctuations further distinguishes the
cases when � and μ are calculated either at the mean-field
level (dotted line) or with the further inclusion of pairing
fluctuations (full line). Note that in the first case (dotted line),
there is a decrease of ξpair with respect to the mean-field value
(dashed line). Physically, this corresponds to the fact that the
inclusion of quantum fluctuations at zero temperature over
and above mean field tends to reduce the spatial extent over
which correlations are effective. On the other hand, when the
values of � and μ are also affected by pairing fluctuations,
the value of ξpair (full line) exceeds that at the mean-field
level (dashed line), because this procedure in practice has the
effect of renormalizing the coupling to a smaller value. Note
also that, on the scale of Fig. 4(a), the complete inclusion of
pairing fluctuations modifies the mean-field result for ξpair only
marginally.

The corresponding coupling dependence of the contact C

is shown in Fig. 4(b). Here, also reported for comparison are
the values of C obtained in Ref. [29] from the tail of the
integrand n(k) of Eq. (28) with the inclusion of fluctuations,
which show explicitly the character of universality associated
with the Tan’s contact. (Note that C is dimensionless provided
the wave vectors are in units of kF [n(k) is also normalized
such that

∫
dk

(2π)3 n(k) = 1
2 ].) In this context, it is interesting

to mention that the inclusion of pairing fluctuations in the
broken-symmetry phase at low temperature is of interest also
for problems in nuclear physics, where RPA calculations
beyond BCS mean field are routinely performed [30].
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D. Pairing fluctuations above Tc

Above Tc where the gap � vanishes, only the first term
within braces on the right-hand side of Eq. (20) survives. In
this case, G11(k) reduces to the bare single-particle Green’s
function G0(k) = (iωn − ξ (k))−1 and −TI,I(q) to the pair
propagator �0(q) = −[1/v0 + �0(q)]−1, where

�0(q) =
∫

dk G0(k + q) G0(−k) (36)

is the particle-particle bubble. By defining further, in analogy
to Eq. (32),

�̃0(k; q) ≡ kBT
∑

n

G0(k + q) G0(−k)

= 1 − fF (ξ (k)) − fF (ξ (k + q))
ξ (k) + ξ (k + q) − i�ν

(37)

such that

�0(q) =
∫

dk
(2π )3

�̃0(k; q) , (38)

we obtain the following expression for the pair correlation
function within the present approximation:

g↑↓(ρ) =
∫

dq ei�νη �0(q)
∫

dk
(2π )3

eik·ρ �̃0(k; q)

×
∫

dk′

(2π )3
e−ik′ ·ρ �̃0(k′; q). (39)

The result (39) could have been obtained directly from the
original expression (2) in terms of the ordinary representation
ψσ (r) of the field operators, which applies to the normal phase
above Tc, provided one considers the series of “maximally
crossed diagrams” depicted in Fig. 5.

)τ,2/ρ()τ,2/ρ(

)τ,2/ρ−()τ,2/ρ−(

(   ,τ)R

(   ,τ)RR′(    ,0)

R′(    ,0)

+ + ...

= +

(a)

(b)

(c)

Χ

Χ

Χ

FIG. 5. (Color online) Schematic diagrammatic representation
of (a) the pair correlation function (2) and (b) the correlation
function of the order parameter (52) (see below), where the space
and imaginary time variables at the end points are indicated in each
case. (c) Series of maximally crossed diagrams X, which are used to
approximate both correlation functions (2) and (52) above Tc.

From the expression (39), we get for the volume integral of
g↑↓(ρ)∫

dρ g↑↓(ρ) =
∫

dq ei�νη �0(q)
∫

dk
(2π )3

�̃0(k; q)2 (40)

and, for its second moment,∫
dρ ρ2 g↑↓(ρ) =

∫
dq ei�νη �0(q)

∫
dk

(2π )3
[∇k�̃0(k; q)]2,

(41)
from which ξpair can be obtained like in Eq. (9).

The leading short-range behavior of g↑↓(ρ) is somewhat
simpler to obtain above than below Tc. Similarly to the
manipulations in Eq. (21), we now write in Eq. (39):∫

dk
(2π )3

eik·ρ �̃0(k; q) −−−−→
(ρ→0)

∫
dk

(2π )3
eik·ρ m

k2

+
∫

dk
(2π )3

[
�̃0(k; q) − m

k2

]
= m

4πρ
+ R0(q), (42)

where

R0(q) ≡ �0(q) −
∫

dk
(2π )3

m

k2
, (43)

such that

�0(q) R0(q) = − R0(q)
1
v0

+ �0(q)
= − R0(q)

m
4πaF

+ R0(q)

= −1 − m

4πaF

�0(q) (44)

owing again to the regularization (1). By entering the expres-
sion (42) in Eq. (39), we then obtain

g↑↓(ρ) −−−−→
(ρ→0)

∫
dq ei�νη �0(q)

[(
m

4πρ

)2

+ 2
m

4πρ
R0(q)

]

=
(

m

4π

)2 ∫
dq ei�νη �0(q)

(
1

ρ2
− 2

aF ρ

)
, (45)

where we now identify

�2
∞ =

∫
dq ei�νη �0(q) (46)

such that (m �∞)2 yields the Tan’s contact C above Tc within
the present theory [26].

Correspondingly, the chemical potential is eliminated in
favor of the density through the following expressions to which
Eqs. (28)–(31) reduce above Tc:

n = 2
∫

dk
(2π )3

kBT
∑

n

eiωnη G(k,ωn), (47)

where

G(k,ωn) = 1

iωn − ξ (k) − �(k,ωn)
(48)

with

�(k) = −
∫

dq �0(q) G0(q − k) . (49)

These expressions correspond to the non-self-consistent t-
matrix approximation above Tc in the form discussed in
Ref. [31] (see also Ref. [32]).
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FIG. 6. (Color online) Radial profiles of the pair correlation
function g↑↓(ρ) at Tc multiplied by ρ2 for the couplings (kF aF )−1:
(a) −1.0, (b) 0.0, and (c) +1.0. Dots correspond to the expression
(39) multiplied by ρ2 and lines represent the associated fits according
to Eq. (50). (d) The coupling dependence of the wave vector kc (dots),
which characterizes the oscillating behavior of g↑↓(ρ) in Eq. (50), is
compared at Tc with that of the Luttinger wave vector kL (squares),
which signals the presence of an underlying Fermi surface.

Before presenting the numerical calculation of the expres-
sions (40) and (41) (and thus of ξpair), it is worth considering in
detail at least in some cases how the overall spatial dependence
of g↑↓(ρ) evolves with coupling, from the BCS to the BEC
regimes across unitarity. This is shown in Fig. 6 for three
couplings at the respective critical temperature. In this figure,
the results of the numerical calculation of the expression (39)
multiplied by ρ2 (dots) are compared with the fits (lines)
obtained in terms of the following expression:

f (ρ) = A cos(φ0 +
√

2ρkc) e−√
2ρ/�0 , (50)

where ρ = |ρ| and (A,φ0,kc,�0) are fitting parameters. The
numerical prefactors in the arguments of the cosine and of
the exponential have been chosen in such a way that the
wave vector kc, which characterizes the oscillating behavior of

g↑↓(ρ) coincides with kF in the (extreme) BCS limit, while the
length �0 which characterizes the exponential decay of g↑↓(ρ)
coincides with ξpair = aF /

√
2 in the (extreme) BEC limit.

In addition, from these fits it turns out with good numerical
accuracy that the product A cos(φ0) coincides with C/(16π2)
for all couplings, as expected from the result (45).

From Fig. 6, on the BCS side, one notices a damped oscil-
lating behavior with a period determined by the characteristic
wave vector kc of Eq. (50). On physical grounds, one expects kc

to be related to the radius kL of the underlying Fermi surface,
which can, in turn, be identified from the dispersion relations
associated with the single-particle spectral function [16]. As
a consequence, the oscillating behavior of the pair correlation
function is bound to disappear on the BEC side of unitarity
once the underlying Fermi surface has collapsed, a situation
which corresponds to panel (c) of Fig. 6. The dependence of
the wave vector kc on coupling obtained in this way at the
respective critical temperatures is shown in panel (d) of Fig. 6,
where it is also compared with the corresponding dependence
of the Luttinger wave vector kL as reported in Ref. [16]. Note
from this plot that, as expected, kc and kL both vanish at the
same coupling value (�0.6). We have also verified that, in
all cases, the function g↑↓(ρ) + (n/2)2 remains positive. This
represents a nontrivial test on our approximate theory since
this function, being by definition a probability distribution,
has to remain non-negative for all ρ.

The complete temperature dependence of ξpair, both below
and above Tc, is reported in Fig. 7 for the same couplings of
Fig. 6. Here, the bare results of the calculation (dotted lines)
have been further interpolated (full lines) so as to smooth out
the cusplike feature which is present in all cases close to Tc (the
difference between the original and the smoothed data never
exceeding 10% in practice). With this smoothing provision, the
overall behavior of ξpair corresponds basically to a decreasing
function of temperature. Note also that, in contrast to the mean-
field case reported in Fig. 2(b), once pairing fluctuations are
included no universal behavior is obtained from the smoothed
curves of Fig. 7 at different couplings by a suitable rescaling
of the variables.

One might be tempted to conclude that the cusplike feature
present in the unsmoothed data of Fig. 7 should be attributed
to the occurrence of a reentrant behavior of the gap parameter
in the vicinity of Tc. This feature occurs in the t-matrix
approaches, both in their non-self-consistent [27] and self-
consistent [33] versions, where it is known to affect several
thermodynamic quantities in a similar fashion to that shown
in Fig. 7. However, we have explicitly verified that this feature
shows up in the temperature dependence of ξpair also when
the gap parameter is taken at the mean-field level for which no
reentrant behavior occurs. This is shown in the inset of Fig. 7(a)
for the BCS side of unitarity. A similar abrupt behavior when
crossing Tc is known to occur at the BCS mean-field level for
other thermodynamic quantities as well [5].

An interesting feature that results from the above temper-
ature dependence of ξpair is that, above but close to Tc, this
dependence is steeper on the BCS than on the BEC side of
the crossover (while in all cases when T � Tc it decays rather
slowly like 1/

√
T —see below). This feature will be exploited

in Sec. II E when comparing with available experimental data
related to ξpair in the normal phase. From the above results, it
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FIG. 7. (Color online) The temperature dependence of ξpair, ob-
tained with the inclusion of pairing fluctuations both below and above
Tc, is shown for the couplings (kF aF )−1: (a) −1.0, (b) 0.0, and
(c) +1.0. The arrows locate the corresponding critical temperatures.
Dotted lines correspond to the numerical results of the calculation,
while full lines represent an interpolation, which smooths out the
cusplike feature present in the numerical results close to Tc. The inset
in (a) shows the temperature dependence of ξpair for (kF aF )−1 = −1.0,
which is obtained from the expressions (20) below Tc and (39) above
Tc, but now with � and μ at the mean-field level.

also appears that for an attractive Fermi gas intrapair correla-
tions begin to build up in a substantial way already at temper-
atures of the order of the Fermi temperature TF . Correspond-
ingly, interpair correlations, which establish the (off-diagonal)
long-range order below Tc, will be seen in the next section to
become effective above Tc only at lower temperatures.

Finally, Fig. 8 recasts the temperature dependence of ξpair

above Tc in terms of the thermal wavelength λT =
√

2π
mkBT

(defined like in Ref. [34]). In each panel, the straight (dashed)
line correspond to the asymptotic value λT/

√
4π � 0.28 λT,

which is reached by ξpair in the high-temperature (classical)
limit irrespective of coupling, a result that can be obtained an-
alytically from the expressions (40) and (41) (cf. Appendix B).
Once this asymptotic value is reached, pair correlations can
be considered to have been completely overcome by thermal
fluctuations. Also in the context of Fig. 8, the dependence of
ξpair on temperature just above Tc appears more marked on the
BCS with respect to the BEC side of unitarity.
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FIG. 8. (Color online) The temperature dependence of ξpair with
the inclusion of pairing fluctuations above Tc (full lines) is expressed
in terms of the thermal wavelength λT, for the couplings (kF aF )−1:
(a) −1.0, (b) 0.0, and (c) +1.0. The dashed lines correspond to
the asymptotic value 0.28 λT, while the dots mark the onset of the
superfluid phase in each case.

E. Comparison with available experimental data
on the proximity effect in the normal phase

The results of Sec. II D, about the temperature depen-
dence of ξpair in the normal phase above Tc for various
couplings, can be related to recent measurements about the
temperature dependence of the normal coherence length ξN.
This dependence was obtained from the proximity effect
in an SS’S superconducting Josephson junction made of
high-temperature (cuprate) superconducting materials, with
the barrier region S’ constrained to the normal phase [13].

Specifically, it was found in Ref. [13] that the temperature
dependence of ξN is somewhat steeper for an optimally doped
with respect to an underdoped material, a result that was
attributed to the presence of preformed pairs in the pseudogap
regime of the cuprate barrier. This result appears to be in
line with our finding that the temperature dependence of
ξpair is steeper on the BCS than on the BEC side of the
crossover, provided one associates ξN with ξpair and attributes
a stronger coupling to the underdoped with respect to the
optimally-doped regime of the high-temperature (cuprate)
superconductors utilized in the experiment. (A more extensive
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FIG. 9. (Color online) (a) Comparison between the temperature
dependence of ξpair above Tc (lines) and of ξN obtained experimentally
in Ref. [13], for an optimally doped (LSCO-0.18, squares) and for an
underdoped (LSCO-0.10, circles) material. (b) The experimental data
for ξpair obtained in Ref. [35] from radio-frequency spectroscopy of
an ultracold Fermi gas taken at the temperatures T = (0.1,0.1,0.2)TF

from left to right (squares with error bars) are compared with our
calculated values, both at the T = 0 mean-field level (triangles) and
with the inclusion of pairing fluctuations at the same temperatures of
the experiment (circles).

discussion about the relationship between ξN and ξpair is
reported in Appendix C.)

It should be further pointed out in this context that the
data of Ref. [13] on the proximity effect refer specifically to
superconducting properties above Tc, which are not bound to
survive up to the crossover temperature at which pseudogap
phenomena eventually disappear (as clearly reported in Fig. 5
of Ref. [13]). For this reason, the findings of Ref. [13], together
with our interpretation here in terms of pairing fluctuations
above Tc, are not necessarily in contrast with theories involving
competing order parameters of a different kind.

In Fig. 9(a), we quantify the comparison, between the exper-
imental temperature dependence of ξN reported in Ref. [13] and
our theoretical temperature dependence of ξpair in the normal
phase. This is done by (i) rescaling both ξN and ξpair to arbitrary
units so that they coincide with each other at about T = 2Tc in
both cases analyzed experimentally and (ii) varying the cou-
pling (kF aF )−1 at which the temperature dependence of ξpair

is calculated until agreement is found with the corresponding
temperature dependence of ξN. As shown in Fig. 9(a), we
find in this way a reasonably good agreement between the
experimental and theoretical temperature dependence of these
lengths, provided we attribute to the underdoped material a
coupling value of about −0.4 close to unitarity, and to the
optimally doped material a coupling value of about −3.5

well inside the BCS regime. (We have verified that the latter
value shifts to −3.0 when the Gor’kov-Melik-Barkhudarov
correction is further included [36].) In absolute units of k−1

F , to
the above coupling values −0.4 and −3.5 there correspond the
values kF ξpair � (4.3,40), in order, at the lowest temperature
of about 1.5Tc at which the measurements were taken.

An additional comparison with the experimental data
involving ξpair, which can be done directly in absolute units
of k−1

F , is reported in Fig. 9(b). Here, the experimental data
for ξpair obtained from radio-frequency spectroscopy of an
ultracold Fermi gas at finite temperatures [35] (squares) are
compared with our calculations. This comparison shows that
the combined effect of temperature and pairing fluctuations
over and above mean-field (circles) results in a closer
agreement with the experimental data with respect to the
mean-field results taken at T = 0 (triangles). (We remark that,
to obtain this comparison, the bare experimental data obtained
in Ref. [35] from the widths of the radio-frequency spectra
have been suitably converted into values of ξpair, utilizing a
prescription given in the inset of Fig. 1(c) of Ref. [35] itself.)

III. THE CORRELATION FUNCTION OF THE ORDER
PARAMETER AND THE ASSOCIATED LENGTH ξphase

In this section, we examine the intrapair correlations, which
become critical when approaching Tc from above and are thus
responsible for the building up of the superconducting (off-
diagonal) long-range order.

To this end, we will retrace the treatment of Ref. [9], where
the (longitudinal) correlation function of the order parameter
was determined below Tc from a functional-integral approach,
and rephrase it in terms of a diagrammatic approach from
which the interpair (healing) length ξphase will be obtained
both below and above Tc throughout the BCS-BEC crossover
(while in Ref. [9] ξphase was calculated at T = 0 only).
Besides being somewhat simpler to handle than the functional-
integral approach, the diagrammatic approach used here for the
correlation function of the order parameter has the advantage
of being formally related to that describing the pair correlation
function utilized in the previous section.

A. Results below Tc for the “longitudinal” component
of the correlation function

We begin by considering the superfluid phase, where
(with reference to the direction of broken symmetry) one
needs to distinguish between the longitudinal and transverse
components of the correlation function of the order parameter.
Since only to the longitudinal component one can associate a
finite value of the healing length for interpair correlation, in
the following we shall deal with this component only.

In terms of the center-of-mass coordinates of the pairs, we
thus define a “longitudinal pair operator”

ϕ‖(R) = 1

2|�| [�∗ϕ(R) + �ϕ†(R)], (51)

where ϕ(R) = v0ψ↓(R)ψ↑(R), such that 〈ϕ(R)〉 = � for the
homogeneous system we are considering. Here, v0 is the
strength of the interparticle attractive potential, which will
be taken to vanish according to the regularization (1) only at
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the end of the calculation. (We shall also take eventually � to
be real without loss of generality.)

Following Ref. [9], we consider the static longitudinal
correlation function of the order parameter defined by

F‖(R − R′) =
∫ β

0
dτ 〈Tτ [ϕ‖(R,τ )ϕ‖(R′,τ = 0)]〉 − β |�|2,

(52)

where β = (kBT )−1 is the inverse temperature. With reference
to the Nambu representation of the field operators and to the
general expression (5) of the two-particle Green’s function,
the correlation function (52) can be rewritten as follows:

F‖(R − R′) = v2
0

4|�|2
∫ β

0
dτ [(�∗)2 G2(1,2; 1′+,2′+)

+�∗�G2(1,2′; 1′+,2+)+��∗G2(1′,2; 1+,2′+)

+�2 G2(1′,2′; 1+,2+)] − β |�|2, (53)

where now

1 = (R,τ,� = 1),

2 = (R′,τ = 0,� = 1),
(54)

1′ = (R,τ,� = 2),

2′ = (R′,τ = 0,� = 2)

are the relevant “dictionary” to be applied to the correlation
function of the order parameter.

Akin to the treatment of the pair correlation function that
was made in Sec. II, only the first two terms on the right-
hand side of Eq. (5) contribute within the BCS (mean-field)
decoupling, yielding

F‖(R − R′) = −v0

2
δ(R − R′) − v2

0

2

∫
dQ

(2π )3
eiQ·(R−R′)

× [A(Q,�ν = 0) + B(Q,�ν = 0)] , (55)

where A(q) and B(q) are the same quantities of Eq. (16). The
expression (55), however, does not survive the regularization
(1) when v0 → 0 and will therefore be neglected in the
following.

Quite generally, the remaining term for G2 in Eq. (5), which
contains the many-particle T matrix of Fig. 3(a), gives the
following contributions to the correlation function (53):

F‖(R − R′)

= −v2
0

4

∫
dQ

(2π )3
eiQ·(R−R′)

∑
�3�4�5�6

T
�3�4
�6�5

(q)

×
[∫

dkG1�3 (k + q)G�62(k)
∫

dk′ G�42(k′ + q)G1�5 (k′)

+
∫

dkG1�3 (k + q)G�62(k)
∫

dk′ G�41(k′ + q)G2�5 (k′)

+
∫

dkG2�3 (k + q)G�61(k)
∫

dk′ G�42(k′ + q)G1�5 (k′)

+
∫

dkG2�3 (k + q)G�61(k)
∫

dk′ G�41(k′ + q)G2�5 (k′)
]

,

(56)

where q = (Q,�ν = 0) has to be understood in the above
expression whenever it appears.

As we did in Sec. II C, we again limit ourselves to consider
the series of ladder diagrams in the broken-symmetry phase
for an interparticle interaction of the contact type, which
are depicted in Fig. 3(a). After a long but straightforward
calculation, in the relevant limit when v0 → 0 the expression
(56) reduces eventually to the result

F‖(R − R′) = 1

2

∫
dQ

(2π )3

eiQ·(R−R′)

A(Q,�ν = 0) + B(Q,�ν = 0)
,

(57)

which coincides with that obtained originally in Ref. [9]
through a functional-integral approach at the one-loop order
(Gaussian fluctuations).

The novelty here is that the diagrammatic structures of the
correlation function of the order parameter (52) and of the pair
correlation function (2) have been treated on equal footing
(a feature which appears mostly evident when dealing with
the normal phase above Tc, as it was already remarked when
drawing the diagrams of Fig. 5). For this reason, the values
of � and μ to be used in the numerical calculation of the
expression (57) should be taken in line with the treatment
of Sec. II C, which includes pairing fluctuations below Tc,
although in Ref. [9] they where considered at the mean-field
level like in Sec. II B (and also at zero temperature only).

Nevertheless, it is of interest to calculate the coupling and
temperature dependence of the healing length ξphase extracted
from Eq. (57) below Tc also with the values of � and μ taken
at the mean-field level, since this allows us to compare with
the results of Ref. [37] where the same quantity was extracted
from the spatial profiles of the order parameter obtained by a
numerical solution of the Bogoliubov-de Gennes (BdG) equa-
tions for an isolated vortex embedded in an infinite superfluid.

Quite generally, to obtain the value of the healing length
ξphase we follow the procedure adopted in Ref. [9] and expand
the quantity A(Q,�ν = 0) + B(Q,�ν = 0) in the integrand of
Eq. (57) for small values of Q:

A(Q,�ν = 0) + B(Q,�ν = 0) = a + b Q2 + · · · (58)

in such a way that ξphase = √
b/a [38]. In addition, to account

for the independent definitions used for ξpair and ξphase, in the
following, we adopt the convention of rescaling the value of
ξphase obtained from the expression (58) at T = 0 in the BCS
limit (kF aF )−1  −1 in such a way that it coincides with the
value of ξpair in that limit (as one would expect it to be the case

on physical grounds). In this way, we set ξphase = 3√
2

√
b
a

[14].
At the mean-field level, the condition A(Q = 0,�ν = 0) =

B(Q = 0,�ν = 0) is equivalent to the BCS gap equation (11).
Upon approaching the critical temperature from below, B(Q =
0,�ν = 0) given by Eq. (17) vanishes like �2(T → T −

c ) ∝
(Tc − T ). This implies that also the coefficient a of Eq. (58)
vanishes like (Tc − T ) in this limit, such that ξphase ∝ (Tc −
T )−1/2 consistent with the value 1/2 of the mean-field critical
exponent.

Figure 10 compares over the temperature interval from
T = 0 to Tc the results of the present calculation for ξphase

(whereby pairing fluctuations beyond the BCS decoupling are
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FIG. 10. (Color online) The temperature dependence of ξphase

obtained from Eq. (58) with � and μ taken at the mean-field level
(full lines), is compared with the results reported in Fig. 9 of Ref. [37]
(dots), which were obtained by a numerical solution of the BdG
equations, for the couplings (kF aF )−1: (a) −2.0, (b) −1.0, (c) 0.0,
and (d) +1.0. Here, the results of the present calculation have been
rescaled by an overall factor of 2/3, which takes into account the
different definitions used for the same physical quantity by the two
independent numerical calculations.

included in the broken-symmetry phase with a homogeneous
gap parameter � through the series of ladder diagrams depicted
in Fig. 3(a), where the values of � and μ are taken at the mean-
field level), with the results obtained alternatively in Ref. [37]
by a numerical solution of the BdG equations with a spatially
dependent � that represents an isolated vortex embedded in an
infinite superfluid. The rather remarkable agreement between
these two independent calculations confirms one’s expectation
that a mean-field calculation for an inhomogeneous situation
(of the type usually dealt with by the BdG equations) can
actually contain contributions from what would usually be
referred to as fluctuation corrections in a homogeneous
situation. This is in line with a general consideration that, in
an inhomogeneous situation, the imprint of the quasiparticle
spectrum can be found in the ground-state wave function [39].

The numerical values of ξphase somewhat change when the
values of � and μ to be inserted into the correlation function
(57) are instead obtained by including also pairing fluctuations
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FIG. 11. (Color online) Coupling dependence of ξphase at T = 0,
when the values of � and μ on which it depends include (full line)
or do not include (dashed line) pairing fluctuations.

(cf. Sec. II C). A comparison between the coupling dependence
of ξphase at T = 0, obtained when the values of � and μ include
or do not include pairing fluctuations, is shown in Fig. 11. Note
that the use of values of � and μ beyond mean field somewhat
increases ξphase on the BCS side of unitarity. This is in line with
the fact that the inclusion of pairing fluctuations, to the extent
that it decreases the value of the critical temperature at a given
coupling (see Fig. 13 below), has the effect of renormalizing
the coupling to a smaller value along similar lines to what was
already pointed out in the discussion of Fig. 4(a).

B. Results above Tc and the crossover temperature T ∗

In the normal phase, B(q) = 0 and A(q) = −1/v0 −
�0(q) = 1/�0(q) with the notation of Sec. II D. Correspond-
ingly, the expression (57) reduces to

F (R − R′) = 1

2

∫
dQ

(2π )3
eiQ·(R−R′) �0(Q,�ν = 0), (59)

where the suffix ‖ has been dropped since in the normal phase
no reference remains to the direction of broken symmetry. As
it was mentioned in the previous subsection, above Tc it is
possible to appreciate most readily that the difference between
the pair correlation function [Eq. (39)] and the correlation
function of the order parameter [Eq. (59)] is due to the ways
the external variables are set in the diagrammatic structure of
Fig. 5, which select alternatively the intrapair variable ρ or the
interpair variable R − R′.

The expression (59) holds at any temperature above Tc, and
ξphase can correspondingly be obtained by an expansion similar
to Eq. (58). The temperature dependence of ξphase obtained in
this way for three characteristic couplings across the BCS-BEC
crossover is shown in Fig. 12, where it is also compared with
that of ξpair above Tc reported previously in Fig. 7.

From these plots, one notices a steeper temperature depen-
dence of ξphase with respect to ξpair, which at any coupling leads
to a crossing of the corresponding curves at a characteristic
temperature T ∗. This temperature, which can be thus obtained
for all couplings throughout the BCS-BEC crossover, has
then the meaning of a “crossover temperature” below which
interpair correlations begin to be built from the intrapair
correlations that are already present above this temperature.
(In Appendix B, we shall verify that, in the high-temperature
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FIG. 12. (Color online) The temperature dependence of ξphase

(full lines) is compared with that of ξpair (dashed lines) above Tc

for the couplings (kF aF )−1: (a) −1.0, (b) 0.0, and (c) +1.0.

limit T � TF , ξphase decays like [(T/TF ) ln(T/TF )]−1/2 and
therefore at a faster rate than ξpair, which instead decays like
[(T/TF )]−1/2.)

Being a crossover temperature, the precise value of T ∗ at a
given coupling does not matter, on physical grounds the only
reasonable condition being that the ratio ξphase(T ∗)/ξpair(T ∗)
remains of order unity at T ∗. Interestingly enough, we have
found that with the choice ξphase(T ∗)/ξpair(T ∗) = π2/6 �
1.64, the overall coupling dependence of T ∗ results quite
similar to that of the BCS critical temperature T BCS

c that
was already reported in Fig. 2(a). This is shown in Fig. 13,
where the coupling dependence of T ∗ obtained in this way is
compared with that of the mean-field critical temperature T BCS

c

obtained by solving Eqs. (11) and (12) in the limit � → 0. As a
further reference, Fig. 13 also reports the coupling dependence
of the critical temperature Tc that includes the effects of pairing
fluctuations within the t-matrix approximation (as taken from
Fig. 1 of Ref. [40]).

It is worth commenting that, in the literature of the
BCS-BEC crossover, the mean-field critical temperature T BCS

c

has generically represented a pair-breaking temperature below
which preformed pairs are formed, in such a way that the
effects of precursor pairing manifest themselves between Tc

and T BCS
c [15]. With the present analysis, this temperature
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FIG. 13. (Color online) The coupling dependence of T ∗, which
results from the choice ξphase(T ∗)/ξpair(T ∗) = π 2/6 (full line), is com-
pared with that of the mean-field critical temperature T BCS

c (dotted
line). The critical temperature Tc within the t-matrix approximation
is also reported for comparison (dashed line).

acquires a more physical meaning for the building up of
interpair correlations out of intrapair correlations that exist
well above this temperature. Correspondingly, the emphasis
given in the original BCS theory [1], about the occurrence of
fermionic pair correlations rather than on the actual existence
of fermion pairs, appears here to be fully justified also as far
as the crossover temperature T ∗ is concerned.

IV. CONCLUDING REMARKS

In this paper, we have considered the pairing correlations
which build up in a Fermi gas with an attractive interparticle
interaction, not only as a function of coupling throughout the
BCS-BEC crossover but also as a function of temperature,
both above and below the critical temperature at which the
superfluid phase sets in. This has been done in terms of
two correlation functions that focus alternatively on intra-
pair correlations, which depend on the relative coordinate
ρ = r − r′ between spin-up and spin-down fermions, or on
interpair correlations, that depend instead on the difference
between the center-of-mass coordinates R = (r + r′)/2 of
two pairs. It has been shown that, quite generally, the same
kind of many-body diagrammatic structure can describe both
correlation functions, with the only provision of setting the
external spatial variables in the diagrammatic structure in an
appropriate way. This difference results, however, in drastic
changes for the characteristic lengths associated with the two
above correlations functions.

We have found that intrapair correlations decrease at a rather
slow rate with increasing temperature, in such a way that they
survive considerably above the critical temperature. We have
also found this rate to depend on the coupling throughout the
BCS-BEC crossover, in such a way that it is slower on the BEC
side with respect to the BCS side of unitarity. We have further
correlated qualitatively this finding with the experimental data
recently obtained on the proximity effect in the normal phase
of a high-temperature (cuprate) superconductor.

In addition, we have found that above Tc interpair corre-
lations decrease with increasing temperature at a faster rate
than intrapair correlations, leading to temperature crossing
between the two behaviors. This, in turn, has led us to
identify a crossover temperature T ∗, such that at temperatures
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smaller than T ∗ there is a growing importance of the interpair
correlations, which emerge out of the existing intrapair
correlations. Since from a many-body point of view the
occurrence of pairing correlations is a much better defined
concept than the wave function of Cooper (or preformed)
pairs, the crossover temperature T ∗ identified in this way has a
more sound physical basis than the pair-breaking temperature
discussed thus far in the literature.

The numerical calculations were done at the level of
the (non-self-consistent) t-matrix approximation, both below
and above Tc, aiming primarily at including the effects of
pairing fluctuations over and above mean field. Below Tc,
their inclusion is essential for interpair correlations, but it
is also important for intrapair correlations especially as far
as the short-range behavior of the pair correlation function is
concerned. This is, in turn, related to the Tan’s contact that
has recently attracted much interest in the context of Fermi
gases.

The t-matrix approximation that we have utilized in the nu-
merical calculations includes pairing fluctuations in a minimal
way, which we regard sufficient to describe the main physical
effects related to intra- and interpair correlations we have
discussed. In this respect, even though improved diagrammatic
methods like those of Refs. [33,41] could possibly somewhat
modify our numerical results in a quantitative way, they are not
expected to affect in an appreciable way the overall physical
framework which we have described.
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APPENDIX A: PAIR CORRELATION FUNCTION
AND SUM RULE

In this Appendix, we consider a sum rule that the pair
correlation function g↑↓(ρ) defined by the expression (2)
should apparently obey. In this context, we shall have to face a
rather subtle physical point that was pointed out some time ago
by Bell [21]. Accordingly, we shall see that the process of first
selecting an approximate form for g↑↓(ρ) as a function of ρ

and then performing the integral of this quantity over ρ yields a
different result than doing the opposite, that is to say, choosing
an approximate form directly for the integrated quantity (albeit
apparently through the same kind of approximation scheme).
As pointed out by Bell, this non commutativity of the results
reflects the fact that the fluctuations of the particle number
are evaluated in the grand canonical or canonical ensembles
and becomes irrelevant in the high-temperature limit when
classical physics takes over.

It was mostly for this reason that in Sec. II C, we
have commented that, since no conservation law corresponds
to the pair correlation function (2), considerations about
“conserving” diagrammatic approximations in the sense of
Baym and Kadanoff [19,20] do not directly apply to it. As a
consequence, in Sec. II C, the series of ladder diagrams for
the T matrix below Tc depicted in Fig. 3(a) was introduced for

the pair correlation function mainly to recover the expected
values of the Tan’s contact. In Sec. II D, this series was used
also above Tc because the corresponding series of “maximally
crossed diagrams” represents the minimal ingredient to get
meaningful results for the pair correlation function (and further
gives the expected result in the high-temperature limit where
the non-self-consistent t-matrix approximation is known to
become exact [42]).

Quite generally, the sum rule that the pair correlation
function g↑↓(ρ) should apparently obey can be set up as
follows. From the definition (2), one gets for the volume
integral of g↑↓(ρ) the expression∫

dρ g↑↓(ρ) = 1

V
(〈N↑N↓〉 − 〈N↑〉〈N↓〉), (A1)

where V is the volume occupied by the system and Nσ =∫
dr ψ†

σ (r)ψσ (r) is the number operator with spin σ . On the
other hand, by introducing two different chemical potentials
μσ for each spin species, from the definition of n↑ in terms of
the thermal average,

n↑ = 1

V

Tr[N↑e−β(H−μ↑N↑−μ↓N↓)]

Tr[e−β(H−μ↑N↑−μ↓N↓)]
, (A2)

where H is the system Hamiltonian and β = (kBT )−1 the
inverse temperature, one also obtains

∂n↑
∂μ↓

∣∣∣∣
T ,V

= β

V
(〈N↑N↓〉 − 〈N↑〉〈N↓〉). (A3)

Comparison of the expressions (A1) and (A3) then yields∫
dρ g↑↓(ρ) = 1

β

∂n↑
∂μ↓

∣∣∣∣
T ,V

, (A4)

where the limit n↑ → n↓ → n/2 of balanced spin populations
is here understood like the rest of the paper.

The contradiction pointed out by Bell [21] is now apparent.
While the right-hand side of Eq. (A4) is expected to vanish
at zero temperature owing to the presence of the factor β−1

in front of the finite value of ∂n↑
∂μ↓

|T ,V , the left-hand side of
Eq. (A4) is bound to remain finite once any reasonable choice
of g↑↓(ρ) made beforehand is integrated over ρ. In addition,
owing to Eq. (A1) the vanishing of the right-hand side of
Eq. (A4) would also imply a complete suppression of particle
fluctuations, in the sense that 〈N↑N↓〉 = 〈N↑〉〈N↓〉.

Consistently with Bell’s analysis, we shall here show that
the “sum rule” (A4) is obeyed by a “conserving” diagrammatic
approximations in the sense of Baym and Kadanoff [19,20],
only when this approximation is made directly on the integral
of g↑↓(ρ) and not on g↑↓(ρ) itself before performing the
integration. To this end, we shall explicitly consider the
extended BCS approximation, which corresponds to the series
of ladder diagrams of Fig. 3(a) and is familiar in the context
of gauge invariance for the response of a superconductor to an
external electromagnetic field [1].

In this way, we shall extend Bell’s analysis to finite
temperature as well, and show analytically the way the identity
(A4) is satisfied in the above sense within this approximation
for any temperature below Tc. Within this approximation we
shall also provide a numerical analysis, aiming at showing to
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what extent the numerical integration over ρ of g↑↓(ρ) given
by the expression (20) (with the values of � and μ taken
at the BCS mean-field level) differs from the right-hand side
of Eq. (A4) calculated also at the same level, as a function of
coupling and temperature below Tc. Finally, we shall show that
the sum rule (A4) becomes eventually satisfied at high-enough
temperatures above Tc, when the expression (39) for g↑↓(ρ)
that holds in this limit is integrated over ρ.

Quite generally, following Bell’s analysis, it is possible to
manipulate the right-hand side of Eq. (A1) by introducing an
integral over the imaginary time τ as follows:

∫
dρ g↑↓(ρ) + V n↑n↓

= 1

V
〈N↑N↓〉

= 1

V β

∫ β

0
dτ 〈eKτN↑e−KτN↓〉

= 1

V β

∫ β

0
dτ 〈Tτ [(eKτN↑e−Kτ )N↓]〉

= − 1

β

∫ β

0
dτ

×
∫

dρ〈Tτ [�1(ρ,τ )�2(0,0+)�†
2(0,0)�†

1(ρ,τ+)]〉

= − 1

β

∫ β

0
dτ

∫
dρ G2(ρτ1,00+2; ρτ+1,002), (A5)

where nσ = 〈Nσ 〉/V , K = H − μ↑N↑ − μ↓N↓ is the grand-
canonical Hamiltonian entering Eq. (A2), and G2(1,2; 1′,2′) =
〈Tτ [�(1)�(2)�†(2′)�†(1′)]〉 is the two-particle Green’s func-
tion with the Nambu representation of the field operators.

The crucial point that has enabled us to arrive at the last line
of Eq. (A5) is the consideration that the operator N↑ commutes
with the Hamiltonian H while its density ψ†

σ (r)ψσ (r) does
not [21]. For this reason, it has been possible to introduce a
time variable in Eq. (A5), a process which in turn establishes
connections with the continuity equation and the ensuing
conservation law.

At this point, one can use in the last line of Eq. (A5) the
representation (5) of the Bethe-Salpeter equation for G2, thus
resulting in the following expression in terms of the single-
particle Green’s function G and the many-particle T matrix:

∫
dρ g↑↓(ρ) = 1

β

[ ∫
dk G12(k)2

+
∑

�3�4�5�6

∫
dk G1�3 (k)G�61(k) T

�3�4
�6�5

(q → 0)

×
∫

dk′ G�42(k′)G2�5 (k′)
]
, (A6)

which holds in the present form for a homogenous system with
a contact interparticle interaction.

We next specify the T matrix within the extended BCS
approximation of Fig. 3(a), in such a way that the expression

(A6) reduces to∫
dρ g↑↓(ρ) = 1

β

{∫
dk G12(k)2

+
∫

dk G11(k)G12(k)
∫

dk′ G22(k′)G21(k′)

× [TI,I(q)+TI,II(q)+TII,I(q)+TII,II(q)]q→0

}
,

(A7)

where with reference to the matrix elements (16), we have

[TI,I(q) + TI,II(q) + TII,I(q) + TII,II(q)]q→0

= − 2(A(q → 0) − B(q → 0))
[A(q → 0) − B(q → 0)] [A(q → 0) + B(q → 0)]

= − 1

B(q = 0)
= − 1[ ∫

dk G12(k)2
]2 . (A8)

Note that, to obtain the last line of Eq. (A8), the BCS gap
equation has been used in the form A(q = 0) = B(q = 0)
together with the definition (17) of B(q).

There then remains to show that the expression within
braces on the right-hand side of Eq. (A7) coincides with
∂n↑
∂μ↓

|T ,V of Eq. (A4), also calculated at the level of the BCS
mean field. To this end, we write

∂n↑
∂μ↓

= ∂n↑
∂μ↓

∣∣∣∣
�

+ ∂n↑
∂�

∣∣∣∣
μ↑,μ↓

∂�

∂μ↓
, (A9)

where reference to constant values of T and V has been
dropped for convenience. Here, n↑ and � are obtained by
the expressions

n↑ =
∫

dk eiωnηG11(k), � = v0

∫
dk eiωnηG12(k) (A10)

in terms of the BCS single-particle Green’s functions corre-
sponding to imbalanced spin populations [43](

G11(k) G12(k)

G21(k) G22(k)

)
= 1

[iωn − E+(k)][iωn + E−(k)]

×
(

iωn + ξ↓(k) −�

−�∗ iωn − ξ↑(k),

)
,

(A11)

where now ξσ (k) = k2/(2m) − μσ , E±(k) = E(k) ± δξ (k),
E(k) = [ξ (k)2 + |�|2]1/2, with ξ (k) = [ξ↑(k) + ξ↓(k)]/2 and
δξ (k) = [ξ↑(k) − ξ↓(k)]/2.

In this way, with reference to the first of Eq. (A10), we
obtain

∂G11(k)

∂μ↓

∣∣∣∣
�

= G12(k)2, (A12)

∂G11(k)

∂�

∣∣∣∣
μ↓

= −2G11(k)G12(k) , (A13)
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while with reference to the second of Eq . (A10), we obtain

∂G12(k)

∂μ↓

∣∣∣∣
�

= G12(k)G22(k), (A14)

∂G12(k)

∂�

∣∣∣∣
μ↓

= 1

�
G12(k) − 2G12(k)2. (A15)

This yields for the derivative of � in Eq. (A9),

∂�

∂μ↓
= 1

2

∫
dk G12(k)G22(k)∫

dk G12(k)2
, (A16)

such that Eq. (A9) becomes eventually:

∂n↑
∂μ↓

=
∫

dk G12(k)2

−
∫

dk G11(k)G12(k)
∫

dk′ G22(k′)G21(k′)∫
dk G12(k)2

, (A17)
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FIG. 14. (Color online) The temperature dependence of∫
dρ g↑↓(ρ) below Tc with g↑↓(ρ) given by the extended BCS

approximation (20) (full lines) is compared with the temperature
dependence of 1

β

∂n↑
∂μ↓ |T ,V given by the BCS expression (A17) (dashed

lines), for the couplings (kF aF )−1: (a) −1.0, (b) 0.0, and (c) +1.0.
In both quantities (which are normalized to n/2), the values of �

and μ are taken at the mean-filed level. The inset in the central
panel shows a corresponding comparison made at unitarity in the
high-temperature limit.

where the limit of balanced spin populations can be restored
at the end of the calculation. Comparison of the right-hand
side of Eq. (A17) with the expression within braces on the
right-hand side of Eq. (A7) supplemented by Eq. (A8) proves
that the “sum rule” (A4) is indeed satisfied within the extended
BCS approximation precisely in the restricted sense that we
have specified above.

In practice, to quantify the violation of the sum rule (A4)
when g↑↓(ρ) is approximated by the extended BCS approxi-
mation (20) (also with � and μ taken at the BCS mean-field
level) and then integrated numerically over ρ, we present in
Fig. 14 the temperature dependence of

∫
dρ g↑↓(ρ) obtained in

this way from T = 0 up to Tc for three characteristic couplings
(full lines), and compare it with the corresponding temperature
dependence of 1

β

∂n↑
∂μ↓

|T ,V where ∂n↑
∂μ↓

|T ,V is given by the
expression (A17) in the limit of balanced spin populations
(dashed lines). Deviations between these two results appear to
be quite substantial.

On the other hand, the inset in the central panel of Fig. 14
shows a similar comparison made in the high-temperature
regime T � TF , with the integral of g↑↓(ρ) calculated nu-
merically from the expression (39) (full line) and ∂n↑

∂μ↓
|T ,V

taken from the results of Ref. [44] obtained at unitarity in
terms of a high-temperature (virial) expansion (dashed line).
As anticipated, at high temperatures when classical physics
takes over, the two results are seen to coincide rather accurately
with each other.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF ξpair

AND ξphase AT HIGH TEMPERATURES

It was shown numerically in Fig. 8 of the main text that,
in the classical limit of high temperatures and irrespective of
coupling, the pair coherence length ξpair becomes proportional
to the value of the thermal wavelength with a coefficient of
the order unity. In this appendix, we show that this result can
be also obtained analytically in terms of the expressions of
Sec. II D. In addition, from the expressions of Sec. III A,
we shall also obtain analytically the behavior of ξphase at high
temperatures, which is consistent with the numerical behavior
reported in Fig. 12 of the main text.

In the classical limit, μ/(kBT ) → −∞ at fixed density,
such as in the expressions of Sec. II D, we may consider
|μ|/(kBT ) � 1. We take further |μ| � (ma2

F )−1, a condition
that is satisfied at high-enough temperatures irrespective of
coupling. Accordingly, we approximate the expression (37) as
follows:

�̃0(k; q) � 1

ξ (k) + ξ (k + q) − i�ν

, (B1)

and take the pair propagator of the form [23]:

�0(q,�ν) � − 1

m
4πaF

− m3/2

4π

√
q2

4m
− 2μ − i�ν

� 4π

m3/2

1√
q2

4m
− 2μ − i�ν

. (B2)
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We thus obtain for the last factor on the right-hand side of
Eq. (40):

∫
dk

(2π )3
�̃0(k; q)2

�
∫

dk
(2π )3

1

[ξ (k) + ξ (k + q) − i�ν]2

= m2

2π2

∫ ∞

0
dk

k2(
k2 + q2

4 − 2mμ − im�ν

)2

= m3/2

8π

1( q2

4m
− 2μ − i�ν

)1/2 , (B3)

where the last line has been obtained by a contour integration.
Correspondingly, we obtain for the last factor on the right-hand
side of Eq. (41):

∫
dk

(2π )3
[∇k�̃0(k; q)]2

�
∫

dk
(2π )3

( 2k+q
m

)2

[ξ (k) + ξ (k + q) − i�ν]4

= 2m2

π2

∫ ∞

0
dk

k4(
k2 + q2

4 − 2mμ − im�ν

)4

= m1/2

16π

1( q2

4m
− 2μ − i�ν

)3/2 , (B4)

where the last line has again been obtained by a contour
integration.

The volume integral (40) of g↑↓(ρ) then becomes

∫
dρ g↑↓(ρ) � 1

2

∫
dq

(2π )3
kBT

∑
ν

ei�νη

q2

4m
− 2μ − i�ν

= 1

2

∫
dq

(2π )3
fB

(
q2

4m
− 2μ

)

� 1

2

(
mkBT

π

)3/2

e
2μ

kB T , (B5)

where in the last step the Bose function fB(ε) =
[exp (ε/kBT ) − 1]−1 � e−ε/(kBT ) has been approximated by
its high-temperature form. Correspondingly, the second mo-
ment (41) becomes

∫
dρρ2g↑↓(ρ) � 1

4m

∫
dq

(2π )3
kBT

∑
ν

ei�νη( q2

4m
− 2μ − i�ν

)2

= 1

8m

d

dμ

∫
dq

(2π )3
fB

(
q2

4m
− 2μ

)

� 1

4π

(
mkBT

π

)1/2

e
2μ

kB T , (B6)

where again in the last step the Bose function has been
approximated by its high-temperature form.

The above results can eventually be inserted in the definition
(9) for (the square of) ξpair, yielding the expression:

ξ 2
pair =

∫
dρ ρ2 g↑↓(ρ)∫
dρ g↑↓(ρ)

�
1

4π

(
mkBT

π

)1/2
e

2μ

kB T

1
2

(
mkBT

π

)3/2
e

2μ

kB T

= 1

2mkBT
,

(B7)

which is valid in the high-temperature limit. This yields ξpair �
(2mkBT )−1/2 = λT/

√
4π , using a standard definition [34] of

the thermal wavelength λT =
√

2π
mkBT

(with � = 1). Note that,

if we would have instead introduced the length λ̃T such that
kBT = (2mλ̃2

T)−1, the result (B7) would simply read ξpair � λ̃T

with a unit coefficient.
The leading behavior (B2) can further be used to determine

ξphase in the high-temperature limit. Accordingly, we obtain
approximately

a � (2m)3/2

8π

√
|μ|, b � (2m)1/2

64π

1√|μ| (B8)

for the coefficients of the expansion (58), such that

ξphase �
√

9

32 m |μ| . (B9)

Making use at this point of a standard expression for the
chemical potential of an ideal Fermi gas valid at high
temperatures (T � TF ) [34], the result (B9) becomes

ξphase � 3

4

ξpair√
ln

[
6 π2

(kF λT )3

] , (B10)

where kF λT  1 in this limit.

APPENDIX C: RELATIONSHIP BETWEEN
ξN AND ξpair OR ξphase

In Sec. II C, the experimental results of Ref. [13], about the
temperature dependence of the normal coherence length ξN,
were related to our results about the temperature dependence
of ξpair in the normal phase above Tc for various couplings [cf.
Fig. 9(a) of the main text]. In this appendix, we substantiate
our argument for having associated ξN with ξpair and not with
ξphase in the context of the experiment of Ref. [13], where the
temperature window is comprised between about 1.5 Tc and
3.0 Tc and therefore is not too close to Tc.

It was shown some time ago by Kogan [45] that the
appropriate coherence length of a normal metal in a proximity
system changes with temperature in a continuous (albeit
nontrivial) fashion, from what we have here identified with
ξphase close to Tc, to what we have identified with ξpair

somewhat above Tc [46].
Kogan’s approach holds in what would be referred to as the

extreme BCS limit [namely, (kF aF )−1  −1] in the language
of the BCS-BEC crossover. Nevertheless, on physical grounds,
one expects Kogan’s result (namely, ξphase close to Tc turning
into ξpair somewhat above Tc) to continue to hold even away
from this limit. Lacking at present a more complete theory
that would extend Kogan’s approach throughout the BCS-BEC
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FIG. 15. (Color online) (a) Temperature dependence of the
length scale ξ over which superconducting correlations survive in
the normal phase according to Ref. [45] (full line). Also shown are
the curves from Ref. [45] that can be identified with ξphase (dashed
line) and ξpair (dotted line) of the present approach. Here, vF is the
Fermi velocity. (b) The data from Fig. 4 of Ref. [47] (circles) are
compared with the temperature dependence of ξphase (dashed line)
and ξpair (dotted line) calculated for the coupling (kF aF )−1 = −1.5.
The dash-dotted line extrapolates high-temperature behavior of the
data. (c) Attempts to fit the data from Ref. [13] in terms of ξphase,
instead of ξpair as in Fig. 9(a) of the main text. All attempts have
failed for the underdoped material (circles).

crossover, this was the reason why in Fig. 9(a) of the main
text we compared the experimental data of Ref. [13] with the
temperature dependence of ξpair. Our reasoning is substantiated
by the plots reported in Fig. 15.

In particular, in panel (a) of Fig. 15 the full line shows the
temperature dependence of Kogan’s ξ (as given by Eq. (25)
of Ref. [45]), the dashed line represents the extrapolation over
an extended temperature interval of its limiting (Ginzburg-
Landau) behavior close to Tc (as given by Eq. (27) of Ref. [45]),
and the dotted line represents the extrapolation down to Tc of
its limiting high-temperature behavior (as given by Eq. (26) of
Ref. [45]). In the language of the present paper, the dashed line
can thus be identified with ξphase and the dotted line with ξpair

[46]. Note that the two extrapolated lines cross each other at
about 1.75 T/Tc and that the full line lies always above these
two extrapolated curves.

Analogous features appear when comparing the older data
reported in Fig. 4 of Ref. [47] (which get quite close to Tc)
with our present results for ξphase and ξpair in the context
of the BCS-BEC crossover. Panel (b) of Fig. 15 shows this
comparison. Here, the data from Fig. 4 of [47] (circles)
are compared with our curves for ξphase (dashed line) and
ξpair (dotted line) calculated for the common coupling value
(kF aF )−1 = −1.5 (which is still in the BCS—albeit not too
extreme—regime). The dash-dotted line is a guide for the eye
which extrapolates the high-temperature behavior of the data,
with reference to which the sudden rise of the data at about
1.25 T/Tc is evident. In this way, ξphase (dashed line) and ξpair

are seen to represent reasonably the limiting behaviors of the
data.

Finally, in panel (c) of Fig. 15, we reconsider the recent
data of Ref. [13] (which do not get close to Tc) and try to fit
them with our calculation for ξphase, instead of ξpair as we did
in Fig. 9(a) of the main text. While we were ably to find a
coupling value [(kF aF )−1 = −0.3] for which ξphase (full line)
can reasonably represent the data for the optimally-doped
material (LSCO-0.18, squares), all attempts we have made
to represent with ξphase the data for the underdoped material
(LSCO-0.10, circles) failed even though we have spanned the
coupling (kF aF )−1 throughout the BCS-BEC crossover.
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