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We classify discrete-rotation symmetric topological crystalline superconductors (TCS) in two dimensions and
provide the criteria for a zero-energy Majorana bound state (MBS) to be present at composite defects made
from magnetic flux, dislocations, and disclinations. In addition to the Chern number that encodes chirality,
discrete rotation symmetry further divides TCS into distinct stable topological classes according to the rotation
eigenspectrum of Bogoliubov-de Gennes quasiparticles. Conical crystalline defects are shown to be able to
accommodate robust MBS when a certain combination of these bulk topological invariants is nontrivial as
dictated by the index theorems proved within. The number parity of MBS is counted by a Z2-valued index that
solely depends on the disclination and the topological class of the TCS. We also discuss the implications for
corner-bound Majorana modes on the boundary of topological crystalline superconductors.
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I. INTRODUCTION

The discovery of symmetry protected topological insulators
and superconductors has been one of the most exciting devel-
opments in condensed matter physics in the last ten years [1,2].
The most notable symmetry protection is due to time-reversal
symmetry [3], but by now, the list of possible symmetry
protected topological states has vastly expanded. In fact, the
closing remarks of Ref. [4] called for a complete topological
band theory that includes topological classifications based on
all point-group symmetries in addition to the discrete symme-
tries of time-reversal, charge-conjugation, and chirality. This
challenge has been met through the work of several different
groups which have begun classifying topological states pro-
tected by inversion [5,6], reflection [4,7–9], rotation [10–13],
and, in general, even more complicated space-group symme-
tries [14]. In this work, we extend the classification to cover
all topological crystalline superconductors (TCS) in 2D with
discrete rotation symmetries.

In addition to symmetry protected topological insulators
and superconductors, the realization of Majorana fermion
bound states [15] has become one of the most exciting chal-
lenges in the condensed matter community [1,2,16–18] due
to its non-Abelian fusion and braiding characteristics [19,20]
and promising prospects in topological quantum computing
[21–26]. These bound states are expected to be present in
one and two-dimensional p-wave superconductors [27–29]
and in two-dimensional noncentrosymmetric superconduc-
tors [30] as boundary or vortex excitations, and in non-
Abelian quantum Hall states [31–33] as Ising quasiparticle
excitations. More recently, with the discovery of topological
insulators (TI) [3,34–40], Majorana bound states (MBS) are
predicted to exist in heterostructures such as superconductor
(SC)-ferromagnet (FM) interfaces in proximity with quantum
spin Hall insulators [41–45] and strong spin-orbit coupled
semiconductors [46–50]. They are also predicted to exist in
s-wave superfluids of cold fermionic atoms with laser-field-
generated effective spin-orbit interactions [51].

For the latter cases of heterostructures devices, the MBS
are trapped on nondynamical defects such as domain walls.
These defect MBS are conceptually distinct from quantum

deconfined Ising anyons in topological phases [52–54] like the
Pfaffian quantum Hall state [31–33], the chiral px + ipy super-
conductor [19,28,29], or the Kitaev honeycomb model [20].
The difference is that they are not fundamental excitations
that rely on the existence of non-Abelian topological order
of a quantum system, but are extrinsic semiclassical objects
associated to a point defect involving a topological winding of
a set of order parameters [55,56]. For example, the existence of
MBS at TI-SC-FM heterostructures is a consequence of a topo-
logical order parameter texture formed from configurations
of the band inversion TI gap, the proximity-induced pairing
gap, and the gap due to magnetic order. To prevent the MBS
from escaping, the proximity interfaces in a heterostructure
are required to be continuous, which may not be easy to
achieve in reality. In this paper, we explore the possibility
of manifesting defect MBS in a homogeneous time reversal
breaking superconductor that does not require strong spin-orbit
coupling or extrinsic magnetic fluxes or magnetic moments.

Defects like a quantum vortex in a chiral superconduc-
tor [19,28,29,57] or a dislocation when discrete translation
symmetry is present in a weak topological phase [13,56,58–61]
can bind MBS when a Bogoliubov-de Gennes (BdG) quasipar-
ticle encircling the defect picks up a π Berry phase. A single
defect MBS in the BdG description has exactly zero energy
pinned by particle-hole (or charge conjugation) symmetry. Its
existence (or in general the MBS number parity) was shown in
Ref. [56] to be topologically determined by a Chern-Simons
Z2 invariant [56]

� = 1

4π2

∫
BZ×S1

Tr

(
A ∧ dA + 2

3
A ∧ A ∧ A

)
(1)

modulo 2, where An
m(k,s) = 〈um(k,s)|dun(k,s)〉 is the Berry

connection of occupied BdG states um with momentum k in
the Brillouin zone (BZ) and at position s along a real-space
circle S1 around the defect. The index in Eq. (1) captures the
interplay between the topology of the bulk BdG Hamiltonian
and the structure of the classical defect. For example, the
number parities of MBS at a quantum vortex and a dislocation
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are respectively given by

�vortex = 1

2π

�

φ0
Ch, �dislocation = 1

2π
B · Gν (2)

modulo 2, where Ch is the Chern number that corresponds
to the edge chirality of the SC, and the weak invariant Gν

characterizes a 2D topological array of weakly coupled SC
wires. These quantities are bulk topological information, while
the number of flux quanta �/φ0 and dislocation Burgers’
vector B are classical defect quantities. We see that the
index depends on both, i.e., topological information about the
electronic structure and the defect itself.

While the topological index in Eq. (1) completely char-
acterizes the number parity of MBS at any arbitrary point
defect in two-dimensional SC, it is not easily applicable to
a real material as it requires a continuous diagonalization
um(k,s) of a spatially modulated, and sometimes complicated,
Hamiltonian. The main objective of this paper is to generalize
Eq. (2) into a topological index that applies to a more
general class of crystalline defects and only involves detail
independent quantities that are in principle experimentally
measurable. The special case for disclinations in C4-symmetric
TCS, including all layered perovskite structures, was discussed
in Ref. [13]. Here we extend the theorem to all discrete rotation
symmetric SC systems. The index that counts MBS number
parity takes the following general form:

� = 1

2π
T · Gν + �

2π
(Ch + rotation invariants) (3)

modulo 2, where (T,�) are discrete translation and rotation
holonomical quantities of a lattice disclination that can be
determined experimentally, for example, by neutron scattering,
the Chern number Ch and weak invariant Gν correspond
to protected gapless edge modes, which in theory carry a
signature detectable by ARPES or transport, and the rotation
invariants are combinations of the rotation eigenvalues of the
BdG quasiparticles.

A. Outline

Section II begins with a brief review of the classification of
two-dimensional BCS superconductors in the BdG framework.
The notion of equivariant stable classification is introduced,
and is followed by the definitions of integral rotation invariants
in a TCS using rotation eigen-spectra at fixed points in the
Brillouin zone. The constraints these invariants impose on the
Chern and weak invariants is also discussed. Appendices A
and B complement this section by providing detailed deriva-
tions. Section III, along with Appendix C, proves that the
Chern number and rotation invariants completely classify the
topology of discrete-rotation symmetric TCS. This section
also describes the algebraic structure of the classification,
which reveals that a set of primitive models, or generators,
can always be constructed to serve as fundamental building
blocks of the different topological classes because any arbitrary
Hamiltonian is stably topologically equivalent to certain
copies of them. Explicit sets of such primitive generator
Hamiltonians are constructed for each symmetry, and their
classification is shown. These primitive models are either

chiral px + ipy superconductors or rotation symmetric arrays
of two-dimensional p-wave wires.

Section IV provides a review of the classification of
lattice disclinations in terms of their holonomies. Disclination
holonomies are composed of a rotation and a translation piece,
both of which enter the index theorems for the parity of MBS
in C4 and C2-symmetric TCS, while only the rotation part
enters the index for C6 and C3-symmetric TCS.

Section V begins by stating the general form of the
topological index as a bilinear function of the disclination
holonomical quantities (Frank angle and the effective Burgers’
vector) and topological Chern and rotation invariants. The
index determines the parity of the number of MBS at a
dislocation-disclination-flux composite of an arbitrary TCS
described by a BdG Hamiltonian. By numerical and analytical
exact diagonalization of the primitive model Hamiltonians at
various disclinations and flux configurations, Majorana bound
states are revealed and appear as localized zero-energy BdG
eigenstates. These explicit results enable us to algebraically
prove index theorems in the form of Eq. (3) for all lattice
rotation symmetries. A detailed description of the lattice
configurations used in the numerical simulations is given in
Appendix D, and some of the detailed numerical results are
shown in Appendix E. This final appendix also shows that
binding an extra flux quantum to disclinations flips the number
parity of MBS if the Chern number of the TCS is odd. In
Sec. VI the indices of the preceding section are used to predict
the existence of MBS in strontium ruthenate Sr2RuO4 and
doped graphene. A corollary result that we find is that even in
the absence of disclinations, MBS will be manifested as corner
states at open boundaries of the materials. Finally, in Sec. VII,
we briefly mention a few possible extensions of our work and
consider an extrapolation of this study to a model constructed
from a 3D array of p-wave wires, in which corner states are
found. We then present our conclusions.

We note that while this paper is quite long, much of the
length comes from the necessity of dealing with the different
rotation symmetries on a case by case basis since they all have
different properties. Thus much of the text is a repetition of
the primary concepts, but applied to different symmetries. We
thus suggest that the reader focus on the C4 rotation case on a
first reading and skip the details of the other symmetries so as
not to get bogged down in the specific details of each case.

II. TOPOLOGICAL INVARIANTS AND STABLE
CLASSIFICATIONS

Consider superconductors described by a BCS mean-field
Hamiltonian in two dimensions:

H =
∫

d2k

(2π )2
ξ
†
kHBdG(k)ξk, (4)

where ξk = (cα(k),c†α(−k)) is the Nambu basis. The
Bogoliubov-de-Gennes Hamiltonian HBdG(k) is a band Hamil-
tonian on a toric Brillouin zone that obeys particle-hole (PH)
symmetry


HBdG(k)
† = −HBdG(−k), (5)

where the PH operator 
 is antiunitary and obeys 
2 = +1,
which corresponds to class D in the Altland and Zirnbauer
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tenfold classification [62–64]. In our convention, 
 is a product
of a unitary operator and the complex conjugation operator. We
focus our study on systems having a finite excitation gap, and
additionally a discrete symmetry Pn = Cn � L, where Cn =
Zn is an n-fold rotation point group and L = Z2 is the two-
dimensional discrete translation group. We will not consider
reflection symmetries in this work. Since we are dealing with
fermionic systems, the rotation group is lifted to its double
cover C̃n = Z2n so that a 360◦ rotation produces a minus sign.
The discrete rotation operator r̂n that generates the group obeys
r̂n
n = −1. Additionally, r̂n obeys

r̂†nĤBdG(Rnk)r̂n = ĤBdG(k), (6)

where Rn is the n-fold rotation matrix acting on the momentum
vector k. Indeed, both the pairing and hopping terms of the
Hamiltonian commute with the rotation operator. The rotation
operator in an electronic system is nonlocal and conserves
charge; thus, in the BdG formalism, the rotation operator
commutes with the PH symmetry operator


r̂n

−1 = r̂n. (7)

Before we introduce a classification scheme for TCS we
need to provide a definition of equivalence between them.
First, let us explicitly define the (direct) addition operation
for two TCS. Given two TCS with Hamiltonians H1 and H2,
rotation representations r̂1 and r̂2, and PH operators 
1 and

2, it is possible to combine them together into a composite
superconductor with Hamiltonian

H1 ⊕ H2 =
(

H1 0

0 H2

)
, (8)

and with symmetry operators represented accordingly by
r̂ = r̂1 ⊕ r̂2 and 
 = 
1 ⊕ 
2. Physically, this sum operation
represents stacking together the two systems while keeping
them decoupled. Two Hamiltonians H0(k), H1(k) are said to
be strictly equivalent if there is a continuous deformation Hs(k)
parameterized by s for 0 � s � 1 (with “endpoints” H0 and
H1) so that (i) Hs(k) remains gapped with no zero-energy
eigenvalues for all k and s, and (ii) Hs(k) respects PH and the
required spatial symmetries for all s. The physically relevant
definition of equivalence is not the strict one, instead, we use
the concept of stable equivalence [56,64]. If two Hamiltonians
are equivalent up to the (direct) addition of trivial bands,
i.e., if there are trivial, momentum-independent Hamiltonians
E0, E1 (with their own PH and rotation representations) such
that H0(k) ⊕ E0 is strictly equivalent to H1(k) ⊕ E1, then the
Hamiltonians are said to be stably equivalent. Physically, E0,1

represent core or high energy atomic bands that are far away
from the Fermi energy and are neglected in the Hamiltonians
H0,1(k). They, however, could in principle be brought near
the Fermi level and hybridize with the relevant bands during a
deformation process. Subsequently, there are stably equivalent
systems that are not strictly equivalent.

By identifying stably equivalent Hamiltonians, the set of
equivalence classes forms a group under the operation of
addition defined above; this is called the K group [64,65].
The classes of stably equivalent Hamiltonians [H ] form the
elements of the group and each element represents a different
topological class of Hamiltonians that cannot be adiabatically

connected. The zero element of the K group is the class of
topologically trivial Hamiltonians, most simply represented
by a system in the decoupled atomic limit in which electrons
are bound to atoms on a lattice and cannot tunnel, and therefore
have a BdG Hamiltonian and Bloch states that are momentum
independent. To form a group, each element must also have an
inverse. In our case the additive inverse of an element is given
by [−H ] = −[H ] since H (k) ⊕ −H (k) can be smoothly
deformed into a constant Hamiltonian.

Now, after establishing what it means for two Hamiltonians
to be equivalent, we need to find a set of topological invariants
that will uniquely distinguish each element of the group.
We find that for each rotation symmetry there is a different
classification because each symmetry generates a different
set of rotational topological invariants that distinguish the
different elements of the K group. Our classification also takes
into account the two types of invariants whose existence is
independent of the particular rotation symmetry, and in fact
neither require rotation symmetry to be protected at all to be
robust. These latter invariants are (i) the Chern invariant

Ch = i

2π

∫
BZ

Tr(F) ∈ Z, (9)

where F = dA + A ∧ A is the Berry curvature over the
“occupied” bands and Aαβ(k) = 〈uα(k)|duβ(k)〉 is the Berry
connection for band indices α,β; and (ii) the two weak
Z2-topological invariants

νi = i

π

∮
Ci

Tr(A) mod 2 (10)

for i = 1,2. Here, Ci(s) = πbi + sεij bj is a closed path on the
boundary of the Brillouin zone along the direction of the (unit
normalized) reciprocal lattice vector εij bj (see Fig. 1). These
invariants are defined modulo 2 because they can be changed
by an even integer through a gauge transformation. They form
a Z2-valued reciprocal lattice vector

Gν = 2π (ν1b1 + ν2b2) (11)

and are referred to as first-descendant invariants.

μ(X’)

ν1

μ(X)

μ(M)ν2

μ(Γ)

FIG. 1. (Color online) Brillouin zone of a two-dimensional four-
fold symmetric system. The first-descendant weak invariants ν1,2 are
defined as 1D Z2 indices along the two perpendicular colored lines
marked with arrows. The second-descendant weak invariants μ(i)
are defined at the four momenta  = (0,0), X = (π,0), X′ = (0,π ),
and M = (π,π ).
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We note that there also exist second-descendant invariants
μ(i); one for each of the four PH fixed momenta i =
π (m1b1 + m2b1), mj = 0,1. They are defined by

(−1)μ(i ) = Pf[H (i)]√
det[H (i)]

, (12)

where Pf means the pfaffian of the matrix in a choice of basis
where the PH operator takes the form of the identity matrix
multiplying complex conjugation 
 = K. In this basis, the
Hamiltonian at each i is antisymmetric H (i) = −H (i)T

and the pfaffian is well-defined. The second-descendant
invariants are not all independent and are restricted by the
Chern and weak invariants:

ν1 = μ(πb1) + μ(π (b1 + b2)) mod 2,

ν2 = μ(πb2) + μ(π (b1 + b2)) mod 2, (13)

Ch =
4∑

i=1

μ(i) mod 2.

Thus there is only one independent second-descendant invari-
ant. However, this invariant does not aid the classification
because it is unstable, i.e., it can be altered by the addition
of trivial bands. Thus while this is a topological invariant of
an explicit Hamiltonian, it does not contribute to the stable
classification and so we will not discuss it further.

From our discussion so far we see that our 2D superconduc-
tors are classified by the Chern number, and a vector of weak
invariants which exists independent of rotation symmetry. Now
we will provide the other necessary invariants to classify
rotation invariant topological superconductors in a case-by-
case basis. We proceed by defining the rotation invariants for
each discrete rotation symmetry, and then we will examine
the constraints that exist between these rotation-dependent
invariants and the Chern and weak invariants.

A. Rotation eigenvalues and invariants

The Brillouin zones for C2,3,4,6-symmetric Hamiltonians
are shown in Fig. 2. Their periodicity implies that there are
certain points �(n) in momentum space that transform to
themselves under some n-fold rotation Rn, that is, there exist
fixed points at which

Rn�
(n) = �(n) (14)

Γ

M

X

Y

Γ

K K’

Γ

MK

M’ M’’

K’

Γ

M

X

X’

(a) (b) (c) (d)

FIG. 2. Brillouin zones for systems with (a) fourfold, (b) twofold,
(c) sixfold, and (d) threefold rotation symmetries and their rotation
fixed points. Shaded regions indicate the fundamental domain that
generates the entire Brillouin zone upon rotation around the fixed
point at the center of the Brillouin zones  = (0,0).

up to a reciprocal lattice vector. At these fixed points we have,
from Eq. (6),

[r̂n,ĤBdG(�(n))] = 0. (15)

Thus it is possible to label the states at the fixed points �(n) by
their rotation eigenvalues

�(n)
p = eiπ(2p−1)/n, for p = 1,2, . . . ,n. (16)

Let us denote #�(n)
p to be the number of occupied states with

eigenvalues �(n)
p at momentum fixed point �(n). The key for the

rotation invariant classification is that equivalent systems have
the same set of numbers {#�(n)

p }, though it does not matter in
which order they occur energetically. This, however, does not
suffice as full criteria for a classification, since the topological
classes are not merely given by the sets of equivalent Hamilto-
nians, but rather by the sets of stably equivalent Hamiltonians,
which are equivalent up to the addition of trivial bands. Since
in the atomic limit trivial bands are momentum-independent,
the numbers #�(n)

p at most fixed momenta are redundant for
their classification as they are identical to that at the origin
#(n)

p . [Here,  = (0,0) is the center of the Brillouin zone, and
therefore is a rotation fixed momentum under the full rotation
symmetry.] Thus topologically trivial BdG Hamiltonians are
classified by representations of the rotation symmetry at a
single fixed point, conventionally chosen to be . Different
representations of the rotation symmetry at the  point can
correspond to inequivalent atomic limits; however, this does
not affect the stable classification as all atomic limits are
topologically trivial.

Topologically, nontrivial Hamiltonians are by definition not
in the atomic limit so we must “quotient out” the atomic limits
by taking the differences[

�(n)
p

] ≡ #�(n)
p − #(n)

p , (17)

which are always integers. They can be nonzero only when
the Hamiltonian depends on momentum because to be nonva-
nishing the eigenstates at k = 0 must behave differently under
rotation than the ones at nonzero momentum. By taking this
difference, we are only retaining the nontrivial topological
information and removing all information about trivial bands.
The rotation invariants in Eq. (17) are therefore rotation
symmetry protected topological signatures.

Before we move on to discuss each explicit rotation
symmetry let us mention some general properties of the
rotation eigenvalues. First, the commutativity between the
PH and rotation operators relates the rotation eigenvalues of
occupied and unoccupied bands. If the rotation eigenvalue
of a state is �(n)

p , the eigenvalue of the state related by PH

symmetry is its complex conjugate �(n)∗
p = �

(n)
n−p+1. Thus

#�(n)
p , the number of occupied bands with eigenvalue �(n)

p , is
also equal to the number of unoccupied states with eigenvalues
�

(n)
n−p+1. This reduces the number of required invariants in the

classification, as it makes some of them redundant due to the
constraint [

�(n)
p

] PH= −[
�

(n)
n−p+1

]
(18)

as will be seen shortly in a concrete example for the case of
C4-symmetric systems.
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Second, we briefly comment on the role of time reversal
symmetry (TRS) on the rotation invariants. We have mentioned
that all of our nontrivial topological models break TRS; this
is not accidental, for if a system is time-reversal symmetric it
obeys

�H (k)�−1 = H (−k), �r̂n�
−1 = r̂n, (19)

where � is the antiunitary time-reversal (TR) operator. This
implies that if the rotation eigenvalue of a time-reversal
symmetric state is �(n)

p , then so must be its complex conjugate

�(n)∗
p = �

(n)
n−p+1. For the rotation invariants, this leads to the

relation [
�(n)

p

] TR= [
�

(n)
n−p+1

]
, (20)

which is in contradiction with Eq. (18), unless the invariants are
zero. Thus any system that preserves TRS has trivial rotation
invariants.

We also note that when the order of rotation n is even, there
are two distinct rotation generators ±r̂n, both of which satisfy
the fermionic requirement (±r̂n)n = −1. If we pick the other
choice of rotation operator then the introduction of the extra
sign changes the rotation invariants in a way that depends on
the order of the momentum fixed point:[

�(m)
p

] → [
�

(m)
p+n/2

]
(21)

for m, the order of fixed momentum �, divides n, the order
of the full symmetry. The physical interpretation of these two
operators will become apparent during the study of MBS at
disclinations, and is explained in detail in Appendix E.

With the generalities out of the way, what follows in this
section is a detailed construction of the rotation invariants
for C4-symmetric superconductors, as an explicit example,
and a listing of the invariants for the remaining symmetries.
The construction of the invariants for these other symmetries,
however, can be found in detail in Appendix A.

1. Fourfold symmetry

In fourfold symmetric systems, there are two twofold fixed
points �(2) = X,X′ and two fourfold fixed points �(4) = ,M

in the Brillouin zone [see Fig. 2(a)]. However, the rotation
spectra of X and X′ are constrained to be the same by
C4 symmetry. Thus we only need to take into account
three sets of eigenvalues: �

(4)
1 = eiπ/4,�

(4)
2 = ei3π/4,�

(4)
3 =

e−i3π/4,�
(4)
4 = e−iπ/4, for �(4) = ,M; and X1 = i,X2 = −i,

as illustrated in Fig. 3.

Im

Re

Γ1Γ2

Γ3 Γ4

(a)

Im

Re

M1M2

M3 M4

(c)

Im

Re

X 1

X 2

(b)

FIG. 3. (Color online) Rotation eigenvalues at the fixed-point
momenta (a) , (b) X, and (c) M in the Brillouin zone of C4-
symmetric crystals.

Following the form in Eq. (17) for the rotation invariants,
we define them as follows:

[X1] = #X1 − (#1 + #3),

[X2] = #X2 − (#2 + #4),

[Mp] = #Mp − #p, for p = 1,2,3,4.

The first two equations arise from the fact that states having
r̂4 eigenvalues of 1,3 (2,4) at the fixed point  have
r̂2 = r̂2

4 eigenvalues of i (−i), which is precisely the allowed
r̂2 eigenvalue X1 (X2) at the X point. Now, we look at relations
that reduce the number of required invariants, as follows.
(i) The total number of occupied states is constant over the
Brillouin zone, which implies

2∑
p=1

#Xp =
4∑

p=1

#Mp =
4∑

p=1

#p

or, in terms of the invariants defined above,

[X1] + [X2] = [M1] + [M2] + [M3] + [M4] = 0.

(ii) r̂n is a constant operator; therefore, its spectrum is the same
at any of the rotation fixed points in the Brillouin zone. Since
any state can be built from trivial bands with band inversions,
the total number of states over both unoccupied and occupied
bands having a particular rotation eigenvalue is the same at
any of its fixed points. This relation can be captured in six
equations, four equating the number of states with the same
eigenvalue at the fourfold fixed points  and M , and two
equating the number of states with the same eigenvalue at the
twofold fixed points  and X. However, PH symmetry reduces
the number of necessary equations to three, because the PH
operator sends a state in an occupied band and with rotation
eigenvalue �(n)

p to an unoccupied band while changing its
rotation eigenvalue to its complex conjugate �(n)∗

p . Thus, for
example, #M1, which counts the number of occupied states
with eigenvalue eiπ/4, also counts the number of unoccupied
states with eigenvalue e−iπ/4 (see Fig. 4). The three equations

Im

Re

Im

Re

PHPH

} #Π1

} #Π4

} #Π1

} #Π4

#Π2 {

#Π3 {

#Π3 {

#Π2 {

unoccupied
states

occupied
states

FIG. 4. (Color online) Restrictions on the fourfold rotation in-
variants due to PH symmetry. Horizontal lines represent bands
that have been sorted out according to their corresponding rotation
eigenvalue.
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are then

#M1 + #M4 = #1 + #4

#M2 + #M3 = #2 + #3

#X1 + #X2 = #1 + #2 + #3 + #4.

In the left-hand side of the first equation, #M1 counts the
number of states with eigenvalue eiπ/4 in the occupied states
at fixed point M , while #M4 counts the number of states
with eigenvalue eiπ/4 in the unoccupied states at the fixed
point M (see Fig. 4). Thus the left-hand side counts the
total number of eiπ/4 eigenvalues in the rotation operator at
point M . The right-hand side counts the number of states
having the same eigenvalue, but at the fixed point . Notice
that the counting of states having eigenvalue e−iπ/4 is given
by the same expression. Similarly, the second equation counts
the number of states with eigenvalue ei3π/4 (or with eigenvalue
e−i3π/4). The third relation equates the number of states with
eigenvalue i (or −i) at points X and . In terms of the
invariants, the above relations reduce to

[X1] + [X2] = [M1] + [M4] = [M2] + [M3] = 0

of which Eq. (18) is a generalization.
Therefore out of the six invariants defined initially, we are

free to choose three which, along with the Chern number,
identify the different topological classes of C4-symmetric
Hamiltonians:

[X] = #X1 − (#1 + #3), (22)

[M1] = #M1 − #1, (23)

[M2] = #M2 − #2, (24)

where the unnecessary subscript in [X] has been omitted. We
will see in Sec. II B why we have not included the vector weak
invariant as an independent invariant.

2. Twofold symmetry

While in the case of fourfold symmetric superconductors
two invariants are associated with the fourfold fixed point M ,
in twofold symmetric systems only one is necessary because
the number of complex conjugate pairs of eigenvalues of r̂2 at
M is half of those at r̂4 at M; however, in twofold symmetric
systems we need to differentiate between eigenvalues at the
twofold fixed points X, and Y , because they are not related as
X,X′ for the fourfold symmetric case [see Figs. 2(a) and 3(b)].
Thus in twofold symmetric superconductors, three rotation
invariants are also necessary

[X] = #X1 − #1, (25)

[Y ] = #Y1 − #1, (26)

[M] = #M1 − #1. (27)

3. Sixfold symmetry

In sixfold symmetric syperconductors, threefold symmetry
relates the twofold fixed points M , M ′, and M ′′, while twofold
symmetry relates the threefold fixed points K and K ′ [see

Fig. 2(c)]. Imposing these constraints, the PH symmetry
constraint, and demanding a constant number of bands across
the Brillouin zone, we find that only two rotation invariants are
required to classify C6-symmetric superconductors, defined as

[M] = #M1 − #1 − #3 − #5, (28)

[K] = #K1 − #1 − #4. (29)

4. Threefold symmetry

In threefold symmetric superconductors, the twofold fixed
points M , M ′, and M ′′ of sixfold symmetric superconductors
do not exist. Additionally, the threefold fixed points K and K ′
are not related by twofold symmetry [see Fig. 2(d)] and need
to be differentiated by respective invariants, defined as

[K] = #K1 − #1, (30)

[K ′] = #K ′
1 − #1. (31)

5. Relation between invariants

Any fourfold symmetric system is also twofold symmetric
and its C2 invariants are related to its C4 invariants by

[M](2) = [M1](4) − [M2](4), (32)

[X](2) = [Y ](2) = [X](4). (33)

Likewise, sixfold symmetric superconductors have C3 invari-
ants, which are related to its C6 invariants by

[K](3) = [K ′](3) = [K](6). (34)

B. Constraints on the Chern and weak invariants
due to rotation symmetry

Rotation symmetry imposes constraints on the Chern
and weak invariants. As can be seen in Appendix B, in
superconductors with nonzero Chern invariant, the gauge
transformation that relates the states in two neighboring
rotational domains in the Brillouin zone is related to the
rotation operator projected into the occupied bands at the
fixed points �(n). This allows us to determine the Chern
number of an n-fold symmetric superconductor in terms of the
rotation invariants modulo n as was done for 2D insulators in
Refs. [5,6,11,12]. These relations are derived for each rotation
symmetry in Appendix B and are given by

Ch + 2[X] + [M1] + 3[M2] = 0 mod 4, (35)

Ch + [X] + [Y ] + [M] = 0 mod 2, (36)

Ch + 2[K] + 3[M] = 0 mod 6, (37)

Ch + [K] + [K ′] = 0 mod 3 (38)

for C4,2,6,3-symmetric superconductors, respectively.
Regarding the weak Z2 invariants in Eq. (10), rotation

symmetry demands that the reciprocal lattice vector in Eq. (11)
remains the same under rotation Gν = RnGν (up to a re-
ciprocal lattice vector). In C4-symmetric systems we have
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Gν = R4Gν , which imposes the constraint that ν1 = ν2 ≡ ν,
since ν1, ν2 are defined modulo 2. Thus the index is

Gν = 2πν(b1 + b2)
ν = [X] + [M1] + [M2] mod 2

}
C4 symm. (39)

In C2-symmetric systems, we have Gν = R2Gν = −Gν ,
which is compatible with ν1 and ν2 being defined modulo
2. The index is

Gν = 2π (ν1b1 + ν2b2)
ν1 = [X] + [M] mod 2
ν2 = [Y ] + [M] mod 2

⎫⎬⎭ C2 symm. (40)

Finally, for C6 and C3-symmetric systems, the symmetry
requirement is not compatible with the definition of the indices
modulo 2. Thus we have

Gν = 0} C6,C3 symm. (41)

As claimed earlier, we see from these constraints that the weak
index is also redundant in the topological classification, since
it can be completely determined from the rotation invariants
(the determination of the weak indices in terms of rotation
invariants presented above is demonstrated in Appendix B).
Thus we claim that the complete set of topological invariants
consists of the Chern number, which must satisfy the rotational
constraints above, and the set of rotation invariants for the
particular rotation symmetry chosen. We will prove in the next
section that this claim is indeed true.

III. ALGEBRAIC CLASSIFICATION OF TOPOLOGICAL
CRYSTALLINE SUPERCONDUCTORS

In this section, we first prove that the Chern invariant and
rotation invariants completely stably classify 2D TCS. It is
necessary and sufficient that these quantities are identical in
order for two rotation symmetric BdG Hamiltonians to be topo-
logically equivalent. Furthermore we discuss the free Abelian
additive structure of the topological classification of TCS and
show that as a result all TCS can be topologically interpreted
as certain combinations of simple decoupled models, which
we call primitive generators. These model generators can be
chosen to be simple Majorana lattice models models or chiral
p-wave SC’s. We construct primitive generators explicitly for
C2,3,4,6-symmetric superconductors in separate sections.

A. Complete stable classification of TCS and algebraic structure

Let us group the stable topological invariants for an n-fold
rotation symmetric system into a vector form

χ (n)[H ] = (Ch,ρ(n)), (42)

which has a one to one correspondence with the
elements of the (free Abelian) K group. Here, we have
denoted the rotation invariants of an n-fold symmetric sys-
tem with an integer-valued vector ρ(n); specifically, ρ(4) =
([X],[M1],[M2]); ρ(2) = ([X],[Y ],[M]); ρ(6) = ([M],[K]);
and ρ(3) = ([K],[K ′]), as shown in Sec. II A. Ch is the
Chern invariant in Eq. (9) that characterizes, for example,

the edge chirality and thermal conductivity. The topological
classification χ (n)[H ] implicitly depends on the pre-assigned
PH and rotation operator 
 and r̂n. They are suppressed in the
notation and abbreviated into the notation for the Hamiltonian
H = (H,
,r̂n).

In Appendix C, we show that two n-fold superconducting
systems are stably equivalent if and only if they have the same
topological information χ (n). It is clear that two systems with
distinct χ (n)’s must be stably inequivalent. This is because χ (n)

is unchanged under any continuous deformation that preserves
the energy gap and symmetries as well as the addition of
any trivial atomic bands. The converse of the statement can
be proven by showing two systems with identical χ (n) can
be adiabatically connected up to trivial bands. This part of
the proof we defer to Appendix C as it is technical. There we
show that there is no obstruction to adiabatically connecting
two Hamiltonians with identical χ (n).

B. Algebraic structure of TCS classification
and primitive model generators

Given two n-fold symmetric superconductors with Hamil-
tonians H1, H2, rotation representations r̂1, r̂2, and PH
operators 
1, 
2, which have topological invariants χ

(n)
1

and χ
(n)
2 respectively, their sum forms a third Hamiltonian

H3 = H1 ⊕ H2, which preserves n-fold symmetry, represented
by r̂3 = r̂1 ⊕ r̂2, and has PH operator 
3 = 
1 ⊕ 
2. The
form of the operators r̂3 and 
3 implies that H3 has the same
labels �(n)

p of its occupied states when compared to those
of its constituent Hamiltonians H1 and H2; consequently, its
rotation invariants are simply the addition of those for H1 and
H2. Under this composition, the Chern invariants simply add
as well. Thus the invariants for H3 are given by

χ (n)[H1 ⊕ H2] = χ (n)[H1] + χ (n)[H2]. (43)

We see that a free Abelian additive structure is associated
with the topological classification, with elements given by
the vectors in Eq. (42) and where the addition rule is given
by Eq. (43). In mathematical terms, the association of χ (n)

to a Hamiltonian is an isomorphism between the K group
of stably equivalent classes of Hamiltonians and the free
Abelian group ZN where the invariants (Ch,ρ(n)) live. From
this association, it follows that a set of primitive systems can
be chosen which are capable of generating any TCS system
up to stable equivalence. The only requirement for such a
set of primitive generators {H (n)

i } is that their corresponding
topological invariant vectors {χ (n)[H (n)

i ]} form a basis for the
free Abelian group (Ch,ρ(n)) ∈ ZN associated with the topo-
logical classification of TCS with n-fold rotation symmetry.
Once a set of primitive generators has been constructed, any
system with Hamiltonian H and invariant χ (n)[H ] can be
made topologically equivalent to a unique combination of these
generators

H ∼
⊕

i

⎡⎣ |αi |⊕
j=1

sgn(αi)H
(n)
i

⎤⎦ , (44)
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where {αi} are the unique coefficients required by

χ (n)[H ] =
∑

i

αiχ
(n)

[
H

(n)
i

]
(45)

and where similar compositions as the one for the Hamiltonian
occur for the rotation representations and PH operators.

From this analysis, it follows that the topological char-
acterization of any Cn-symmetric crystalline superconductor
can be directly inferred from the characterization of any set
of primitive generators. In what follows, we present explicit
primitive generators for each rotation symmetry.

C. Fourfold symmetry

The classification of C4-symmetric superconductors is
given by

χ (4) = (Ch,[X],[M1],[M2]) (46)

subject to the constraint in Eq. (35). Since the rotation
invariants determine the weak invariant, there are only four
linearly independent indices that span all possible topological
classes. Thus we need four primitive generators.

The first two generators correspond to two topologically
distinct phases of a spinless, chiral px + ipy superconductor
on a square lattice with first- and second-nearest-neighbor
hopping terms:

H (4)
u1,u2

(k) = �[sin(k · a1)τx + sin(k · a2)τy]

+u1[cos(k · a1) + cos(k · a2)]τz

+u2[cos(k · a′
1) + cos(k · a′

2)]τz, (47)

where τx , τy , and τz are Pauli matrices that act on the
Nambu degree of freedom, a1 = a(1,0) and a2 = a(0,1) are
primitive vectors for the square lattice, and a′

1 = a1 + a2,
a′

2 = −a1 + a2 are orthogonal vectors connecting second-
nearest-neighbor sites. � is the px + ipy pairing and u1 and u2

are nearest and second-nearest-neighbor hopping amplitudes,
respectively. The pairing and nearest-neighbor hopping terms
give a gapless Hamiltonian with Dirac cones at the twofold
fixed points X and X′. To open the gap, second-nearest-
neighbor hopping terms are also considered. In addition to
the phase transition due to the gap closing for u2 = 0, another
phase transition exists at u1 = u2, where a Dirac cone appears
at the fourfold fixed point M. Finally, a third transition occurs
at u1 = −u2, where a Dirac cone appears at the  point.
Figure 5 shows the phases of the model, and the corresponding
Chern invariants and weak indices.

We take the first two primitive models to have Hamiltonians

H
(4)
1 = H (4)

u1,u2
for u1 > u2 > 0, (48)

H
(4)
2 = H (4)

u1,u2
for −u1 > u2 > 0 (49)

and PH and rotation operators given by


1,2 = τxK, r̂1,2 = ±ei π
4 τz , (50)

where K is complex conjugation and the subindices for 


and r̂ label the generators to which they belong. The rotation

u1

u2

Ch = 2

Ch = -2

Ch = 1

Ch = -1

Ch = 1

Ch = -1

G =2�(b +b  )ν 1 2

G = 0ν

G = 0ν

21-1-2

2

-2

* ×0.5

-0.5

G =2�(b +b  )ν 1 2

G =2�(b +b  )ν 1 2

G =2�(b +b  )ν 1 2

FIG. 5. (Color online) Topological phases of model H (4)
u1,u2

in
Eq. (47). At u2 = u1, the gap closes at the fourfold fixed point M , at
u2 = −u1, the gap closes at . At u2 = 0, the gap closes at X and X′.
Chern numbers and weak invariants are shown for each phase. For
rotation invariants, see Table I. Primitive generators H1(4) and H2(4)
we simulated with parameters as shown by the cross and asterisk,
respectively.

operator obeys r̂
†
1,2H (R4k)r̂1,2 = H (k), where

R4 =
(

cos(π/2) sin(π/2)

− sin(π/2) cos(π/2)

)
= ei π

2 σy

is the fourfold rotation matrix acting on k space. These two
generators break time reversal symmetry (TRS). Both have
Ch = 1, and exhibit edge modes in a strip geometry as shown
in Fig. 6. H

(4)
1 has Gν = 0, while H

(4)
2 has Gν = b1 + b2.

The rotation invariants for these two generators are shown in
Table I.

The other two primitive generators are 2D generalizations
of Kitaev’s p-wave wire [27] with four Majorana fermions per

��/2-�/2-�

Energy

kx��/2-�/2-�

Energy

(a) (b)

kx

FIG. 6. (Color online) Energy bands for primitive Hamiltonians
(a) H

(4)
1 and (b) H

(4)
2 for a strip geometry with periodic boundary

conditions in the a1 direction and open boundary conditions in
the a2 direction. The dashed blue/ dotted red lines correspond
to states localized at the upper/lower edges. The parameters are
u1/� = 1,u2/� = 0.5 for (a), and u1/� = −1,u2/� = 0.5 for (b).
Both models have Ch = 1.
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TABLE I. Chern and rotation invariants of primitive models for
C4-symmetric superconductors.

C4 model Ch [X] [M1] [M2]

H
(4)
1 1 1 1 0

H
(4)
2 1 0 −1 0

H
(4)
3 0 −1 −1 1

H
(4)
4 0 −2 0 0

site:

H
(4)
3 = i�

∑
r

(
γ 1

r γ 3
r+a1

+ γ 2
r γ 4

r+a2

)
, (51)

H
(4)
4 = i�

∑
r

(
γ 1

r γ 3
r+a′

1
+ γ 2

r γ 4
r+a′

2

)
, (52)

where the γ i
r ’s are Majorana operators at site r , for i = 1,2,3,4.

These operators obey γ
i†
r = γ i

r and {γ i
r1
,γ

j
r2} = 2δij δr1,r2 .

Figures 7(a) and 7(b) depict these two models.
The rotation operator for these two models is

r̂3,4 =
∏∏

r

e− π
4 γ 1

r γ 2
Rre− π

4 γ 2
r γ 3

Rre− π
4 γ 3

r γ 4
Rr , (53)

γ¹
γ²
γ³

γ⁴

γ¹
γ²

γ³
γ⁴

γ⁵
γ⁶

γ¹γ²

γ¹
γ²
γ³ γ⁴

(a) (b)

(c) (d)

FIG. 7. Tight-binding representations of primitive generators that
take the form of 2D p-wave wires for various rotation symmetries.
(a) H

(4)
3 , (b) H

(4)
4 , (c) H

(2)
4 , and (d) H

(6)
3 . Black dots indicate

Majorana fermions. H
(4)
3 and H

(4)
4 are fourfold symmetric super-

conductors with four Majorana fermions per site and first- and
second-nearest-neighbor connections, respectively. H (2)

4 has the same
atomic arrangement as in (a) and (b), but contains only two Majorana
fermions per site and is trivial along a2 = (0,1). Gray vertical lines
in (c) serve only as a guide and do not represent terms in the
Hamiltonian. H

(6)
3 is a sixfold symmetric superconductor with six

Majorana fermions per site.

which transforms the Majorana operators as
r̂3,4(γ 1

r ,γ 2
r ,γ 3

r ,γ 4
r )r̂†3,4 = (γ 2

Rr,γ
3
Rr,γ

4
Rr, − γ 1

Rr). If we change
the basis into complex fermionic operators at each site
c = (γ 1 + iγ 3)/2, and d = (γ 2 + iγ 4)/2, the Hamiltonians
in momentum space are

H
(4)
3 (k) = �( cos(k · a1)τz + sin(k · a1)τy)

⊕�( cos(k · a2)τz + sin(k · a2)τy), (54)

H
(4)
4 (k) = �( cos(k · a′

1)τz + sin(k · a′
1)τy)

⊕�( cos(k · a′
2)τz + sin(k · a′

2)τy), (55)

where the basis ξk = (ck,c
†
−k,dk,d

†
−k)T has been used. The PH

and rotation operators in this basis are


3,4 =
(

τx 0

0 τx

)
K, r̂3,4 =

(
0 −iτz

τ0 0

)
, (56)

where τ0 is the 2 × 2 identity matrix acting on the Nambu
degree of freedom.

The invariants for these two last primitive generators are
also summarized in Table I.

D. Twofold symmetry

The classification of C2-symmetric superconductors is
given by

χ (2) = (Ch,[X],[Y ],[M]) (57)

subject to the constraint in Eq. (36). For simplicity, we take
three of the C4-symmetric models described above as our first
three C2 generators:

H
(2)
1 = H

(4)
1 , (58)

H
(2)
2 = H

(4)
2 , (59)

H
(2)
3 = H

(4)
3 . (60)

Generator H
(4)
4 is in the same class as H

(4)
3 when C4

symmetry is forgotten. Since these three first generators are
C4-symmetric, they have [X] = [Y ], thus, the fourth generator
must break C4 symmetry. We take it to be a two-dimensional
anisotropic array of p-wave wires

H
(2)
4 = i�

∑
r

γ 1
r γ 2

r+a1
, (61)

where r runs over all lattice sites spanned by the primitive
vectors a1 = a(1,0),a2 = a(0,1). This model is trivial along
a2 and is depicted in Fig. 7(c). Its rotation operator is

r̂4 =
∏

r

e− π
2 γ 1

r γ 2
Rr , (62)

which transforms the Majorana operators as r̂4(γ 1
r ,γ 2

r )r̂†4 =
(γ 2

Rr,−γ 1
Rr). In terms of the complex fermion operators c =

(γ 1 + iγ 2)/2, the generator H
(2)
4 in momentum space is

H
(2)
4 (k) = �( cos(k · a1)τz + sin(k · a1)τy) (63)
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TABLE II. Chern and rotation invariants of primitive models for
C2-symmetric superconductors.

C2 model Ch [X] [Y ] [M]

H
(2)
1 1 1 1 1

H
(2)
2 1 0 0 −1

H
(2)
3 0 −1 −1 −2

H
(2)
4 0 −1 0 −1

in the basis ξk = (ck,c
†
−k)T . The PH and rotation operators

become


2 = τxK, r̂4 = −iτz. (64)

The invariants for all the C2 primitive generators are shown
in Table II.

E. Sixfold symmetry

The topology of C6-symmetric superconductors is charac-
terized by

χ (6) = (Ch,[M],[K]). (65)

subject to the constraint in Eq. (37). The first two models
are spinless, chiral px + ipy superconductors on a hexagonal
lattice with first- and second-nearest-neighbor hopping terms.
The generic Hamiltonian from which these two models are
taken is

H (6)
u1,u2

(k) = �

3∑
i=1

sin(k · ai)ai · τ + u1

3∑
i=1

cos(k · ai)τz

+u2

3∑
i=1

cos(k · a′
i)τz, (66)

where τ = (τx,τy) acts on Nambu space; a1 = a(1,0),
a2 = a(−1/2,

√
3/2), a3 = −(a1 + a2) = a(−1/2,−√

3/2)
are primitive lattice vectors of a triangular lattice; and a′

1 =
a2 − a1, a′

2 = a3 − a2, a′
3 = a1 − a3 are vectors connecting

second-nearest-neighbor sites in the lattice. � is the px + ipy

pairing, and u1, u2 are nearest and second-nearest-neighbor
hopping amplitudes. The Hamiltonian is gapped for nonzero
u1 or u2, except at u1 = −u2, where there is a phase
transition with Dirac cones appearing at the sixfold and
twofold symmetric points  and M , and at u1 = 2u2, where
another transition occurs, in which a Dirac cone appears at the
threefold symmetric point K . Figure 8 shows the phases of the
model with its Chern invariants. The weak index Gν for any
C6-symmetric superconductor is zero.

TABLE III. Chern and rotation invariants for the primitive models
for C6-symmetric superconductors.

C6 model Ch [M] [K]

H
(6)
1 1 1 1

H
(6)
2 3 1 0

H
(6)
3 0 −2 0

u1

u2

Ch = 3

Ch = -3

Ch = -1

Ch = 1

G = 0

G = 0

G = 0

G = 0ν

ν

ν

ν

*
×

1

2

-1

-2

21-1-2

FIG. 8. (Color online) Topological phases of model H (6) in
Eq. (66). For rotation invariants see Table III. Primitive generators
H

(6)
1 and H

(6)
2 were simulated with parameters marked by the cross

and asterisk, respectively.

We take the first two primitive models to be

H
(6)
1 = H (6)

u1,u2
for

{
u1 > 2u2 if u2 > 0

u1 > −u2 if u2 < 0
, (67)

H
(6)
2 = H (6)

u1,u2
for

{
u2 > 1

2u1 if u1 > 0
u2 > −u1 if u1 < 0

, (68)

which belong to different topological classes, as shown by their
invariants in Table III. H

(6)
1 and H

(6)
2 have Chern invariants 1

and 3, respectively, with edge modes in a strip geometry as
shown in Fig. 9. The PH and rotation operators are


1,2 = τxK, r̂1,2 = ei π
6 τz (69)

so that r̂
†
1,2H (R6k)r̂1,2 = H (k) where R6 = exp(i π

3 σy) is the
sixfold rotation matrix acting on k space.

The third model is a 2D generalization of Kitaev’s p-wave
wire

H
(6)
3 = i�

∑
r

(
γ 1

r γ 4
r+a1

+ γ 2
r γ 5

r−a3
+ γ 3

r γ 6
r+a2

)
(70)

��/2-�/2-� kx

Energy

��/2-�/2-�

Energy

(a) (b)

kx

FIG. 9. (Color online) Energy bands for primitive Hamiltonians
(a) H

(6)
1 and (b) H

(6)
2 for a strip geometry with periodic boundary

conditions in the a1 direction and open boundary conditions in the
(0,1) direction. The dashed blue/ dotted red lines correspond to states
localized at the upper/lower edges. The parameters are u1/� = 1,
u2 = 0 for (a) and u1 = 0, u2/� = 1 for (b). The Chern invariants
are 1 and 3, respectively.

224503-10



CLASSIFICATION OF TWO-DIMENSIONAL TOPOLOGICAL . . . PHYSICAL REVIEW B 89, 224503 (2014)

with rotation operator

r̂3 =
∏

r
e− π

4 γ 1
r γ 2

Rre− π
4 γ 2

r γ 3
Rre− π

4 γ 3
r γ 4

Rre− π
4 γ 4

r γ 5
Rre− π

4 γ 5
r γ 6

Rr (71)

that transforms the Majorana fermions as r̂3γ
i
r r̂3

† = γ i+1
Rr

for i = 1,2,3,4,5 and r̂3γ
6
r r̂3

† = −γ 1
Rr. Figure 7(d) depicts

an illustration of this model. In terms of the complex
fermion operators c = (γ 1 + iγ 4)/2, d = (γ 2 + iγ 5)/2, and
e = (γ 3 + iγ 6)/2, the Hamiltonian in momentum space is

H
(6)
3 (k) = 3⊕

i=1
�( cos(k · ai)τz + sin(k · ai)τy) (72)

written in the basis ξk = (ck,c
†
−k,dk,d

†
−k,ek,e

†
−k)T . The PH

and rotation operators in this basis are


3 =

⎛⎜⎝τx 0 0

0 τx 0

0 0 τx

⎞⎟⎠ K, r̂3 =

⎛⎜⎝ 0 0 −iτz

τ0 0 0

0 τ0 0

⎞⎟⎠ . (73)

Its invariants are shown in Table III.

F. Threefold symmetry

C3-symmetric superconductors are classified by

χ (3) = (Ch,[K],[K ′]) (74)

subject to the constraint in Eq. (38). Thus we need three
primitive models. Just as we inherit C4 primitive generators
as generators for the C2 symmetry, we take advantage of the
C3 symmetry present in any C6 crystal and take the first two
generators to be the first two generators of the C6 classification

H
(3)
1 = H

(6)
1 , (75)

H
(3)
2 = H

(6)
2 (76)

with PH and rotation operators


1,2 = τxK, r̂1,2 = ei π
3 τz . (77)

Because these two generators are C6-symmetric, they have
[K] = [K ′]. The third generator will need to break C6 symme-
try, so that [K] �= [K ′]. This third generator is a spinless, chiral,

Energy

�-� -�/2 �/2 kx

FIG. 10. (Color online) Energy bands for primitive generator
with Hamiltonian H

(3)
3 for a strip geometry with periodic boundary

conditions in the a1 direction and open boundary conditions in the
(0,1) direction. The dashed blue/ dotted red lines correspond to states
localized at the upper/lower edges. The parameters are u1/� = 0.5,
and μ/� = 0.5. This model has Chern invariant −1.

TABLE IV. Chern and rotation invariants for the primitive models
for C3-symmetric superconductors.

C3 model Ch [K] [K ′]

H
(3)
1 1 1 1

H
(3)
2 3 0 0

H
(3)
3 −1 0 1

px + ipy superconductor with nearest-neighbor hopping and
pairing terms

H
(3)
3 (k) = �

3∑
i=1

sin(k · ai)ai · τ +
[
u1

3∑
i=1

sin(k · ai) + μ

]
τz

for 0 < μ <
√

3
2 u1, (78)

where � is the pairing amplitude, u1 is the nearest-neighbor
hopping amplitude, and μ is the Fermi energy. μ is restricted
to the indicated range to avoid closing gaps at the fixed point 
and at the three fixed points M when μ = 0, and additionally
at the fixed point K when μ = √

3/2. H
(3)
3 has the PH and

rotation operators of Eq. (77). H
(3)
3 has Chern invariant −1,

with edge modes in a strip geometry as shown in Fig. 10.
The invariants for these three primitive models are shown

in Table IV.

IV. DISCLINATION-DISLOCATION FRACTIONAL
VORTEX COMPOSITE

We now review the topological classification of point
defects in a two-dimensional discrete lattice. Dislocations
in a system with broken translation symmetry are torsional
singularities characterized by Burgers’ vectors. Disclinations
in a system with broken rotation symmetry are curvature
singularities characterized by Frank angles. These quantities
are discrete translation and rotation holonomies picked up by
a particle going once around the point defect [13,66–70]. In
superconductors where U(1) charge conservation symmetry
is broken, isolated flux vortices are quantized in units of
q(hc/2e), for integer q, because the Berry phase accumulated
by a quasiparticle going around a cycle must be real [it is (−1)q

for these vortices]. These holonomies are path independent,
and therefore topological. In this section, we describe the
classification of composite point defects in crystalline super-
conductors, which are mixtures of dislocations, disclinations,
and fractional vortices. The “fractional” vortices we discuss
below do not have to be quantized in units of hc/2e because
they appear as composite defects bound to disclinations.

The discrete rotation r̂n and lattice translations Ta by a
Bravais vector a that generate the fermionic space group
P̃ n= C̃n �L obey the non-Abelian group relations

P̃ n =
〈
r̂n,Ta

∣∣∣∣∣r̂n
n = −1, TaTb = Ta+b

r̂nTar̂
−1
n = TRna

〉
, (79)

where Rn = e2πiσy/n is the rotation matrix on real space.
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x

y

FIG. 11. (Color online) Holonomy of a disclination around a
loop (red path) with a fixed starting point (blue dot).

The holonomy of a closed path is the amount of translation
and rotation accumulated by parallel transporting a frame
around the loop. An example is given in Fig. 11 where the xy

frame is rotated by 90◦ at every corner. Its holonomy is given
by r̂4T3ex

r̂4T3ex
r̂4T3ex

= T−3ex
r̂3

4 . In general, the holonomy of a
closed path is an element Tar̂(�) in the space group P̃ n, where
r̂(�) = r̂m

n and � = 2πm/n is the Frank angle. Holonomy is
path independent as long as the starting and ending points
of the path are fixed and the trajectory counter-clockwisely
circles the defect once.

If we change the starting point of our closed path, the
holonomy is transformed according to conjugacy upon a
translation Tc of the starting point:

Tar̂(�) → Tc[Tar̂(�)]T−c = Ta+(1−R(�))cr̂(�), (80)

where R(�) is the rotation matrix ei�σy . Since the topological
classification of the defects should not depend on where we
arbitrarily begin our path, point defects are thus topologically
classified by conjugacy classes of holonomy denoted by
(�,[a]). The Frank angle � is the rotation piece that char-
acterizes the curvature singularity of the conical disclination,
this quantity is always independent of the starting point of the
path. The translation piece, which is transformed when the
starting point is moved, is reduced to the equivalence class [a],
which lies in the quotient:

L
(R(�) − 1)L =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L, for � = 0
0, for � = ±60◦
Z2, for � = ±90◦
Z3, for � = ±120◦
Z2 ⊕ Z2, for � = 180◦

, (81)

where we recall that L is the discrete translation group.
Analogous to the Burgers’ vector, [a] is the translation piece

of the holonomy that characterizes the torsional part of the
singularities. This table implies that for dislocations, i.e., the
case when � = 0, the holonomy can lie in the full translation
group and is not affected by moving the path starting point. For
the other cases, which have nonzero Frank angles, the quotient
elements identify possible inequivalent rotation centers, e.g.,
a vertex or square plaquette in a fourfold lattice; a vertex,
a rectangular plaquette, or the mid-point of a horizontal or
vertical edge in a twofold lattice; a hexagonal plaquette or
the two sublattice vertices of a threefold honeycomb lattice.
Heuristically, this implies that the translational part of the

holonomy of a disclination changes when the starting point
of the path is changed, but in all cases except for � = 60◦,
some piece of the translation remains invariant. For example,
for the C4 case with � = π/2 the translation holonomy can
be modified by choosing a different starting point, but the
parity, i.e., the evenness or oddness of the total number of
translations always remains fixed. Since the rotation symmetry
is C4, we do not distinguish between translations in the x

or y direction and thus we only know the total parity of all
translations.

The set of equivalence classes is also distinguished by
the properties at the core of the disclination, which must lie
at a rotation center of the lattice. For lattices with multiple
rotation centers, it provides a further topological distinction
of disclinations with the same Frank angle (i.e., curvature). In
fourfold-symmetric lattices, a Z2 translation piece is defined,
which counts the evenness or oddness of the number of discrete
translations picked up while circulating along the closed
path. We can use this translation piece to provide type-labels
for disclinations; we can label � = ±π/2 disclinations as
type-(0,0) disclinations, for those having an even number
of translations along both primitive axes of the crystal, or
type-(1,0) disclinations, for those having an odd number of
translations along the primitive axis a1 and an even number
of translations along a2 (recall that in C4-symmetric systems,
type-(0,1) disclinations are equivalent to type-(1,0) disclina-
tions, as they are related by an arbitrary choice of reference
frame). Microscopically, type-(0,0) � = ±π/2 disclinations
center at a vertex with odd coordination number while a
type-(1,0) � = ±π/2 disclinations center at an odd-sided
plaquette [see Fig. 12(a)]. On a more macroscopic level, we
can, for example, see that there is a topological obstruction
to coloring the lattice with a checkerboard plaquette pattern
around a type-(0,0) � = ±π/2 disclination. In disclinations
of twofold-symmetric lattices, the Z2 ⊕ Z2 translation piece
corresponds to type-(0,0), type-(1,0), type-(0,1), and type-(1,1)
disclinations with Frank angle � = ±π , which count the
evenness or oddness of translations along the (x,y) direction
of the crystal. For threefold lattices, the Z3 translation piece
counts the number of discrete translations modulo 3 along
the closed path. An � = ±π/3 disclination in a honeycomb
lattice can center at a square or octagon plaquette for type 0
[Fig. 12(c)] or one of the bipartite vertices for types 1 and 2
[Fig. 12(d)]. Type-1,2 � = ±π/3 disclinations are topological
obstructions to plaquette tri-coloration.

In general, the Frank angle � is defined modulo 4π in a
fermionic system. The holonomy around an � disclination
differs from that of an � + 2π one by the Berry phase −1. In
a crystalline superconductor, disclinations can bind quantum
vortices as composite point defects. For example, the primitive
model Hamiltonians discussed in this paper are p-wave and
thus the rotation and superconducting orders are intertwined;
all rotation operators r̂n contain the factor eiπτz/n that involves
the Nambu τ -degree of freedom. As a result, an � disclination
necessarily binds a fractional vortex with quantum number
q = �

2π
modulo 2Z (see Fig. 13). Therefore an � disclination

differs from a � + 2π one by an (odd integer multiple of)
hc/2e vortex. Our result can thus be viewed as a gravita-
tional generalization of Read and Green’s magnetic vortex
MBS [29].
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(a) (b)

(c) (d)

FIG. 12. (Color online) Lattice disclinations and dislocations.
(a) and (b) Dislocations in the form of disclination dipoles. (c),
(d) ±120◦ disclinations with opposite Frank angles and different
translation types.

In order to derive our index theorem results below, we must
understand the details of combining defects into composite
defects. Multiple point defects can be classically fused into
a single composite defect that is holonomically characterized
by a loop encircling all its constituents. The fusion between
a pair of defects depends on their individual classification as
well as the distance of separation. Suppose Tai

r̂(�i) are the
holonomies of defects i = 1,2 calculated from starting points
separated by the lattice vector d. The overall holonomy is given
by

(�1,a1) ◦ (�2,a2)

= (�1 + �2,a1 + R(�1)[a2 + (R(�2) − 1)d]). (82)

− φ0/4 + φ0/4

FIG. 13. (Color online) Fractional vortices bounded at disclina-
tions in a p-wave SC. φ0 = hc/2e is the flux quantum in a SC.

This cleanly reduces to the addition rule a1 + a2 for Burgers’
vectors of dislocations when �1 = �2 = 0.

As another example, the equation also shows that the
Burgers’ vector characterizing a disclination dipole �1 =
−�2 = � [see Figs. 12(a) and 12(b)] grows linearly in the
separation d:

Bdipole = a1 + a2 + [R(�) − 1](a1 − d). (83)

However, for disclinations, we have seen that the total
translation holonomy depends on the starting point of the
chosen path, and nicely, the equivalence class of the Burgers’
vector as an element in the quotient L/R(�) is independent
from the last term so that [B] = [a1] + [a2]. For instance, as we
will show below and have shown in Ref. [13], in a twofold or
fourfold symmetric lattice the number of MBS at a disclination
dipole is predicted by the index theorem

�dipole = 1

2π
B · Gν = 1

2π
(a1 + a2) · Gν mod 2, (84)

and is independent of the disclination separation d. As we have
shown in Ref. [70], when �dipole is nonzero, this result implies
there must be an uneven distribution of MBS among the pair
of disclinations, i.e., only one of them has an odd number of
MBS and the other has an even number.

V. MAJORANA ZERO MODES AT DISCLINATIONS

We will now use the existence (or nonexistence) of MBS
in the primitive generators, which were defined for each
symmetry class in Sec. III, to construct Z2 index theorems
for the parity of the number of Majorana bound states (MBS)
trapped at disclinations. There is a separate index for each
symmetry and the index �(n) for a Cn-symmetric system is
a function of the topological class of the system χ (n) and the
holonomy that characterizes the disclination (�,T).

To determine the index theorems, we must use two essential
results. The first is that under the combination of disclinations
centered at the same point, the index obeys

�(χ,(�1,T1) ◦ (�2,T2))

= �(χ,(�1 + �2,T1 + R(�1)T2)) mod 2, (85)

which results from Eq. (82) with vanishing separation d
between disclinations. The second result is that the index is
linear modulo 2 under the addition of Cn-symmetric systems,
i.e., for two superconductors with Hamiltonians H

(n)
1 ,H

(n)
2

in classes χ
(n)
1 ,χ

(n)
2 , respectively, that are combined into a

superconductor with Hamiltonian H
(n)
1 ⊕ H

(n)
2 that belongs

to the topological class χ
(n)
1 + χ

(n)
2 , the index is

�(χ1 + χ2,(�,T))

= [�(χ1,(�,T)) + �(χ2,(�,T))] mod 2. (86)

Thus finding the parity of MBS at disclinations for the
primitive generators of Cn-symmetric superconductors nat-
urally provides a characterization of the parity of MBS at
disclinations in any Cn-symmetric system. Our task then
reduces to finding the parity of MBS for the primitive
generators of Sec. III.
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Two different approaches were used to this end, depending
on the type of model. For the spinless chiral px + ipy genera-
tors H

(4)
1 ,H

(4)
2 ,H

(6)
1 ,H

(6)
2 ,H

(3)
1 ,H

(3)
2 , and H

(3)
3 , we numerically

simulated the systems. Since all of the generators break
time-reversal symmetry, we constructed lattice models without
open boundaries, thus avoiding the presence of edge modes.
The total curvature in such a compact surface S without
boundaries is given by the Gauss-Bonnet theorem:∫

S

KdA = 2π (2 − 2g), (87)

where K is the Gaussian curvature of the surface and g the
surface’s genus. Since disclinations of Frank angle � induce a
curvature � on the lattice, we found that toric configurations,
which have g = 1 and thus no overall curvature, minimized
the number of disclinations needed for all symmetries. Discli-
nations with opposite Frank angles were used, both to flatten
the total curvature and to ensure that the total superconducting
flux is zero over the toric lattice cells. A detailed account of
these constructions is shown in Appendix D.

For the generators that take the form of 2D p-wave wire
models, e.g., H

(4)
3 ,H

(4)
4 ,H

(2)
4 , and H

(6)
3 , no simulations were

used. Instead, we take advantage of the fact that the parity of
the number of MBS at a defect is insensitive to perturbations
that preserve the gap and the rotation symmetry away from
the defect. This is true because if these conditions are satisfied
it implies that there are no low-energy channels that would
allow the a single MBS to escape the defect core. Thus we
can determine the parity of MBS “pictorially” in a simple
tight-binding limit. In what follows, we describe our findings
for each symmetry separately.

O1

O2

O2

O2

K

K

K
(a)

O’2

K’

K’

K’

O’1

O’2

O’2

(b)

O1 , O2 , O’2

(c)

K

(d)

O’1

(e)

K’

(f)

FIG. 14. (Color online) (a) and (b) Lattice cells of C4-symmetric
configurations having −π/2 and +π disclinations. Periodic boundary
conditions are imposed, by identifying edges on the unit cell with red,
blue and black lines. (c)–(f) Flattened cores of � = −π/2 [(c) and (e)]
and � = +π [(d) and (f)] disclinations centered at points O,K,O ′,
and K ′ in the unit cells. The disclination types are type (1,0) in
(c) and (f), type (1,1) in (d), and type (0,0) in (e).

A. Fourfold symmetry

Two hexagonal lattice cells were chosen for the simulation
of H

(4)
1 and H

(4)
2 , as shown in Figs. 14(a) and 14(b). The first

lattice cell contains only � = −π/2 type-(1,0) and � = +π

type-(1,1) disclinations, as in Figs. 14(c) and 14(d) [we say
type (1,1) instead of (0,0) because we will also use this lattice
to discuss the C2 invariant classification, for C4 they are the
same]. In the second lattice cell, the disclination of type (1,0) at
point O1 is replaced by one of type (0,0), and the disclination of
type (1,1) at point K is replaced by one of type (1,0), while the
disclination type at point O2 is maintained. The disclinations
for the second lattice cell look as in Figs. 14(c), 14(e),
and 14(f). Notice that in both cases one � = +π and two
� = −π/2 disclinations exist per unit cell, which amount
to no global curvature, thus allowing us to impose periodic
boundary conditions by identifying the opposite sides of the
hexagon, in a flat-curvature toric structure.

The parameters used in the simulations were 2u2/� =
±u1/� = 1 for H

(4)
1 and H

(4)
2 respectively. We did not find

unpaired MBS for the case of H
(4)
1 , and found unpaired MBSs

only for type-(1,0) disclinations with Frank angles � = −π/2
and π in the case of H

(4)
2 . Figure 15 shows the density of states

and probability density functions for the zero-modes in the
simulation of H

(4)
2 for the configuration in Fig. 14(a).

In order to derive the topological index for C4-symmetric
superconductors, we consider � = −π/2 disclinations only,

-10 -5 0 5 10

-3 -2 -1 0 1 2 3

O, K
K’ K’

density of states for

E/∆

H2
(4)

(a)

O1
O2

O2

O2

K

K

K

(b)

O1O2

O2

O2

K

K

K

(c)

FIG. 15. (Color online) Simulation of primitive model H
(4)
2 with

the lattice configuration depicted in Fig. 14(a). (a) Density of states.
The zoomed-in centered region of the insulating gap shows two
zero-energy states with corresponding probability density functions
exponentially localized around the disclination cores O1 (b), and K

(c). The lattice cell has n = 20 sites per side. The parameters used
were 2u2/� = −u1/� = 1.
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(a) (b)

(c) (d)

FIG. 16. (Color online) Tight-binding model H
(4)
3 with (a) type-

(0,0) and (b) type-(1,0) disclinations, and model H
(4)
4 with (c) type-

(0,0) and (d) type-(1,0) disclinations. Thick red dots in disclination
cores are unpaired Majorana bound states.

and use the results at � = π disclinations for the derivation
of the index for C2-symmetric superconductors later on (recall
that the first three generators for the C4 and C2 classifications
are the same). The parity of MBS in the 2D p-wave wire
models H

(4)
3 and H

(4)
4 at both types of � = −π/2 disclinations

can be found pictorially, as shown in Fig. 16. Majorana
fermions are represented by black dots, unless they are
unpaired, in which case they are red open circles. H

(4)
3 has

unpaired MBS for type-(0,0) disclinations, and H
(4)
3 has them

for both types. Notice that in the cases where odd Majorana
fermions are found at the core, there are also an odd number
of Majorana fermions at the boundary. The findings for all C4

primitive models are summarized in Table V.
From these results, and appealing to the linearity of

the index under the composition of systems with the same
symmetry of Eq. (86), we can deduce the index � by some
algebraic manipulations. First, since H

(4)
4 has only [X] = −2

(see Table I) and has MBS for both types, the contribution
to the index from [X] is −1/2[X] mod 2. Then we take the
Hamiltonian 2H

(4)
1 ⊕ 2H

(4)
2 ⊕ H

(4)
4 (here and from now on

we shorten the notation, H
(4)
2 ⊕ H

(4)
2 ≡ 2H

(4)
2 , and so on), in

class χ (4) = (4,0,0,0). This system has MBS in both types
of disclinations, which implies a contribution to the index of

TABLE V. Parity of the number of zero modes at disclinations
for the C4 primitive models.

Frank angle, type H
(4)
1 H

(4)
2 H

(4)
3 H

(4)
4

−π/2, type (0,0) 0 0 1 1
−π/2, type (1,0) 0 1 0 1

1/4Ch mod 2. Then we go back to H
(4)
1 , which does not

have MBS for any type, and solve for 1/4Ch − 1/2[X] +
x[M1] = 0 mod 2. Upon substitution of its invariants, we
have x = 1/4, thus, there is a contribution to the index of
1/4[M1] mod 2. Finally, we consider H

(4)
1 ⊕ H

(4)
2 ⊕ H

(4)
3 , in

class χ (4) = (2,0,−1,1). This has MBS in both types. We solve
for x ′ in 1/4Ch − 1/2[X] + 1/4[M1] + x ′[M2] mod 2 = 1 to
find the contribution of [M2]. This gives x ′ = 3/4.

Up to this point, only Hamiltonians that resulted in
Gν = (0,0) have been used. To find the influence of Gν on
the index let us consider H

(4)
2 , which has Gν = b1 + b2,

and unpaired MBS at type-(1,0) disclinations, even though
1/4(Ch − 2[X] + [M1] + 3[M2]) = 0 mod 2. The reason that
this MBS binds to the disclination is that the weak invariant
Gν is nonvanishing and the translation holonomy T is odd for
type-(1,0) disclinations. It is analogous to the topological index
for MBS at dislocations, with T replacing the Burgers vector
B. Joining these two pieces, and considering the linearity of
the index on the Frank angle of Eq. (85), we find [13]

�(4) =
[

1

2π
T · Gν + �

2π
(Ch − 2[X]

+ [M1] + 3[M2])

]
mod 2. (88)

Crucially, the second term is an integer for all symmetry
allowed choices of � because of the constraint in Eq. (35).

B. Twofold symmetry

Three of the four generators of C2-symmetric supercon-
ductors also have C4 symmetry. Indeed, the two spinless
chiral px + ipy models H

(2)
1 and H

(2)
2 , which are nothing but

models H
(4)
1 and H

(4)
1 , were already simulated with � = +π

disclinations in the previous section. MBS were found only
in the case of H

(2)
2 , and even then only in the type-(1,0)

disclination of Fig. 14(f). No MBS were found for the
type-(1,1) disclination of Fig. 14(d). Notice that no type-(0,0)
� = π disclinations were built in the simulations of H

(2)
1 and

H
(2)
2 , however, the index in Eq. (88) for � = π and T = (0,0)

predicts that no MBS should be found for either H
(2)
1 or H

(2)
2 .

For the third and fourth models, H
(2)
3 and H

(2)
4 , the parity of

MBS can be illustrated pictorially, as in Fig. 17 for the case of
� = +π disclinations. A summary of the parity of MBS for
the C2-symmetric generators is shown in Table VI.

To derive the index for the parity of MBS for C2-symmetric
superconductors, it will be convenient to define �(2) = �

(2)
T +

�
(2)
R , where �

(2)
T = (1/2π )T.Gν is the contribution to the index

TABLE VI. Parity of the number of zero modes at disclinations
for the C2 primitive models.

Frank angle, type H
(2)
1 H

(2)
2 H

(2)
3 H

(2)
4

+π , type (0,0) 0 0 0 1
+π , type (1,0) 0 1 1 1
+π , type (0,1) 0 1 1 0
+π , type (1,1) 0 0 0 0
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 17. (Color online) Tight-binding models H
(2)
3 (a)–(d) and

H
(2)
4 (e)–(h) with � = +π disclinations. Disclinations are of type-

(0,0) in [(a) and (e)], type-(1,0) in [(b) and (f)], type-(0,1) in [(c) and
(g)], and type-(1,1) in [(d) and (h)]. For H

(2)
4 , gray lines serve only as

a guide, and are oriented along the trivial (0,1) direction in a system
with no disclinations, as in Fig. 7(c). Thick red dots in disclination
cores are unpaired Majorana bound states.

due to the translation part of the holonomy, and �
(2)
R is the

contribution due to the Chern and rotation invariants, which we
are to determine. Consider H

(2)
1 , this generator has Gν = (0,0)

and therefore �
(2)
T = 0 for all types of disclinations. This

model does not have MBS for any disclination, so we require
that �

(2)
R = 0 for this set of invariants. Now consider H

(2)
2 and

H
(2)
3 , both of which have Gν = (1,1), and therefore �

(2)
T = 0

for type-(0,0) and type-(1,1) disclinations, but �
(2)
T = 1 for

type-(0,1) or type-(1,0) disclinations. For both models we
observe MBS only for type-(0,1) and type-(1,0) disclinations,
following the parity of �

(2)
T , thus, we require that �

(2)
R = 0

for both of these sets of invariants as well. Finally, let us
look at generator H

(4)
4 , which, unlike the previous three,

breaks C4 symmetry. This generator has Gν = (0,1) and
therefore �

(2)
T = 0 for type-(0,0) and type-(1,0) disclinations

and �
(2)
T = 1 for type-(0,1) and type-(1,1) disclinations. This

model has MBS precisely whenever �
(2)
T = 0, therefore we

require that �
(2)
R = 1 for this set of invariants. Referring

to Table II for the rotation invariants one can see that the
four requirements for �

(2)
R are met by the expression �

(2)
R =

1/2(Ch + [X] + [Y ] + [M]) mod 2. Thus appealing to the
linearity of the index on the Frank angle of Eq. (85), the index
for C2-symmetric systems is

�(2) =
[

1

2π
T · Gν + �

2π
(Ch + [X] + [Y ] + [M])

]
mod 2.

(89)

The second term is always an integer due to the constraint in
Eq. (36).

We finally point out that, since C4-symmetric supercon-
ductors are also C2-symmetric, a relation exists between the
two indices when applying them to � = π disclinations. To
see this, recall that the C2 rotation invariants are related to the
C4 invariants by Eqs. (32) and (33). Thus the contribution of

O2

O2

O2

O2

O1

K1

K1

K2

K2

(a)

O1 , O2

(b)

K1 , K2

(c)

FIG. 18. (Color online) (a) Lattice cell of a C6-symmetric lattice
configuration having ±π/3 disclinations. Periodic boundary con-
ditions are imposed, by identifying edges on the unit cell marked
with the same color of dashed lines. O1,2 indicate centers of −π/3
disclinations. K1,2 indicates centers of +π/3 disclinations. We also
show examples of a (b) −π/3 disclination and a (c) +π/3 disclination.

2[X](4) inside the parenthesis of Eq. (88) splits into the contri-
bution of [X](2) and [Y ](2) in Eq. (89). Similarly, a contribution
of [M1](4) − [M2](4) in �(4) maps to a contribution of [M](2)

in �(2). We are left with a contribution of 4[M2] in �(4) that
does not have a correspondence in C2 rotation invariants, but
this contribution is trivial, since �/2π (4[M2]) = 0 mod 2 for
� = π so there is no contradiction.

C. Sixfold symmetry

For C6 symmetry, the primitive models H
(6)
1 and H

(6)
2 were

simulated by putting a triangular lattice having two � = −π/3
and two � = +π/3 disclinations on a torus with periodic
boundary conditions as shown in Fig. 18(a). Since sixfold
rotation symmetry exists only around vertices of the lattice,
only one type of disclination can be considered, as shown in
Figs. 18(b) and 18(c).

Only first-(second-)nearest-neighbor hopping terms we
used in H

(6)
1 (H (6)

2 ). The simulation parameters were u1/� = 1,
u2 = 0 for H

(6)
1 , and u1 = 0, u2/� = 1 for H

(6)
2 . Unpaired

MBS were found only for in H
(6)
2 . Figure 19 shows the

density of states and the probability density functions for the
zero-modes over a fraction of the lattice cell delimited by
points O1, O2, K1, and K2 (notice that all disclination cores
are covered by this region). The zoomed in region in Fig. 19(a)
shows the four zero modes. The degeneracy at zero energy is
lifted due to hybridization of the MBS wave functions due to
the proximity of the disclination cores. It drops exponentially
with increasing separation between the cores, as shown in
Appendix E for all simulations.

The third primitive model H
(6)
3 can be studied pictorially.

Figure 20 shows that this model harbors a MBS at its core,
represented by the red open circle. The findings for all C6

primitive models are summarized in Table VII.
As before, we can apply the linearity of the index under

the composition of systems with the same symmetry of
Eq. (86) to derive its form. There is total freedom to choose
linear combinations of Hamiltonians because there is no weak
invariant in any C6-symmetric superconductor. Let us start by
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FIG. 19. (Color online) Simulation of primitive model H
(6)
2 with

the lattice configuration depicted in Fig. 18. (a) Density of states.
The zoomed-in centered region of the insulating gap shows four
zero-energy states with corresponding probability density functions
centered at negative disclinations O1, O2 [(b) and (c)], and positive
disclinations K1, K2 [(d) and (e)]. The unit cell has n = 24 sites per
side. The parameters used were u1/� = 0,u2/� = 1. The splitting
of the states near zero energy is due to the finite size of the lattice. We
show in Appendix E that the energies exponentially approach zero as
the system size is increased.

taking H
(6)
3 , which only has [M] = −2 and harbors a MBS.

Thus the contribution to the index is −1/2[M] mod 2. Now,
take H

(6)
2 , and solve xCh − 1/2[M] = 1 mod 2, to find a

contribution of 1/2Ch mod 2. Finally, take H
(6)
1 , and solve

1/2Ch − 1/2[M] + x ′[K] = 0 mod 2, which gives x ′ = 0,
that is, the invariant [K] does not contribute to the index. The
topological index for � = ±π/3 disclinations is then given by
� = 1/6(3Ch − 3[M]) mod 2. The linearity of the index on

TABLE VII. Parity of the number of zero modes at disclinations
for the C6 primitive models.

Frank angle H
(6)
1 H

(6)
2 H

(6)
3

±π/3 0 1 1

FIG. 20. (Color online) Tight-binding model H
(6)
3 with a � =

−π/3 disclination. The thick red dot in the disclination core
represents an unpaired Majorana fermion.

the Frank angle of Eq. (85) implies that the topological index
for a generic C6 disclination with Frank angle � is

�(6) = �

2π
(3Ch − 3[M]) mod 2. (90)

The index is always an integer because of the constraint in
Eq. (37) on the Chern and rotation invariants. There is no
translation term since the weak-invariant always vanishes for
C6 symmetry.

In the search for MBS at disclinations in other 2D p-wave
wire systems, we found that triangular lattices with second-
nearest-neighbor interactions do harbor MBS in � = ±π/3
disclinations; however, according to the topological invariants,
these systems belong to the same class as the primitive model
H

(6)
3 , which only has a nearest-neighbor hopping. As shown

in Fig. 21, this is because, unlike in the C4-symmetric second-
nearest-neighbor p-wave wire of primitive model H

(4)
4 , the

triangular sublattice that harbors the MBS does not interact
with the other two triangular sublattices when the disclination
is induced. On the contrary, when we considered the Kagome
lattice, we found it to be topologically trivial and harboring
no MBS.

(a) (b)

FIG. 21. (Color online) C6-symmetric 2D p-wave wires. (a)
Second-nearest-neighbor triangular p-wave wire. (b) Kagome p-
wave wire. For easy of visualization, only lattice sites are shown, and
not Majorana fermions. Red dots represent sites that harbor unpaired
MBS, as they have an odd number of connections.
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FIG. 22. (Color online) (a) Lattice cell of a C3-symmetric lattice
configuration having � = ±2π/3 disclinations. Periodic boundary
conditions are imposed by identifying edges on the lattice cell marked
with the same type of dashed lines. O indicates the center of the � =
−2π/3 disclination, and K indicates the center of the � = +2π/3
disclination. We show examples of an (b) � = −2π/3 disclination
and an (c) � = +2π/3 disclination.

D. Threefold symmetry

For superconductors H
(3)
1 and H

(3)
2 , which are C6-

symmetric, the index �(6) predicts no MBS in � = 2π/3
disclinations. To corroborate this, and to investigate the third
primitive generator H

(2)
3 , which breaks C6 symmetry, all three

models were simulated by putting their triangular lattices on
a torus. This time, only one � = −2π/3 disclination and
one � = +2π/3 disclination were necessary to compensate
curvature, as shown in Fig. 22(a). Just as in the C6 case,
Gν = 0, and only disclinations centered at vertices need to
be considered, with cores as in Figs. 22(b) and 22(c).

Simulations indicated that no MBS exist for any of the three
models. However, when fluxes of ±� ± 2π were bound to
the disclinations with Frank angles of ±�, respectively, MBS
appeared in all models, and in all disclinations. Figure 23
shows simulation results for H

(3)
1 with an extra quantum

of flux added. The findings for all C3 primitive models are
summarized in Table VIII.

The results indicate that the index does not depend on
either [K](3) or [K ′](3), which is expected since the index for
C6-symmetric systems was independent from [K](6). This, in
addition to the information summarized in Table VIII leads to
the index

�(3)(�) =
(

�

2π
+ 1

)
3Ch mod 2 (91)

for 0 � � � 4π . Notice that, unlike the cases treated before,
� here accounts for the superconducting flux, and not the
classical Frank angle of the disclination. Both can either
be the same, or differ by an extra flux quantum of 2π , as
discussed in Sec. IV. The case of binding extra quanta of flux

TABLE VIII. Parity of the number of zero modes at disclinations
for the C3 primitive models.

Frank angle, SC flux H
(3)
1 H

(3)
2 H

(3)
3

±2π/3, no extra flux 0 0 0
±2π/3, extra flux 1 1 1

-6 -4 -2 0 2 4 6

density of states for H1
(3)

E/∆
O,K
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O

K
K

K
K

(b)

O

K
K

K
K

(c)

FIG. 23. (Color online) Simulation of primitive model H
(3)
1 with

the lattice configuration depicted in Fig. 22. (a) Density of states
showing two zero-energy states with corresponding probability
density functions centered at the � = −2π/3 disclination core O

(b), and at the � = +2π/3 disclination core K (c). Superconducting
fluxes of ±8π/3 bind the disclinations. The unit cell has n = 18
sites per side. The Hamiltonian parameters were set to u1/� = 1 and
u2/� = 0.

to disclinations in lattices where the order of rotation n is even
is treated in Appendix E. In those cases, a different rotation
operator is associated with the extra flux, thus changing the
rotation invariants in accordance with Eq. (21). In any case, the
result amounts to an inversion of the parity of MBS whenever
the Chern invariant is odd, which resembles the usual result in
Ref. [29] for the parity of MBS in quantum vortices.

VI. DISCLINATION AND CORNER MAJORANA BOUND
STATES IN REAL MATERIALS

The Z2 topological index � that counts the MBS number
parity at a disclination applies to all two-dimensional gapped
crystalline superconductors described by a mean-field BdG
Hamiltonian. In this section, we consider two well documented
materials and predict the existence of disclination or corner-
bound Majorana zero modes.

A. Strontium ruthenate Sr2RuO4

This material has a layered perovskite structure and can
be approximated by a quasi-two-dimensional theory with a
fourfold-lattice rotation symmetry. It is an unconventional
superconductor when T � 1.5 K, and its superconducting
order parameter shows spin-triplet p-wave characteristics,
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which is odd under time reversal and parity [71–74]. The
exact nature of the pairing order has been controversial. It
was postulated to be a chiral px + ipy state [75] however
the expected edge current [76,77] was not detected with
the predicted magnitude [78–80]. The triplet pairing was
later theoretically suggested by Raghu-Kapitulnik-Kivelson
in Ref. [81] to be nonchiral and predominantly generated
from the quasi-one-dimensional dxz and dyz bands instead
of the two-dimensional dxy band. More recently there is
STM evidence supporting the quasi-1D nonchiral nature of
the material [82]. In recent work, Majorana bound states
were predicted to be present on linked dislocation lines in
the 3D material due to the nontrivial Z2 weak invariants
Gν = b1 + b2 [83]. Here we discuss the MBS number parity
at disclination and/or corner defects in Sr2RuO4 using the
quasi-one-dimensional model proposed in Ref. [81].

The electronic band theory of the material at the Fermi
energy is a controlled by the t2g orbitals of ruthenium. In the
normal metallic phase, the quasi-two-dimensional dxy band
forms a Fermi circle, while the quasi-one-dimensional dxz

and dyz bands give horizontal and vertical Fermi lines [see
Fig. 24(a)]. We will focus only on the spin triplet supercon-
ductivity of the dxz and dyz bands, which were predicted by
Ref. [81] to be the dominant superconducting pairing, and we
will ignore the effects of spin-orbit coupling. Because of the
quasi-1D nature, each band is physically identical to an array of
weakly coupled electron wires, which, in the presence of triplet
superconductivity, become the Kitaev p-wave chains [27].
The dxz and dyz arrays are stacked perpendicular to each
other and form a fourfold rotation symmetric system. This
model of Sr2RuO4 is therefore topologically equivalent to the
Hamiltonian H

(4)
3 in Eq. (47) with nonzero nearest-neighbor

hopping u1, but vanishing next nearest hopping u2. This is
pictorially represented by the Majorana tight binding model
in Fig. 7(a) or 24(b). In reality, there are weak interwire
couplings and spin-orbit coupling which hybridize different
orbitals (both the order of magnitude of 10% of u1). Although
spin-orbit coupling would be essential in determining the
dominant superconducting order, the topology of the BdG
Hamiltonian H

(4)
3 is insensitive to these weak perturbations. On

Γ

M

X

X’

dxy

dxz

dyz(a) (b)

FIG. 24. (Color online) (a) Schematics of the (unhybridized)
Fermi surfaces of the normal metallic phase of Sr2RuO4. In the
Raghu-Kapitulnik-Kivelson state the dxz and dyz bands (horizontal
and vertical red lines) are responsible for superconductivity while
the dxy one (dashed blue circle) is ignored [81]. (b) Tight-binding
limit of the superconducting dxz and dyz bands. Dashed lines on the
edges represent allowed perturbations that will gap the edge Majorana
modes and leave an unpaired MBS (red dot) at each corner.

one hand, weak hybridization does not change the electronic
structure at the fixed points on the Brillouin zone (in the
Fermi surface of the normal metallic state the bending of
the d-orbital bands due to hybridization does not affect the
, M , and X points) and therefore the bulk superconducting
gap does not close. On the other hand, the rotation invariants
in the superconducting state are entirely determined from the
normal metallic state because the pairing only affects states
at the Fermi energy, which are located away from the fixed
points in the Brillouin zone. Thus, as long as there is a pairing
gap, the topology of the superconductor is independent from
the hybridization of d orbitals.

With this description, Sr2RuO4 does not carry a chiral edge
mode. However, it carries a nontrivial weak topology with
index as in Eq. (39) as well as rotation symmetry protected
invariants shown in Table I. As a result, the Z2 index in
Eq. (88) predicts an odd MBS number parity at a type-(0,0)
90◦ disclination and an even parity at a type-(1,0) one
[see Figs. 16(a) and 16(b)]. Since MBS always come in pairs,
the periphery of the (0,0)−disclination system must also carry
an odd number of Majorana modes. However, the nontrivial
weak topology implies the existence of an additional nonchiral
gapless channel along an edge that can couple to the corner
states. Luckily, surface perturbations can open a gap for the
nonchiral channel, e.g., a density wave perturbation [denoted
by the dashed lines in Fig. 24(b)], which will leave an odd
number of MBS at each corner (represented by red dots).
Unlike disclination MBS which are protected by the bulk
energy gap, corner MBS are only weakly protected as they
can escape through accidental or topological gapless edge
channels. We note that since Sr2RuO4 is really a 3D material,
the existence of MBS implies the existence of a channel
of chiral Majorana modes propagating on disclination/corner
lines in the 3D sample. We also need to restore the spin degree
of freedom which implies that there will be pairs of MBS,
one for each spin, which could be coupled via the spin-orbit
coupling, in which case they would hybridize opening a gap.

B. Doped graphene

Graphene is a two-dimensional sheet of carbon arranged on
a honeycomb lattice with a D6h symmetry. Pure graphene has
a semimetallic electronic structure with Fermi energy (filling
ν = 1/2) tuned to the degeneracy point of the four massless
Dirac cones, two from spin and two from K,K ′ valley degrees
of freedom [84]. Recently, there has been a theoretical proposal
for chiral d + id superconductivity in doped graphene with the
Fermi energy set around the saddle point at M (filling ν = 3/8
or 5/8) where there is a van Hove singularity in the density
of states [85] (see Fig. 25). Here we explore the possibility of
disclination or corner MBS by using a mean-field description
of superconducting graphene derived from a t − J model [86].

The mean-field Hamiltonian is given by

Ĥ = −t
∑
k,j,σ

eik·dj f
†
kσ gkσ + H.c.

+μ
∑
k,σ

(f †
kσ fkσ + g

†
kσ gkσ )

−
∑
k,j

�je
ik·dj (f †

k↑g
†
−k↓ − f

†
k↓g

†
−k↑) + H.c., (92)
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FIG. 25. (Color online) (a) Fermi surface of graphene at filling
ν � 3/8 or 5/8. (b) BdG excitation spectrum of superconducting
graphene. � = 1 eV for solid lines and � = 0 for shaded ones.

where f,g are electron operators at the A,B sublattice, dj are
the three nearest-neighbor displacement vectors from an A site
to a B site, t ∼ 2.5 eV is the nearest-neighbor hopping strength,
μ = ±t is the Fermi energy at the van Hove singularity, and
�j is the superconducting order parameter for j = 1,2,3. The
pairing term involves nearest-neighbor electrons, and the order
parameter � = (�1,�2,�3) is proportional to

�s ∝ (1,1,1) (93)

for s-wave pairing, or

�dxy ∝ (0,1, −1), �dx2−y2 ∝ (2,−1, −1) (94)

for d-wave pairing. The s-wave state preserves the rotation
and mirror symmetry of graphene as it forms a trivial one-
dimensional irreducible representation of D6h. The two d-
wave states spontaneously break threefold rotation and mirror
but they can coexist and correspond to a two-dimensional
irreducible representation E2g of the point group D6h. Both
the s- and d-wave states break time reversal symmetry. It was
theoretically suggested that the chiral d ± id combination

�d±id = �dxy ± i�dx2−y2 ∝ (1,e±i2π/3,e∓i2π/3) (95)

is energetically favorable [85,86].
The s-wave state is a trivial crystalline superconductor with

vanishing Chern and rotation invariants. The d ± id state is
a topological superconductor with Chern number ±2, which
generates two chiral Majorana edge modes [see Fig. 26(b)

k-� �

Energy

0 k-� �

Energy

0

(a) (b)

FIG. 26. (Color online) Boundary states of superconducting
graphene in a slab geometry terminating along zigzag edges with
(a) s-wave pairing or (b) d ± id pairing.

TABLE IX. Topological invariants for the inversion symmetric
superconducting graphene from Eq. (92).

Pairing order Ch [M] [M ′] [M ′′]

s-wave 0 0 0 0
d + id-wave 2 0 0 0

and Table IX)]. Since the d-wave pairing breaks threefold
symmetry, the superconductor is only twofold symmetric and
has trivial twofold rotation invariants. Nevertheless, the index
theorem in Eq. (89) still predicts an odd MBS number parity
at a 180◦ disclination due to the Chern number contribution.
As a 180◦ disclination can be decomposed into three 60◦ ones,
it would be natural to expect an odd MBS parity at a pentagon
or heptagon defect although a sixfold rotation symmetry is
absent in the BdG theory. Notice that a quantum flux vortex
does not generically bind a MBS since the Chern number of the
d ± id state is even. The fact that disclinations do trap an odd
number of MBS is a result of vortex fractionalization, which is
facilitated by the intertwining pairing and rotation order. This
is remarkable because it implies that superconductors with
even Chern numbers can still host an odd number of MBS on
certain defects.

Notably, grain boundaries are also not uncommon in
graphene [87]. One type of grain boundary is a line defect
in the two-dimensional sheet formed by a series of 5,7 sided
plaquette defects, i.e., a chain of ±60◦ disclination dipoles.
When d + id pairing is formed, each defect will carry a single
MBS. Thus, this type of grain boundary would serve as a
realization of Kitaev’s p-wave superconducting chain [27] and
an alternative to proximity induced superconducting spin-orbit
coupled semiconductors [18,46,47].

VII. DISCUSSION AND CONCLUSIONS

The primary goal of this work was to provide a topological
classification for 2D superconductors with discrete rotation
symmetry as well as index theorems that determine the parity
of Majorana bound states in composite defects composed
of fluxes, dislocations and disclinations. We have found the
classification to be quite rich and varied across the different
Cn rotation symmetries. Since most crystalline systems exhibit
some type of 2D rotation symmetry, the results of this work
can be applied to a broad class of crystalline superconductors.
Interestingly, we found that even in systems with an even
integer or vanishing Chern number, disclination defects can
bind an odd number of Majorana bound states. There are even
cases when both the Chern number and weak invariants are
trivial and disclinations still bind an odd number of Majorana
modes due to topological rotation invariants. Thus we can find
Majorana modes in nonchiral superconductors if the proper
rotation invariants are nonvanishing.

In addition to the Majorana modes bound in disclinations,
we also discussed zero-modes that can occur at the corners
of crystalline samples. The existence of corner states in fact
is an exciting new way to realize Majorana modes. Another
recent work discussing corner states appeared in Ref. [88]
which discusses corner states in Fullerene-type crystalline
arrangements. The type of corner effects discussed here are
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FIG. 27. (Color online) Three-dimensional p-wave wire with
corner states. (a) Unit cell showing the connections of its Majorana
fermions (black dots). (b) Brillouin zone, showing the rotation fixed
points and the axes of rotation.

not limited to 2D and can also appear in 3D. For example,
consider a 3D version of the p-wave wire in a simple cubic
lattice in which eight Majorana fermions are assigned to
each site of the lattice, and which have third-nearest-neighbor
connections, as shown in Fig. 27(a). This model has a cubic BZ
as shown in Fig. 27(b). There are fixed points of four types:
one  = (0,0,0) point, three X = (π,0,0) points (counting
permutations of coordinate values), three G = (π,π,0) points
(again, with permutation of coordinate values), and one M =
(π,π,π ) point. While we will leave the full discussion to future
work, we note that the representation of the rotation is trivial at
points X and G, but nontrivial at the M point. At the M point,
the representation is nontrivial due to the rotation spectrum of
the C2 operator that has as an axis of rotation the line that passes
by (0,0,0) and (π,π,0). It is clear from the construction that by
comparison to the 2D C4-symmetric model H

(4)
4 this system

will have corner states on the eight corners of a cubic sample.
Since corner states could be accessed via STM probes or even
just transport tunneling contacts the bound states trapped on
corner defects may be observed.

While we have only considered rotation symmetries in this
work, it will be interesting to see what additional constraints
or invariants arise when additional reflection symmetries
are added. For insulators, some of these things have been
discussed in Refs. [11,12], but with the addition of particle-
hole symmetry required for superconductors there may be
additional complications. Also a full extension of this type of
classification to superconductors with 3D point groups is also
lacking. We leave these further classifications to future work.
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APPENDIX A: ROTATION EIGENVALUES
AND INVARIANTS

In this appendix, we apply the constraints on the rotation
eigenvalues described in Sec. II A to deduce the sets of rotation
invariants for the rotation symmetries C2, C6, and C3. The

derivation of the invariants for C4 symmetry is found in
Sec. II A.

1. Twofold symmetry

In systems with C2 symmetry, the invariant points are
�(2) = ,X,Y,M , each of which has eigenvalues �

(2)
1 = i and

�
(2)
2 = −i as shown in Fig. 28.
Let us define the invariants

xp = #Xp − #p, (A1)

yp = #Yp − #p, (A2)

mp = #Mp − #p, (A3)

for p = 1,2. Due to PH symmetry and the fact that the number
of occupied bands is constant over the Brillouin zone, we have

x1 + x2 = y1 + y2 = m1 + m2 = 0. (A4)

Twofold symmetric systems are thus characterized by their
Chern number and three rotation invariants, which we choose
to be

[X] = #X1 − #1, (A5)

[Y ] = #Y1 − #1, (A6)

[M] = #M1 − #1. (A7)

2. Sixfold symmetry

In systems with C6 symmetry, the invariant points are
�(6) = , �(3) = K,K ′ and �(2) = M,M ′,M ′′. Of these, only
, M , and K are relevant, because C6 symmetry relates K to
K ′, and M ′′ to M and to M ′. The corresponding eigenvalues
are 1 = eiπ/6, 2 = i, 3 = ei5π/6, 4 = e−i5π/6, 5 = −i,
and 6 = e−iπ/6; K

(3)
1 = eiπ/3, K

(3)
2 = i, K

(4)
3 = e−iπ/3; and

M1 = i,M2 = −i as shown in Fig. 29. Let us define the
invariants

k1 = #K1 − (#1 + #4), (A8)

k2 = #K2 − (#2 + #5), (A9)

k3 = #K3 − (#3 + #6), (A10)

m1 = #M1 − (#1 + #3 + #5), (A11)

m2 = #M2 − (#2 + #4 + #6). (A12)
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FIG. 28. (Color online) Rotation eigenvalues at the fixed-point
momenta (a) , (b) X, (c) Y , and (d) M in the Brillouin zone of
C2-symmetric crystals.
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FIG. 29. (Color online) Rotation eigenvalues at the fixed-point
momenta (a) , (b) M , and (c) K in the Brillouin zone of C6-
symmetric crystals.

The fact that there is a constant number of bands over the
Brillouin zone implies that

m1 + m2 = k1 + k2 + k3 = 0, (A13)

while the fact that there is a constant number of rotation
eigenvalues over the Brillouin zone leads to

m1 + m2 = k1 + k3 = 0. (A14)

Therefore, in addition to the Chern number, we only need
two rotation invariants to characterize the topology of C6-
symmetric systems:

[K] = #K1 − #1 − #4, (A15)

[M] = #M1 − #1 − #3 − #5. (A16)

3. Threefold symmetry

In systems with C3 symmetry, the invariant points are
�(3) = ,K,K ′. The corresponding eigenvalues are �

(3)
1 =

eiπ/3,�
(3)
2 = i,�

(4)
3 = e−iπ/3 as shown in Fig. 30. Let us define

the invariants

kp = #Kp − #p, (A17)

k′
p = #K ′

p − #p, (A18)

for p = 1,2,3. The constant number of bands over the Brillouin
zone implies that

k1 + k2 + k3 = k′
1 + k′

2 + k′
3 = 0, (A19)

while the constant number of rotation eigenvalues over the
Brillouin zone leads to

k1 + k3 = k′
1 + k′

3 = 0. (A20)

Im

Re

Γ1

Γ2

Γ3

(a)

Im

Re

K 1

K 2

K 3

(b)

Im

Re

K’1
K’2

K’3
(c)

FIG. 30. (Color online) Rotation eigenvalues at the fixed-point
momenta (a) , (b) K , and (c) K ′ in the Brillouin zone of C3-
symmetric crystals.

So, in addition to the Chern number, we only need two rotation
invariants to characterize the topology of C3-symmetric
systems:

[K] = #K1 − #1, (A21)

[K ′] = #K ′
1 − #1. (A22)

APPENDIX B: CONSTRAINTS ON THE CHERN AND
WEAK INVARIANTS DUE TO ROTATION SYMMETRY

Although the relations between the Chern invariant and the
rotation invariants for each of the four rotational symmetries
can be inferred by the relations shown in the work of Fang
et al. [11] if PH symmetry is taken into account, here we
present a detailed derivation of these relations for the sake of
completeness. We do this by direct evaluation of Eq. (9) for
the Chern invariant and Eq. (10) for the weak invariants.

1. Constraints on the Chern invariant

Consider a fundamental domain of an n-fold symmetric
Brillouin zone, as shown in gray in Fig. 31. The entire Brillouin
zone can be generated by rotating the fundamental domain
n − 1 times. Let the fundamental domain be U0, and let us
call Ui = Ri

nU0, the domain generated by rotation of the
fundamental domain i times, for i = 0, . . . ,n − 1. Let Uij =
Ui ∩ Uj = ∂Ui ∩ ∂Uj , for i �= j , be the domain intersection
with orientation depicted by the arrows in Fig. 31. There is no
topological obstruction in choosing a basis of occupied states
{|uα

(0)(k)〉} over the fundamental domain U0 (here α labels the
occupied band and the subindex between parenthesis labels the
domain). Similarly, in general, there is no obstruction in choos-
ing basis states |uα

(j )(k)〉 = r̂
j
n |uα

(0)(R
−j
n k)〉 ≡ |r̂ j

nuα
(0)(R

−j
n k)〉

over Uj . Therefore, defining the Berry connection A(i) on the
domain Ui as

Aαβ

(i) (k) = 〈
uα

(i)(k)
∣∣d∣∣uβ

(i)(k)
〉 = 〈

r̂ i
nu

α
(0)

(
R−i

n k
)∣∣d∣∣r̂ i

nu
β

(0)

(
R−i

n k
)〉

(B1)

the Chern invariant can be evaluated by integrating Berry
curvature in the Brillouin zone, which we now show reduces
to an integral of the transition functions along the domain

Γ

M

X

Y

Γ

K K’

Γ

MK

M’ M’’

K’

Γ

M

X

X’

(a) (b) (c) (d)

FIG. 31. Brillouin zones for systems with (a) fourfold,
(b) twofold, (c) sixfold, and (d) threefold rotation symmetries and
their rotation fixed points. Shaded regions indicate the fundamental
domain that generates the entire Brillouin zone upon rotation around
the fixed point at the center of the Brillouin zones  = (0,0). Arrows
indicate direction of integration in the calculation of the Chern
invariant.
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intersections Uij :

Ch = i

2π

∫∫
BZ

Tr(F) =
n−1∑
i=0

i

2π

∫∫
Ui

Tr(F)

=
n−1∑
i=0

i

2π

∫
∂Ui

Tr(A(i))

=
n−1∑
i<j

i

2π

∫
Uij

(Tr(A(j )) − Tr(A(i)))

=
n−1∑
i<j

i

2π

∫
Uij

Tr(g†
ij dgij ), (B2)

where gij is the gauge transformation or transition function
defined along the intersection Uij :

g
αβ

ij (k) = 〈
uα

(i)(k)
∣∣uβ

(j )(k)
〉 = 〈

uα
(0)

(
R−i

n k
)∣∣r̂ j−i

n u
β

(0)

(
R−j

n k
)〉
.

(B3)

Rotation symmetry implies for k in Uij ,

gi+1,j+1(Rnk) = gij (k), (B4)

and therefore all the line integrals in Eq. (B2) can be rotated
back to the fundamental domain U0. For instance,∫

Uij

Tr(g†
ij dgij ) =

∫
U0,j−i

Tr(g†
0,j−idg0,j−i). (B5)

Figure 31 shows the lines of integration. They consist of lines
joining the rotation fixed points �(n) in the Brillouin zone.
Given fixed points �

(n)
0 and �

(n)
1 ,∫ �

(n)
1

�
(n)
0

Tr(g†dg) = ln det g

∣∣∣∣�
(n)
1

�
(n)
0

. (B6)

Crucially, the transition functions at the rotation fixed points
�(n) are simply the rotation operators projected into the
subspace of occupied bands:

g
αβ

01 (�(n)) = 〈
uα

(0)(�
(n))

∣∣r̂n

∣∣uβ

(0)(�
(n))

〉 = r̂αβ
n (�(n)). (B7)

At these fixed points, the projected rotation operator can be
diagonalized into

r̂n(�(n)) = n⊕
p=1

�(n)
p I#�

(n)
p ×#�

(n)
p

, (B8)

where #�(n)
p indicates the number of occupied states at fixed

point �(n) with rotation eigenvalue �(n)
p . Thus we see that the

line integrals of the form of Eq. (B6) needed for the calculation
of the Chern invariant depend ultimately on evaluations of the
rotation operators at the fixed points. To be more precise, let
us define the rotation index at �(n) to be

δn(�(n)) = n

2πi
ln det r̂n(�(n)) =

n∑
p=1

(p − 1/2)#�(n)
p . (B9)

The Chern invariant can be related to a linear combination
of such indices, one at each of the fixed points. A detailed
calculation now follows for each rotation symmetry.

a. Fourfold symmetry

The Chern invariant is

Ch = i

2π
× 4

(∫
→

X

Tr(g†
01dg01) +

∫
→

X′M
Tr(g†

01dg01)

)
= i

2π
× 4

(
ln det g01

∣∣
X

+ ln det g01

∣∣M
X′

)
. (B10)

Here, the factor of 4 is a result of the fourfold symmetry, which
allows the line integrals to be rotated back to the fundamental
domain by virtue of Eq. (B5).  and M are fourfold fixed
points, while X and X′ are twofold fixed points. The transition
function at  is exactly the fourfold rotation operator projected
into the occupied bands g

αβ

01 () = 〈uα()|r̂4|uβ()〉 = r̂
αβ

4 ().
Similarly, g01(M) = r̂4(M). On the other hand, at X,
the transition functions are related to the projected
twofold rotation operator by

∑
γ g

αγ

01 (X)gγβ

01 (X′) =∑
γ 〈uα(X)|r̂4|uγ (X′)〉〈uγ (X′)|r̂4|uβ(X)〉 = r̂

αβ

2 (X).
Similarly, g01(X′)g01(X) = r̂2(X′). Thus the terms in
Eq. (B10) can be written in terms of the rotation indices

4

2πi
ln det g01() = δ4(), (B11)

4

2πi
ln det g01(M) = δ4(M), (B12)

2

2πi
ln det[g01(X)g01(X′)] = δ2(X) = δ2(X′), (B13)

leading to the following expression for the Chern invariant:

Ch = −(δ4() + δ4(M) − δ2(X) − δ2(X′)) mod 4. (B14)

In terms of the rotation invariants, the relation above can be
expressed as

Ch + 2[X] + [M1] + 3[M2] = 0 mod 4. (B15)

b. Twofold symmetry

The Chern invariant is

Ch = i

2π
2

(∫
→

X

Tr(g†
01dg01) +

∫
→

YM

Tr(g†
01dg01)

)
, (B16)

where the factor of two arises from the twofold symmetry,
which allows rotating the line integrals back to the fundamental
domain. All the points in the line integral are twofold fixed
points, thus g01(�(2)) = r̂2(�(2)) for �(2) = {,X,M,X′}.
Therefore the Chern invariant can be written as

Ch = −(δ2() − δ2(X) + δ2(M) − δ2(Y )) mod 2. (B17)

In terms of the rotation invariants, the relation above can be
expressed as

Ch + [X] + [Y ] + [M] = 0 mod 2. (B18)

c. Sixfold symmetry

The Chern invariant is

Ch = i

2π
6

(∫
→

K

Tr(g†
01dg01) +

∫
→

K ′M
Tr(g†

03dg03)

)
. (B19)

Here,  is a sixfold fixed point, K and K ′ are threefold
fixed points related by twofold symmetry, and M , M ′, and
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M ′′ are twofold fixed points related by threefold symmetry.
The transition functions in terms of the projected rotation
operators are g01() = r̂6(), g01(K)g01(K ′) = r̂3(K), and
g01(M)g01(M ′)g01(M ′′) = r̂2(M). From these relations, we
have

6

2πi
ln det g01() = δ6(), (B20)

3

2πi
ln det[g01(K)g01(K ′)] = δ3(K), (B21)

2

2πi
ln det[g01(M)g01(M ′)g01(M ′′)] = δ2(M). (B22)

Twofold symmetry implies that δ3(K) = δ3(K ′) and threefold
symmetry implies that δ2(M) = δ2(M ′) = δ2(M ′′). Notice
that the second term in the line integral for the Chern invariant
involves g03, the transition function relating the fundamental
domain U0 and U3 = R3U0. By inserting a complete set of
occupied states, we have

g03(K ′) = g01(K ′)g01(K)g01(K ′), (B23)

g03(M) = g01(M)g01(M ′)g01(M ′′). (B24)

Combining the expressions above and Eq. (B19) the Chern
invariant is

Ch = −(δ6() − 4δ3(K) + 3δ2(M)) mod 6. (B25)

In terms of the rotation invariants,

Ch + 2[K] + 3[M] = 0 mod 6. (B26)

d. Threefold symmetry

The Chern invariant is

Ch = i

2π
3

(∫
→

K

Tr(g†
01dg01) +

∫
→

KK ′
Tr(g†

01dg01)

)
. (B27)

Here all points are threefold fixed points, and the rotation
operators are g01(�(3)) = r̂3(�(3)) for �(3) = {,K,K ′}. Thus
the Chern number is equal to

Ch = −(δ3() + δ3(K ′) − 2δ3(K)) mod 3. (B28)

In terms of the rotation invariants,

Ch + [K] + [K ′] = 0 mod 3. (B29)

2. Constraints on the weak invariants

Consider determining the weak invariant ν1 in a twofold
symmetric crystal. Following the notation in Fig. 32 for the
fixed points, the line integral of the Berry connection along the
boundary is

ν1 = i

π

(∫
→

M ′X
Tr(A(0)) +

∫
→

XM

Tr(A(0))

)
. (B30)

The first term in Eq. (B30), which integrates along the lower-
right half of the BZ boundary, will be written as an integral
along its upper-left half boundary (dashed lines in Fig. 32).

Γ

Y

ν1

X

M

M’
FIG. 32. (Color online) Brillouin zone of a C2-symmetric su-

perconductor showing the lines of integration (red lines) for the
calculation of the weak index ν1.

This is possible since the connection can be written as

Aαβ

(1)(k) = 〈
uα

(1)(k)
∣∣d∣∣uβ

(1)(k)
〉

= 〈
r̂2u

α
(0)

(
R−1

2 k
)∣∣d∣∣r̂2u

β

(0)

(
R−1

2 k
)〉

= Aαβ

(0)

(
R−1

2 k
)
, (B31)

where we have made use of the gauge change |uα
(1)(k)〉 =

r̂2|uα
(0)(R

−1
2 k)〉. This allows us to relate the integral to the

rotation invariants as follows:

ν1 = i

π

∫
→

XM

(Tr(A(0)) − Tr(A(1))) = i

π

∫
→

XM

Tr(g†
01dg01)

= i

π
det ln g01

∣∣∣∣M
X

= i

π
( ln det r̂2(M) − ln det r̂2(X))

= δ2(M) − δ2(X), (B32)

which, in terms of the rotation invariants, can be written as

ν1 = [M] + [X] mod 2. (B33)

Similarly, we find

ν2 = [M] + [Y ] mod 2. (B34)

In fourfold symmetric crystals the calculation follows the
same steps. The twofold rotation of the first term in Eq. (B30)
amounts to a double application of the fourfold rotation
operator r̂2

4 , which results in the index

ν = i

π
(2 ln det r̂4(M) − ln det r̂2(X)) = δ4(M) − δ2(X)

(B35)

or, in terms of the rotation invariants,

ν = [M1] + [M2] + [X] mod 2. (B36)

In C3-symmetric crystals, G = 0. This is because under
threefold rotation the reciprocal lattice vectors b1 = (1,0)
and b2 = (1/2,

√
3/2) change according to b1 → b2, and

b2 → −b1 − b2, and C3 symmetry demands that G = R3G =
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ν1b2 + ν2(−b1 − b2) = (−ν2)b1 + (ν1 − ν2)b2, which im-
plies that ν1 = −ν2 and ν2 = ν1 − ν2, or 3ν2 = 0 mod 2. Thus
ν1 = ν2 = 0.

APPENDIX C: PROOF THAT THE STABLE
CLASSIFICATION OF TCS IS COMPLETE

In this Appendix, we complete the proof we delayed from
Sec. III. First, consider two Hamiltonians H0 and H1 with the
same χ (n). We can match their rotation eigenspectra {#�(n)

p }
and second-descendant invariants μ() simply by the addition
of trivial bands. Next, the energy spectrum of H0 and H1 can
be flattened to take away any dispersion, i.e., Em(k) = ±1.
Our aim then is to deform H0(k) into H1(k) over all values
of k in the fundamental domain of the Brillouin zone (gray
zones in Fig. 2), and rotation symmetry will guarantee that this
deformation applies for values of k over the entire Brillouin
zone. For demonstration, we choose a C4-symmetric system
with the fundamental domain being a square. A deformation
is equivalent to a Hamiltonian Hs(k) defined on the cube in
Fig. 33 with fixed boundary Hamiltonians H0(k) and H1(k).

To prove the existence of a continuous deformation,
one proceeds by showing that there is no obstruction to a
continuous interpolation in the cube in Fig. 33 starting with
the edges, then the faces, and finally the full volume.

(i) At a point in momentum space � that remains invariant
under rotation, the Hamiltonians can be deformed into each
other as the rotation representations and the second-descendant
invariants for H0(�) and H1(�) are identical. Therefore there
is a deformation Hs(�) along the edges of the cube.

(ii) Next, we fill in the faces. For demonstration, consider
the front face F = 0X0X11. The deformation Hamiltonian
Hs is already fixed along the boundary ∂F by procedure (i).
For a C3-symmetric system, Hs |∂F belongs to class A as X

is not closed under PH symmetry. For a C2,4,6-symmetric
system with a twofold symmetry r̂2, Hs |∂F belongs to class
C with the combined PH symmetry 
̃ = r̂2
 that squares to
minus one. The new PH operator fixes both momentum and
the deformation parameter:


̃ = r̂2
 : (k,s) → (k,s). (C1)

deform
ation

Γ0

X0

X’0
M0

Γ1

X1

X’1 M1 s

FIG. 33. (Color online) Deformation of Hamiltonian H0 into H1

over a fundamental domain, blue for H0 and red for H1.

The topological classification of such a system falls in the
classification of topological defects in Ref. [56]. The relevant
defect dimension is given by δ = d − D, where d counts the
dimension of parameters odd under the symmetry and D is
the dimension for even ones. Along the face boundary ∂F ,
all parameters are even under 
̃ and therefore the “defect”
dimension is δ = −1 (which is 7 mod 8). There are no
nontrivial classifications for both classes A and C. Hs |∂F is
therefore topologically trivial, and there is no obstruction in
extending the deformation Hamiltonian Hs over the whole face
F . Note that this also defines the Hamiltonian Hs on other faces
that are related to F by rotation. In Fig. 33, for instance, the
face F ′ = 0X

′
0X

′
11 is related to F by a C4 rotation.

(iii) Finally, we fill in the rest of the volume V for the
deformation Hamiltonian. From (i) and (ii), Hs has already
been fixed along the boundary ∂V . Similar to the previous
procedure, depending on whether there is a C2 symmetry, Hs

belongs to either class A or class C with the new PH symmetry
of Eq. (C1). The “defect” dimension on the surface ∂V is
δ = −2 (or 6 mod 8), and Hs |∂V is integrally topologically
classified by the Chern invariant [56] Ch = (i/2π )

∫
∂V

Tr(F).
However, the Berry curvatures Tr(F) cancel each other
between different faces. For example, in Fig. 33, the curvatures
over faces F and F ′ annihilate as the two are related by C4

symmetry but with opposite orientations (one facing in the
cube and the other facing out). The curvatures along the top
and bottom faces also cancel out since the two systems H0,H1

are assumed to have identical Chern invariant and the two faces
again have opposite orientation with respect to the cube. The
vanishing of the Chern invariant implies Hs is trivial along the
boundary surface ∂V . Equivalently, there is no “monopole”
in the volume V and the deformation Hamiltonian Hs can be
extended all the way inside.

APPENDIX D: LATTICE CELL CONSTRUCTION
FOR SIMULATIONS OF DISCLINATIONS

IN CHIRAL PRIMITIVE MODELS

Here we describe in detail the construction of the lattice
cells for the simulation of the spinless chiral px + ipy primitive
models. We first consider the generation of an � = −π/2
disclination in a C4-symmetric lattice as an illustrating
example. Inducing a disclination can be achieved by means
of the Volterra process, shown in Fig. 34. For this purpose,
one divides the lattice into four quadrants q = 1,2,3,4 and
removes the fourth one. The space created is then filled by
stretching the remaining quadrants around the center point.

TABLE X. Parity of the number of zero modes at disclinations
for the C4 primitive models. The Chern invariants for these models
are Ch = 1,1,0,0, respectively.

Phase winding, type H
(4)
1 H

(4)
2 H

(4)
3 H

(4)
4

−π/2, type (0,0) 0 0 1 1
−π/2, type (1,0) 0 1 0 1

−5π/2, type (0,0) 1 1 1 1
−5π/2, type (1,0) 1 0 0 1
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TABLE XI. Parity of the number of zero modes at disclinations
for the C2 primitive models. The Chern invariants for these models
are Ch = 1,1,0,0, respectively.

Phase winding, type H
(2)
1 H

(2)
2 H

(2)
3 H

(2)
4

+π , type (0,0) 0 0 0 1
+π , type (1,0) 0 1 1 1
+π , type (0,1) 0 1 1 0
+π , type (1,1) 0 0 0 0

+3π , type (0,0) 1 1 0 1
+3π , type (1,0) 1 0 1 1
+3π , type (0,1) 1 0 1 0
+3π , type (1,1) 1 1 0 0

Let us assign a frame to each quadrant in such a way that
their axes rotate by 90◦ counter-clockwise from one quadrant
to the next. Generating the disclination distorts the primitive
vectors of the lattice a(q)

i , for i = 1,2, defined with respect
to each frame in quadrant q, which thus become position
dependent. The distorted vectors a(q)

i (rq) are related to the
original lattice vectors a(q)

i by a position-dependent rotation:

a(q)
i (rq) = Rq(rq)a(q)

i . (D1)

For example, for the uniform angular stretching shown in
Fig. 34, the rotation is Rq(rq) = Rq(φq) = exp{−i[(q − 1)π/

6 + φq/3]σy}, where φq is the azimuthal angle in the xy

plane measured before the deformation from the frame axis
a(q)

1 . Take, for example, a(3)
2 ; after the deformation, we have

a(3)
2 (φ3 = π/2) = exp(−i π

2 σy)a(3)
2 = a(1)

1 , that is, there is a
complete filling of the region left after the removal of the
fourth quadrant [see Fig. 34(c)].

To capture the effect of this distortion in the crystal, consider
a Hamiltonian with nearest-neighbor pairing and hopping
terms in real space:

H =
3∑

q=1

∑
rq

2∑
i=1

ξ
†
rq

[
i�

(
τ · a(q)

i (rq)
) + u1τz

]
ξrq+a(q)

i
+ H.c.

(D2)

Here, rq runs over lattice sites within quadrant q, τ = (τx,τy)
and τz act on the Nambu degree of freedom, and a(q)

i (rq) for
i = 1,2 are the distorted primitive lattice vectors in quadrant
q.

a2
(1)

a1
(1)

a1
(2)

a2
(2)

a1
(3)

a2
(3)

(a) (b)

a  (0)1
(1)

a  (�/2)
2

(1)

a  (�/2)2
(3)

a  (0
)

1
(2)

a  (0)1
(3)

a  (�/2)
2

(2)

(c)

FIG. 34. (Color online) Construction of a � = −π/2 disclina-
tion by the Voltera process. Green lines mark the quadrants’ frame
axes.

TABLE XII. Parity of the number of zero modes at disclinations
for the C6 primitive models. The Chern invariants for these models
are Ch = 1,3,0, respectively.

Phase winding H
(6)
1 H

(6)
2 H

(6)
3NN

±π/3 0 1 1
±7π/3 1 0 1

While the hopping terms are unaffected by the disclination,
the pairing terms effectively pick up a fractional superconduct-
ing flux centered at its core, because

τ · ai(rq) = τ · Rq(rq)a(q)
i = a(q)

i · (Rq(rq))T τ

≡ a(q)
i · τ (r), (D3)

where τ (r) = (Rq(rq))T τ is the rotated superconducting order
parameter, which partially winds around the disclination.

In our simulations we must accommodate multiple discli-
nations to use lattice cells with periodic boundary conditions.
All three lattice cells shown in Figs. 14, 18, and 22 were
decomposed into quadrants, as shown in Fig. 35. To each of
these quadrants, a rotation function Rq(rq) = 2δφ(q − 1) +
R(rq) was assigned, where R(rq) smoothly winds the order
parameter around its corners but has zero winding overall,
as shown in Fig. 36. By using this function at each of the
quadrants in Fig. 35, disclinations are created at each of the
quadrant’s vertices, with opposite winding at adjacent vertices,
and which still allow for periodic boundary conditions to be

O1

O2

O2

O2

K

K

K

q=2

q=3

q=1

(a)

K K

K

K

O
q=1

q=1

q=2

q=2

(b)

O2

O2

O2

O2

K1

K1

K2

K2

O1

q=1

q=2

q=3
q=4

(c)

FIG. 35. (Color online) Quadrants that make the lattice cells for
the simulation of px + ipy models H

(4)
1 , H

(4)
2 (a), H

(6)
1 , H

(6)
2 (b),

and H
(3)
1 , H

(3)
2 , H

(3)
3 (c). To each quadrant a superconducting phase

winding as in Fig. 36 is assigned.
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a1

a2

0

R(r  )

(q)

(q)

q

FIG. 36. Phase winding function R(rq ) for the winding of the
superconducting order parameter in the quadrants that make the lattice
cells used in simulation.

imposed on the lattice cells. The values of the total phase
winding at each corner of the quadrant 2δφ were chosen so
that the total winding around the disclinations matches its
Frank angle �, i.e., so that � = 2nδφ, where n is the number
of quadrant’s corners that meet at each disclination.

APPENDIX E: ENERGY SCALING SIGNATURES OF MBS
AND THE INCIDENCE OF BINDING AN EXTRA FLUX

QUANTUM TO DISCLINATIONS

Obtaining wave functions for low-energy modes localized
at disclination cores is not sufficient to infer the presence
of MBS because the (fractional) superconducting fluxes at
disclinations can bind other non-Majorana modes, which
might still lie at low energy and appear localized. Additionally,
since multiple disclinations exist in any of the simulated lattice
cells, and since if MBS are present they must come in pairs,
we must examine the exponential decay of the energy splitting
of the low-energy modes as a function of their separation as a
conclusive criterion for their existence. In this Appendix, we
show the energy scaling plots as a function of system size (and
therefore disclination separation) which justifies our claims on
the existence of MBS. We show these scaling plots for all the
px + ipy primitive models discussed in this paper.

In addition to this, we present the scaling plots for models to
which an additional flux quantum was bound to disclinations.
Recall that the for fermionic systems the rotation operator
is lifted to its double cover. As a result, a rotation opera-
tor r̂ ′(s) = eis(�+2π)τz/2 = −r̂(s), parameterized by s ∈ [0,1],
exists, which is inequivalent to r̂(s). This other operator is
equivalent to having an extra superconducting flux quantum
(h/2e) bound to the disclination. The inequivalence of these
operators is exemplified in different rotation invariants for
the same Hamiltonian matrix, which are modified according

TABLE XIII. Parity of the number of zero modes at disclinations
for the C3 primitive models. The Chern invariants for these models
are Ch = 1,3, −1, respectively.

Phase winding H
(3)
1 H

(3)
2 H

(3)
3

±2π/3 0 0 0
±8π/3 1 1 1

phase 
winding

defect
typep+ip model

�/2
5�/2

(0,0)
(1,0)

H2
(4)

5�/2
5�/2

(0,0)
(1,0)H1

(4)

6 8 10 12 14 16
n

-6

-5

-4

-3

-2

-1
Log10 |E|

FIG. 37. (Color online) Absolute value of MBS energies as func-
tion of system size n for all primitive generators with C4 symmetry.

to Eq. (21). In C4-symmetric systems, this amounts to
an exchange of the rotation invariants [M1] ↔ −[M2], while
in C2-symmetric systems, all rotation invariants flip sign. In
both cases, the weak Z2 index Gν remains unaffected. In
C6-symmetric systems, a flip in the sign of [M] → −[M] takes
place. We verified in simulations that, after these changes in the
invariants, the parities of MBS are given by the same indices
derived in Sec. V.

The MBS parities for the C4 and C2 primitive models are
shown in Tables X and XI. In the upper half of each of these
tables we have reproduced the results in Tables V and VI of
Sec. V. The lower half of each of these tables shows the results
for lattices with extra flux quanta at their disclinations. For the
px + ipy models, H

(4)
1 and H

(4)
2 these parities were inferred

from the scaling argument explained above. Figure 37 shows
the energy scaling for the cases in which MBS were found

8 10 12 14 16
n

8

4

0
Log10 E

(a)H
(6)
1

8 12 16 20 24
n

2

1

0

Log10 E

(b)H
(6)
2

8 12 16 20 24
n

3
2
1
0

Log10 E

(c)H
(6)
3NN
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n

8

4

0
Log10 E

(d)H
(6)
1

8 12 16 20 24
n

2

1

0

Log10 E

(e)H
(6)
2

8 12 16 20 24
n

3
2
1
0

Log10 E

(f)H
(6)
3NN

FIG. 38. (Color online) Absolute value of the lowest 40 energies
as function of system size n for the C6-symmetric primitive generators
H

(6)
1 and H

(6)
2 , as well as for a C6 model with third-nearest-neighbor

hopping H
(6)
3NN. The first (second) row corresponds to a phase

winding of ±π/3 (±7π/3) at disclinations. The parameters used
were (u1,u2,u3) = (1,0,0), (0,1,0), and (0,0,1) for H

(6)
1 , H

(6)
2 , and

H
(6)
3 , respectively.
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8 10 12 14
n

12

8

4

0
Log10 E
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(e)H
(3)
2
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n
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(f)H
(3)
3

FIG. 39. (Color online) Absolute value of the lowest 40 energies
as a function of system size n for primitive generators H

(3)
1 , H (3)

2 , and
H

(3)
3 . The first (second) row corresponds to a phase winding of ±π/3

(±7π/3) at disclinations.

(the C2 plots are not shown; since the chiral primitive models
are the same for C4 and C2 symmetries, the scaling plots for
the C2 case are redundant).

The MBS parities for the C6 and C3 primitive models
with and without extra flux quantum are shown in Tables XII
and XIII. Except for primitive model H

(6)
3 , all primitive

generators in these symmetries are px + ipy models, and their
parities were inferred from the scaling plots shown in Figs. 38
and 39, which plot the absolute value of the energy for the
lowest eigenstates as a function of system size n. The signature
of MBS consist of energies that exponentially tend to zero as
the system size increases. We point out that in the case of
Figs. 38(c) and 38(f), the model is not a primitive generator
(recall that H (6)

3 is a 2D p-wave wire model, whose MBS parity
was determined pictorially in Fig. 20), but rather, an additional
model that we have considered to illustrate the linearity of the
topological indices for the parity of MBS. This extra model has
third nearest-neighbor hopping terms added to the Hamiltonian

u2

u3

u1

1

1
1

Ch = -2

Ch = 1
Ch = 3

Ch = 0

G = 0ν

FIG. 40. (Color online) Topological phases of model in Eq. (66)
with C6 symmetry when third-nearest-neighbor hopping terms are
added, with strength u3.

in Eq. (66). When these terms are added, two other phases
appear apart from those in Fig. 8, as shown in Fig. 40. The
phase with Ch = 0 is trivial, as it has χ (6) = (0,0,0), while the
phase with Ch = −2 is in the nontrivial class χ (6) = (−2,0,1).
This last Hamiltonian, which we call H

(6)
3NN, is the one shown

in Figs. 38(c) and 38(f). This model is topologically equivalent
to H

(6)
1 ⊕ −H

(6)
2 . Therefore the MBS parity for this model is

given by �
(6)
H3NN

= �
(6)
H1

+ �
(6)
H2

mod 2, which gives an odd
number of MBS with and without an extra flux quantum,
as verified in the energy scaling observed in Figs. 38(c)
and 38(f).

In all of these models, adding an extra flux quantum
flipped the parity of MBS only when the model has an
odd Chern invariant, following the result in Ref. [29]. This
is consistent with the p-wave wire primitive models not
changing the parity upon addition of an extra flux quantum,
since they have Ch = 0, which is indeed what we would
expect for models whose MBS parity can be determined
pictorially.
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