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Quantum Monte Carlo measurement of the chemical potential of 4He
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A path-integral Monte Carlo method based on the worm algorithm has been developed to compute the
chemical potential of interacting bosonic quantum fluids. By applying it to finite-sized systems of liquid 4He,
we have confirmed that the chemical potential scales inversely with the number of particles to lowest order. The
introduction of a simple scaling form allows for the extrapolation of the chemical potential to the thermodynamic
limit, where we observe excellent agreement with known experimental results for 4He at saturated vapor pressure.
We speculate on future applications of the proposed technique, including its use in studies of mixtures and confined
quantum fluids.
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I. INTRODUCTION

The chemical potential μ of a fluid measures the tendency
of particles to diffuse as a function of spatial position and
sets a characteristic energy scale: that needed to add a single
particle to the system at constant temperature. As an intensive
thermodynamic quantity, it is most directly defined as a free-
energy difference:

μ(N,T ) ≡ F (N + 1,T ) − F (N,T ), (1)

where F (N,T ) is the Helmholtz free energy of an N -particle
system at temperature T . A spatial gradient in the chemical
potential can be established via a pressure (�P ) or temperature
(�T ) difference as defined by the Gibbs-Duhem relation

�μ = V

N
�P − S

N
�T, (2)

where V is the volume and S the entropy. Particles will diffuse
to the region of low chemical potential and an equilibrium
mass current can be established. In this way, the chemical
potential is the analog of the electrical potential for neutral
particles. Unlike other intensive thermodynamic quantities
such as temperature or pressure, μ is often not directly fixed or
measured experimentally, and thus a complete understanding
of its nature may provide new insights when fluids are in
equilibrium with other phases. Additionally, μ determines the
locations of first-order phase transitions, as well as the nature
of mixtures when multiple species or impurities are present in
the fluid.

At low temperature, even in the absence of interactions,
μ is a sensitive probe of quantum mechanical behavior. For
example, an ideal Bose gas at T = 0 has μ = 0, indicating
the presence of a zero-momentum Bose-Einstein condensate,
while for free fermions, μ = εF showcasing the existence of
a Fermi surface where single-particle states are filled up to an
energy εF.

As is evident from its definition in Eq. (1), μ is sensitive
to finite-size effects, and it is thus interesting to investigate
its value in a mesoscopic regime where interference occurs
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between length scales set by quantum coherence and the sam-
ple geometry. Such a regime can be experimentally accessed
through dimensional confinement of any system displaying
macroscopic quantum phenomena. One such system (and
the focus of this paper) is a quantum fluid of bosonic 4He,
where due to a competition between kinetic and potential
energy in the bulk, there is no transition to a solid phase
at atmospheric pressure down to absolute zero temperature.
Instead, 4He undergoes a phase transition to a superfluid at
Tλ � 2.172 K characterized by macroscopic phase coherence
yielding zero viscosity and persistent quantized mass flow in
a toroidal geometry [1].

Modern nanofabrication techniques are opening up new
avenues for the study of dimensional crossover in 4He,
and an understanding of the important role played by the
chemical potential is emerging. When confined to two spatial
dimensions, relative changes in the chemical potential of 4He
from its bulk value can be used to determine the thickness of a
quasi-two-dimensional film in equilibrium with its vapor [2].
As the thickness of the film is reduced to only a few atomic
layers, unequivocal signatures of the Berezinskii-Kosterlitz-
Thouless [3,4] vortex unbinding transition can be observed
[2,5,6]. A fixed chemical potential difference between two
reservoirs of 4He connected by quasi-one-dimensional weak
links at T � Tλ drives Josephson oscillations with frequency
ω = �μ/� [7]. More recently, a pressure difference at constant
temperature, leading to a spatial gradient in the chemical
potential, was used to study 4He mass flow through a single
nanohole [8], bringing into question the commonly held
definition of a superleak’s impenetrability to normal fluid
flow. In such extreme confinement, the total number of helium
atoms may number in the tens of thousands, and a microscopic
understanding of the chemical potential may prove useful in
the interpretation of experimental results.

Monte Carlo methods provide some of the most useful
theoretical tools for the study of interacting fluids and readily
allow for the scalable computation of expectation values of
extensive observables. Intensive thermodynamic quantities
that are defined by a free-energy difference (such as μ) require
more sophisticated algorithms, as they are not defined in terms
of local observables alone. While thermodynamic integration
allows for the calculation of free-energy differences from a
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standard Monte Carlo algorithm in the desired ensemble, such
approaches are numerically costly, and thus more efficient
extended ensemble Monte Carlo methods such as umbrella
sampling [9,10] are desirable. The definition of the chemical
potential in Eq. (1) is most directly accessed in the canonical
ensemble, where the number of particles is fixed as an exten-
sive parameter and μ is the conjugate intensive observable.
Conversely, in the grand canonical ensemble, μ is a parameter
and N (or the density n) becomes an observable. For systems
where the grand canonical ensemble is the most appropriate
choice for calculations (e.g., systems with phase coexistence),
it is often necessary to tune the chemical potential to produce a
target density. Consequently, having quantitative results for the
finite-size scaling of the chemical potential is of great practical
importance for numerical simulations.

The worm algorithm (WA) [11] allows for grand canonical
path-integral Monte Carlo [12] (PIMC) simulations of inter-
acting bosonic quantum fluids. In the WA, the ergodicity in
particle-number sectors can be treated as an effective extended
ensemble method for canonical ensemble calculations; in
particular, the relative probability of different particle-number
sectors determines the free-energy difference between them
and therefore the chemical potential. In this paper, we present
a constructive Monte Carlo method exploiting the worm
algorithm to compute the chemical potential of interacting
bosonic quantum fluids and apply it to the study of the finite-
size scaling of the chemical potential of liquid 4He. We begin
with a brief introduction to the determination of the chemical
potential in classical fluids, before presenting details of how
it can be precisely measured in high-density quantum liquids
via quantum Monte Carlo methods. Numerical results from
a finite-size system of 4He atoms demonstrates the expected
1/N scaling of μ. When extrapolated to the thermodynamic
limit, the calculated values of μ as a function of temperature are
in excellent agreement with known and inferred experimental
results for bulk 4He at saturated vapor pressure.

II. FINITE-SIZE SCALING OF THE CHEMICAL
POTENTIAL IN CLASSICAL FLUIDS

For a d-dimensional ideal classical fluid confined inside a
hypercube of side L, the chemical potential is only a function
of density and temperature:

μ0(n,T ) = kBT ln(nλd ), (3)

where n = N/Ld is the number density, kB the Boltzmann
constant, and λ is the thermal wavelength:

λ ≡
√

2π�2

mkBT
. (4)

Adding interactions generates finite-size scaling of μ(N,T ) at
constant density, which Siepmann et al. computed to leading
order with the result [13,14]

μ(N,T ) = μ0 + 1

2N

(
∂P

∂n

)

×
{
1 − kBT

[(
∂n

∂P

)
+

(
∂2P

∂n2

)(
∂P

∂n

)−2]}
, (5)

demonstrating that the leading deviation from the ideal fluid
value scales as 1/N where the coefficient is determined by
the isothermal compressibility κ = (1/n)(∂n/∂P )T as well as
∂2P/∂n2. However, the derivation of Eq. (5) may be invalid
when the interaction potential has an attractive part as (∂P/∂n)
can vanish [14]. More generally, the form of the scaling of μ

and the validity of Eq. (5) can be investigated numerically.

Widom particle insertion method for classical fluids

For Monte Carlo simulations of classical fluids, Widom
proposed a method to compute the chemical potential in the
canonical ensemble [15]. The starting point is the partition
function of a d-dimensional classical fluid, which can be
written as

ZN = 1

N !λNd
QN (6)

with QN the configuration integral involving only the potential
energy U :

QN =
∫

D r e−βU , (7)

where
∫
Dr ≡ ∏N

i=1

∫
ddri and β = 1/kBT is the inverse

temperature. For an ideal fluid, U = 0 so QN = LNd and
Eq. (3) is immediately recovered. Consequently, in the pres-
ence of interactions (U �= 0), the excess chemical potential
only involves a ratio of QN and QN+1:

μ(N,T ) = μ0(n,T ) − kBT ln
1

Ld

QN+1

QN

. (8)

Widom showed that the ratio of configuration integrals is
related to the expectation value of a canonical observable:

QN+1

QN

= Ld〈〈e−β
(r)〉r〉N, (9)

where 
(r) is the potential energy of an extra particle at
spatial position r interacting with the other N particles in
a canonical ensemble average. The average of the exponential
is taken over space as well as the N -particle ensemble. One
can thus compute the chemical potential in a canonical Monte
Carlo simulation by measuring this “Widom particle insertion”
observable. Of course, this method is limited to classical
fluids where the partition function may be factorized as in
Eq. (6) and fails at high densities or when the particles
have impenetrable cores and the statistical weight of insertion
becomes exponentially small.

This method and its variants have been used to study
the finite-size scaling of low-density classical fluids with
hard-sphere [16] and Lennard-Jones interactions [17–21]. We
note that previous studies have found a sensitivity of the
chemical potential to the cutoff radius used for the long-range
interaction tail [21]. It is natural to ask if these algorithms can
be extended beyond the classical domain for application to
quantum fluids. Here, Monte Carlo configurations of atoms
are extended to worldlines and the analog of the Widom
method would require inserting a nonlocal object. Such an
insertion would necessarily have a weight that is exponentially
small in the inverse temperature, with the algorithm becoming
intolerably inefficient at high densities and low temperatures.
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However, the worm algorithm allows for the efficient insertion
and removal of particles via only local updates and thus offers
a novel platform for computing the chemical potential in
quantum fluids.

III. COMPUTING THE CHEMICAL POTENTIAL WITH
QUANTUM MONTE CARLO

The worm algorithm [11] is a modern variant of path-
integral Monte Carlo [12] that allows for efficient grand
canonical simulations of bosonic quantum fluids. Any ex-
tensive observable that can be written in the position basis
(e.g., number of particles) can be easily calculated, while the
conjugate intensive quantities (e.g., the chemical potential)
are parameters of the simulation. This is because extensive
quantities can be computed directly from the expectation value
of the observable, whereas intensive quantities are generally
defined by derivatives of the free energy. While the free energy
can be computed with thermodynamic integration, such a
procedure is computationally expensive and generates large
statistical errors. It is thus desirable to search for other methods
that allow for the accurate computation of intensive quantities
such as the chemical potential.

A. Worm algorithm path-integral Monte Carlo

Path-integral Monte Carlo methods [12] use a configu-
ration space of particle imaginary-time worldlines in d + 1
dimensions (for a system of d spatial dimensions) to statisti-
cally sample the many-body density matrix of any interacting
system in the spatial continuum that can be described by a
Hamiltonian of the general form

H =
N∑

i=1

(
− �

2

2mi

∇2
i + Vi

)
+

∑
i<j

Uij , (10)

where mi is the mass of a particle located at position r i , Vi

is an external potential and Uij is any two-body interaction.
In canonical PIMC, configurations of closed worldlines are
sampled from the Boltzmann distribution e−βH , which allows
for the calculation of canonical expectation values. In the
worm algorithm, configurations with both open and closed
worldlines are allowed [11] and such open worldlines, or
worms, sample off-diagonal elements of the density matrix.
When an open worldline winds around the imaginary-time
axis and closes, this will return the system to a diagonal
worldline configuration with an additional particle: N →
N + 1. Conversely, it may be energetically favorable to open
a worldline, creating a worm, which can shrink until it is
completely removed from the configuration with N → N − 1.
The WA therefore naturally operates in the grand canonical
ensemble, as the presence of worms leads to fluctuations
in the total particle number. In addition to allowing for
grand canonical simulations using only local updates, the
worm algorithm yields efficient permutation sampling, as well
as access to the imaginary-time Green’s function. For our
purposes, we are most interested in the WA as an efficient
grand canonical PIMC method to study interacting bosonic
quantum fluids.

B. Ratio method

To directly compute the intensive chemical potential, we
need access to the free-energy difference defined in Eq. (1):

μ(N,T ) = F (N + 1,T ) − F (N,T )

= −kBT ln
ZN+1

ZN

, (11)

where ZN = Tr e−βH is the canonical partition function for
the N -particle system. As previously mentioned, one may
compute such free-energy differences between two states
labeled a and b via thermodynamic integration [9,10] using
a relation of the form

�F = Fb − Fa =
∫ ηb

ηa

dη

(
∂F

∂η

)
, (12)

where η is a parameter. If the expectation value of ∂F/∂η is
computed for a discrete set of η interpolating between ηa and
ηb, then �F may be estimated by numerical integration. Such
methods have been used for the chemical potential, where
η is taken to be a coupling strength between particles where
η = 0 is the free-particle limit [22]. In general, thermodynamic
integration is quite computationally expensive as sufficient η

points must be chosen to minimize the systematic error in the
numerical integration as well as the fact that the statistical
errors accumulate in the integration.

To avoid performing such a numerically costly procedure,
we can instead treat the grand canonical ensemble of the WA
as an extended ensemble for the particle-number sectors that
are accessed through thermal and quantum fluctuations. In
this way, the WA can be used to directly measure the free-
energy difference between two canonical ensembles at the
same temperature, and thus compute the chemical potential in
a single grand canonical calculation.

For a system whose Hamiltonian H conserves the number
of particles, we can decompose the grand canonical partition
function Z in terms of canonical partition functions ZN :

Z = Tr e−β(H−μgcN)

=
∞∑

N=0

eβμgcNZN, (13)

where μgc is the chemical potential of the grand canonical
ensemble. The ratio of the canonical to the grand canonical
partition function is an observable which is directly measurable
in a Monte Carlo calculation

ZN

Z = e−βμgcN 〈δN 〉Z . (14)

The expectation value 〈δN 〉Z is the probability of the grand
canonical simulation having N particles, P (N ), which is
readily computed by tabulating a histogram of the values of
N . Therefore, in a grand canonical simulation, the ratio of the
partition functions of different particle-number sectors can be
computed from P (N ). Consequently, the chemical potential
can be directly measured from P (N ):

μ(N,T ) = μgc − kBT ln
P (N + 1)

P (N )
. (15)

In Eq. (15), μgc is a parameter of the grand canonical
simulation that can be chosen such that the density of interest is
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efficiently sampled. However, the physical canonical chemical
potential μ(N,T ) is independent of μgc, so long as the
number sector N is efficiently sampled by the grand canonical
calculation. If a single fixed density n is of interest, only
the ratio P (N + 1)/P (N ) is required to determine μ(N,T ).
Therefore, we may improve the efficiency of computing
μ(N,T ) by limiting the particle-number fluctuations to N ± 1.
This can be easily implemented in a WA simulation by
rejecting any Monte Carlo updates which increase or decrease
the particle number by more than one from the target number
of particles N = nLd . This changes the values of P (N ) that are
computed in the simulation, but detailed balance ensures that
the ratio P (N + 1)/P (N ) remains unaffected by this restricted
sampling.

C. Comparison with interpolation methods

An alternative to directly measuring μ(N ) using the ratio
method described above is to compute 〈N〉(μgc) in the grand
canonical ensemble and invert the curve to obtain μgc(〈N〉)
[23]. Such an approach would generally require an initial
search of the μgc parameter space to focus in on the density
of interest, followed by a series of calculations to refine the
discrete grid near the target N such that an interpolation
can be performed with limited systematic error. Note that it
is only these final calculations, close to the target density,
which contribute to the calculation of μ(N ). Any interpolation
inevitably results in a systematic error which is only reduced at
the additional CPU cost of generating more values of 〈N〉(μgc)
near the target density. For mixtures, such an approach is
prohibitive, as this parameter search and interpolation must
be done in a higher-dimensional space, where the chemical
potential of each species must be fine tuned.

This interpolation method contrasts with the ratio method
we present here which is a constructive approach, requiring
no fine tuning and lacking any systematic error. The only
stipulation is that μgc is sufficiently close to the target value
such that the ratio P (N + 1)/P (N ) is efficiently sampled,
which in practice we find may differ from the target canonical
value by a Kelvin or more. Consequently, a single simulation
replaces the series of calculations required for the interpolation
method, even in the case of mixtures where the density of all
components may be fixed individually in our approach.

An additional complication with the interpolation method
is that inverting the 〈N〉(μgc) curve is only possible where
dN/dμgc is finite. At first-order phase transitions, there is
a discontinuity in 〈N〉 which makes such an inversion im-
possible. The interpolation approach is therefore not feasible
at first-order phase transitions if the simulation is ergodic
and samples both phases which coexist at the transition. For
ergodic simulations, P (N ) is a broad distribution representing
the region of phase coexistence (see Fig. 1) at the transition.
In this case, there is clearly no unbiased approach to fitting
P (N ) as there might be away from a phase transition (e.g.,
where P (N ) may be approximately Gaussian in shape), and
thus all sampling of P (N ) away from the desired density can
not be used for computing μ(N ). In this case, the restricted
sampling of P (N + 1)/P (N ) is always more efficient as CPU
time spent on larger deviations in N is wasted [unless the goal
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FIG. 1. (Color online) The particle-number probability distribu-
tion P (N ) computed with quantum Monte Carlo for 4He at T = 4.8 K
near saturated vapor pressure with L = 15.702 Å and μgc = 9.664 K
such that NSVP(T ) ≈ 64. The shaded area indicates the restricted
region of particle numbers that were sampled. Note the double peaked
structure due to the first-order phase transition.

is to compute μ(N ) over a range of densities, where sampling
of the full P (N ) may be useful].

However, in some cases, simulations of first-order phase
transitions may be “naturally” nonergodic and only the desired
phase may be sampled without artificially restricting N . For
example, if the two phases are sufficiently separated in density
and the density fluctuations for each phase are sufficiently
small (as would happen at low enough temperatures), then a
simulation may never display phase coexistence or transitions
between the phases. Alternately, if there is a difference in
symmetries of the two phases, as is the case at the freezing
transition, the geometry of the simulation cell may inhibit the
formation of an ordered phase that is incommensurate with
the cell. In these cases, one might expect that an interpolation
method would work reasonably well at the transition, albeit
with the additional CPU cost and systematic errors mentioned
above.

Finally, the equivalence between the canonical and grand
canonical ensembles only holds in the thermodynamic limit;
in general, there may be finite-size differences between μ(N )
and μgc(N ) due to asymmetries in P (N ) about its peak value.
The interpolation approach can not account for such finite-
size differences and is fundamentally computing a physically
different quantity.

IV. RESULTS: FINITE-SIZE SCALING OF THE
CHEMICAL POTENTIAL OF 4HE

Although the ratio method proposed here can be directly
applied to any many-body system described by Eq. (10),
we have chosen to exhibit its efficacy in computing the
finite-size scaling of the chemical potential for liquid 4He
at saturated vapor pressure (SVP). This will allow for direct
benchmarking and comparison with experimental results at
low temperature [24,25]. We use the Aziz potential [26] to
model the interatomic interactions Uij in liquid 4He with

�
2/(2mkB) � 6.055 Å

2
K, set the external potential to zero

(Vi = 0), and work in a d = 3 cubic simulation cell of side
L with periodic boundary conditions. In the remainder of this

224502-4



QUANTUM MONTE CARLO MEASUREMENT OF THE . . . PHYSICAL REVIEW B 89, 224502 (2014)

paper, we will measure all energies in Kelvin and thus set
kB = 1.

The canonical chemical potential in Eq. (15) can be directly
evaluated from the relative probability that a WA simulation at
temperature T has N or N + 1 particles at fixed volume. We
have performed such simulations for a range of temperatures
both above and below Tλ with a specific example of the full
SVP particle-number probability distribution function at T =
4.8 K shown in Fig. 1. As described above, the grand canonical
chemical potential μgc enters as a parameter that can be tuned
to efficiently sample observables at the desired density (in this
case, SVP). At a first-order phase transition, this corresponds
to ensuring that the (local) maximum of P (N ) corresponding
to the high-density liquid phase in Fig. 1 occurs near NSVP(T )
such that nSVP(T ) = NSVP(T )/L3. However, no fine tuning
is required, as it is only the efficiency of the sampling of
P (N + 1)/P (N ) that requires this ratio to be of order one. In
practice, we restrict our simulations to number fluctuations of
±1 indicated by the shaded region in Fig. 1.

In many PIMC simulations employing an Aziz-type poten-
tial, the N2 scaling of Uij in Eq. (10) is reduced by choosing
a hard cutoff length rc for the van der Waals tail with the
interactions being neglected beyond this distance. The use of
a cutoff, in combination with a spatial neighbor table [27],
can drastically improve simulation efficiency. However, we
find that the chemical potential, calculated via Eq. (15) is
highly sensitive to the cutoff and plateaus to a value that is
substantially above the expected bulk value when rc < L/2.
This effect can be seen in Fig. 2, where the chemical potential
is plotted as a function of the total number of particles for

a system with nSVP(T = 2.8 K) = 0.021 492 2 Å
−3

for two
values of the potential cutoff rc = 7 Å < L/2 and rc = L/2.
Not surprisingly, the energy required to add a particle to
the system is sensitive to the details of the potential tail,
and a premature saturation occurs, indicating a breakdown
of finite-size scaling. As our goal is to accurately measure the
finite-size scaling of the chemical potential, we have chosen
to use the full long-distance tail of the Aziz potential in our

10 20 30 40 50 60
N
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10

µ
(N

)
[K

]

rc = L/2

rc < L/2

FIG. 2. (Color online) An interaction potential cutoff length rc <

L/2 causes the chemical potential to prematurely saturate as a
function of the number of particles N . Simulations were performed
for 4He atoms at T = 2.8 K inside a cube with periodic boundary

conditions at nSVP = 0.0214922 Å
−3

. The data for rc < L/2 corre-
spond to rc = 7 Å which is less than L/2 for the larger system sizes
shown.
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FIG. 3. (Color online) The constant density finite-size scaling of
the chemical potential of 4He at saturated vapor pressure for various
temperatures via large-scale quantum Monte Carlo simulations. The
solid lines represents the best 1/N fit to the linear region of the data.

simulations and are thus limited to systems composed of less
than 150 particles. In principle, considerably larger systems
could be studied by combining the diagrammatic technique
described in Ref. [11] with the ratio method presented here
and we leave this for future studies. The unavoidable Trotter
error is constrained to be smaller than statistical uncertainties
through the use of a short-time imaginary-time propagator that
is accurate to fourth order [28] in the imaginary-time step τ ,
which we set as τ = 0.004 K−1.

Fixing the cutoff at rc = L/2, we have computed the
dependence of the chemical potential on the number of
particles μ(T ,N ) for temperatures above and below Tλ with
results shown in Fig. 3. The finite-size scaling was done at
constant density, chosen to be the experimentally determined
thermodynamic density at saturated vapor pressure at each
temperature (see Table I). For larger system sizes, there is
a clear 1/N scaling, as expected from the theory of classical
fluids. Additionally, we see oscillations about this 1/N scaling
that decrease in amplitude as the system size increases, but are
still noticeable for systems as large as N = 144. The presence

TABLE I. Numerical values for estimates of the bulk chemical
potential μ and scaling prefactor c of 4He obtained from a 1/N

fit to the linear regime of the quantum Monte Carlo data displayed
in Fig. 3. The number densities n and experimental values of the
chemical potential in the thermodynamic limit μexpt are taken from
Refs. [24,25]. The values of μexpt marked with an asterisk were
determined by linear interpolation of the data.

T (K) n (Å
−3

) μ (K) μexpt (K) c (K)

1.20 0.021833 −7.25 ± 0.08 −7.1638 107 ± 8
1.80 0.021869 −7.37 ± 0.03 −7.2356 115 ± 4
2.18 0.021983 −7.52 ± 0.03 −7.466∗ 123 ± 4
2.80 0.021492 −8.04 ± 0.05 −8.0083 105 ± 6
3.20 0.020968 −8.43 ± 0.02 −8.4213 97 ± 3
3.80 0.019873 −9.15 ± 0.02 −9.122∗ 83 ± 2
4.40 0.018241 −9.87 ± 0.01 −9.8974 63 ± 1
4.80 0.016531 −10.400 ± 0.009 −10.4607 47.8 ± 0.9
5.20 0.013544 −10.948 ± 0.009 −10.9600 31.0 ± 0.9
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FIG. 4. (Color online) The chemical potential μ in the thermo-
dynamic limit of 4He at low temperature from an extrapolation of
quantum Monte Carlo data using the finite-size scaling form of
Eq. (16). The reported error bars include both statistical and fitting
uncertainties. Experimentally determined values for bulk 4He from
Refs. [24,25] are included as filled circular symbols for comparison
and show agreement within a few percent. Inset: The coefficient of
the 1/N scaling c as determined by the linear fits shown in Fig. 3.

of such nonmonotonic scaling with system size is due to the
interplay between the discrete nature of the particle number
and confinement of the fluid inside a cubic box that explic-
itly breaks the rotational symmetry of the Aziz interaction
potential Uij .

To test the accuracy of our algorithm and make contact with
experimental results for the bulk SVP values of the chemical
potential of 4He, we can exploit the 1/N finite-size scaling seen
in Fig. 3 to extrapolate to the thermodynamic limit. Assuming
the scaling form

μ(N,T ) = μ(T ) + c(T )

N
, (16)

we have performed a linear regression of μ(N,T ) for large
N . Figure 4 shows the extrapolated values of μ(T ) ≡
limN→∞ μ(N,T ) along with experimental results from
Refs. [24,25] with the numerical values given in Table I.
The precision of this extrapolation is limited by the system
sizes studied and the oscillations about the 1/N scaling due
to the residual finite-size density correlations. Despite this, we
see agreement between our numerically determined values of
μ(T ) and the experimental values to within a few percent.

V. DISCUSSION

In this paper, we have demonstrated the use of worm
algorithm path-integral Monte Carlo as an effective extended
ensemble method, able to efficiently and constructively com-
pute the finite-size value of the intensive canonical chem-
ical potential. We have found an excellent correspondence
between simulations consisting of only a few hundred atoms
extrapolated to the thermodynamic limit, and bulk experiments
on 4He, demonstrating the feasibility of using this approach
to determine the chemical potential in real, experimentally
accessible quantum fluids and gases.

As was discussed in Sec. III C, the inventors of the worm
algorithm have already brought attention to, and demonstrated

its ability, to determine the chemical potential through knowl-
edge of the equilibrium density as a function of the grand
canonical parameter μgc: n(μgc) [23]. With this information,
Boninsegni et al. have used the known freezing density of

solid 4He, nfreeze = 0.025 99 Å
−3

to compute the chemical
potential at T = 0.25K to be μfreeze = 0.06 ± 0.04K . The
method we present here offers an alternative approach to
such calculations, that may prove to be a more efficient in
some circumstances. In particular, our approach only requires
sampling P (N0) and P (N0 + 1), where N0 corresponds to
the target number of particles, whereas computing the com-
pressibility as in Ref. [23] requires sampling P (N ) for all
N for several values of μgc to perform the interpolation.
Additionally, such an interpolation method will explicitly
fail for an ergodic simulation at a first-order phase transi-
tion where there is coexistence between phases at different
densities.

Having access to an efficient method for computing the
chemical potential in quantum Monte Carlo will allow for
its determination in experimental systems where it is not
directly measurable, and a host of future applications of
this technique are apparent. For example, it may now be
practical to accurately locate lines of phase coexistence in
quantum fluids and ultracold gases by numerical simulations.
Such information may be especially useful in mixtures
of 3He and 4He as well as multicomponent Bose gases.
For low-dimensional 4He, confined to flow through hollow
channels inside mesoporous silica [29], the exact value of
the chemical potential is intricately linked to the thickness
of wetting layers in the substrate. A quantitative under-
standing of these layers is essential in the interpretation of
subsequent measurements of quasi-one-dimensional dynamic
superfluidity [30].

Exact knowledge of the finite-size scaling of the chemical
potential may also provide a new tool to analyze the properties
of theoretical models of interacting bosons in the one-
dimensional continuum. Much is already understood about
such models [31], including their universal description at
low energies and long wavelengths in terms of the emergent
quantum hydrodynamics known as Luttinger liquid theory.
The resulting effective Hamiltonian has a single parameter
K , which describes a crossover between a superfluid and mass
density wave lacking any long-range order, with all correlation
functions decaying algebraically at zero temperature. The
value of K , which is a function of the chemical potential
(or density), can be determined exactly for some simple
models of bosons, including those with hard-core [32] or
delta-function [33] interactions. For more realistic systems,
with potentially long-range dipole interactions, it can be
computed by comparing the results of quantum Monte Carlo
simulations with the predictions of Luttinger liquid theory
[34]. These methods rely on fitting to the complete L and T

scaling form of the number probability distribution P (N ) and
are thus very sensitive to anharmonic finite-size corrections
to the quadratic Luttinger liquid Hamiltonian [35]. By instead
computing μ(N,T ) via the ratio P (N + 1)/P (N ) in Eq. (15),
these corrections will drop out to lowest order, providing a
considerably more accurate and robust route to the determi-
nation of K for one-dimensional bosons via quantum Monte
Carlo.

224502-6



QUANTUM MONTE CARLO MEASUREMENT OF THE . . . PHYSICAL REVIEW B 89, 224502 (2014)

In conclusion, the worm algorithm can be directly exploited
to measure intensive thermodynamic quantities, such as the
chemical potential, without the need for a cumbersome and
potentially error-prone thermodynamic integration of numeri-
cal simulation data. At a first-order phase transition, restricted
sampling of the ratio of particle-number histograms near
the target density via quantum Monte Carlo provides direct
and unbiased access to the finite-size value of the canonical
chemical potential. The study of its behavior in fluids under
confinement may provide new insights into the microscopic
origin of cooperative macroscopic quantum phenomena in the
spatial continuum.
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