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‘We present a study of the one-dimensional S = 1 antiferromagnetic spin chain with large easy-plane anisotropy,
with special emphasis on field-induced quantum phase transitions. Temperature and magnetic field dependence
of magnetization, specific heat, and thermal conductivity is presented using a combination of numerical methods.
In addition, the original S = 1 model is mapped into the low-energy effective S = 1/2 XXZ Heisenberg chain, a
model which is exactly solvable using the Bethe ansatz technique. The effectiveness of the mapping is explored,
and we show that all considered quantities are in qualitative, and in some cases quantitative, agreement. The
thermal conductivity of the considered S = 1 model is found to be strongly influenced by the underlying effective
description. Furthermore, we elucidate the low-lying electron spin resonance spectrum based on a semianalytical

Bethe ansatz calculation of the effective S = 1/2 model.
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I. INTRODUCTION

One of the most fascinating features of an S = 1 Heisenberg
antiferromagnetic (AFM) chain is the occurrence of an
excitation gap first suggested by Haldane [1]. In the presence
of easy-plane anisotropy D and a magnetic field H along the
hard axis, the S = 1 chain is described by the Hamiltonian

H=> [IS:-Sui +D(S)’ +HS]. ()

n

where S, = (S7,S5,5%). The physical properties of the system
strongly depend on the strength of anisotropy D. For D =
0, the ground state is a singlet and the lowest excitation is
a degenerate massive triplet with S = 1. For positive D the
triplet splits into an S* = 0 state and a degenerate S° = *+1
doublet with lower energy. When D is increased, the Haldane
gap is diminished until it vanishes [2] at some critical D, =
0.968J. At this point a transition occurs, so when D is further
increased we observe the rise of a gap of different nature [3].

We focus on the large-D limit, where the anisotropy D is
much larger than the exchange coupling J. For zero magnetic
field this phase is characterized by a nondegenerate ground
state that is the direct product of states with S* = 0, because,
due to the large anisotropy, all spins are forced to lie in the
XY plane. The lowest excited states can be constructed by
reducing or increasing the azimuthal spin by one unit at a
site, so that the total spin in the z direction is S* = %1, with
a gap Ao ~ D. The energy momentum dispersion of these
degenerate states has been calculated through a systematic
1/D expansion carried to third order [3]. Several more terms
beyond the third order have become available [4].

The application of magnetic field along the z direction
induces a zero-temperature quantum phase transition at a
critical field H;, above which magnetization develops in the
ground state and the spectrum of magnetic excitations becomes
gapless. At this point level crossing occurs and the azimuthal
spin of the ground state is no longer zero but increases with
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increasing field. The value of H, is defined by the gap A,

H, = Ay, for which a third-order approximation is given by [5]
2 13

H=D-2]+—+ —.

1 + D + D2

A second transition occurs at a critical field H,, above which
the ground state is fully polarized and the gapped excitation
spectrum of a magnon can be calculated exactly. The value of
H, is defined by the lowest gap of the magnon dispersion:

2

H, =D +4J. 3)

A physical realization of an S = 1 chain in the large-D
limit is the organic compound NiCl,-SC(NH,),, abbreviated
as DTN, a system of weakly interacting chains. The field-
induced quantum phase transitions (QPT) described above,
as well as the thermodynamic and transport properties of
DTN, have attracted considerable experimental and theoretical
attention [6,7]. Actually, DTN is considered to be the quasi-
one-dimensional limit of a three-dimensional (3D) system,
where the exchange couplings perpendicular to the chain
J, are finite but much smaller than J, J,/J >~ 0.18. The
intermediate phase in DTN has been experimentally identified
as a 3D XY AFM ordered phase that can be regarded as
a Bose-Einstein condensate (BEC) of magnons below some
critical temperature Ty [8]. The 3D ordering is a result of
the presence of J,, which becomes significant whenever
the energy gap is smaller than J,. The § =1 system can
be mapped into a gas of semihard core bosons, where the
S§* = —1,0, and 1 states are mapped into a state with zero, one,
and two bosons per site. Nevertheless, it is well known that
for the one-dimensional (1D) AFM, quantum fluctuations are
strongest and only quasi-long-range phase coherence occurs,
which is turned into true long range by the presence of weak
3D couplings.

In this paper we will concentrate on the 1D model (1)
where quantum effects become much more important. We
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can gain a better insight into the problem if we consider
the following mapping: when H — H,, the state with total
§* = —1 approaches the ground state due to the Zeeman
energy. The idea is to project the original Hamiltonian into
this low-energy subspace using a new S = 1/2 representation.
A mapping based on similar considerations is possible for
H — H,, using the single magnon state and the ferromagnetic
(FM) ground state. A similar analysis has been carried out
for § = 1/2 ladders in a magnetic field [9], but for reasons
of completeness we give more details about the mapping in
Appendix A.

The original S = 1 Hamiltonian reduces to that of the
S = 1/2 XXZ Heisenberg AFM chain in the presence of the
magnetic field:

A= [20 (880, + 85, + ASiS:, ) + A5, @

where A = 1/2 and H=-J—-D+H. Ferromagnetic order
in the ground state is established when the magnetic field
exceeds the critical value H = 2J(A + 1). The whole phase
can be described by the effective Hamiltonian (4), where

(1) the gapped phase of model (1) for H < H\ corresponds
to the negatively FM ordered state of model (4) for H < —H,,

(2) the gapless phase of (1) for H) < H < H, corresponds
to gapless phase of model (4) for —H.<H<H,

(3) and the FM state of model (1) for H > H, corresponds
to the positively FM ordered state of model (4) for H > H..

The obvious advantage of this mapping is that the § = 1/2
XXZ chain is exactly solvable. The Bethe ansatz technique
gives explicit analytic expressions for its eigenfunction and
eigenvalues, and the thermodynamics can be calculated
through a set of nonlinear integral equations. Also, the
complete integrability of the S = 1/2 XXZ quantum spin chain
has some interesting implications on the thermal transport
properties of the original S = 1 chain.

Here we explore the effectiveness of this mapping. A first
direct test can be given if we compare the critical fields
obtained by the two models. For the first critical field, model (4)
predicts Hy = D — 2J, which coincides with Eq. (2) only at
first order in terms of J/D, whereas both models predict the
same value for the second critical field given by Eq. (3). This is
an indication that the mapping should be more accurate close
to H, rather than H;. Throughout this paper we adopt a certain
choice of parameter D/J = 4 in our numerical calculations
in order to be consistent with earlier work on electron spin
resonance (ESR) theoretical analysis [10] of model (1) and
to obtain semiquantitative agreement with experimental data
on DTN [11,12]. Under this choice, the critical fields are
H,/J =2.28 and H,/J = 8 for model (1), and 2 and 8 for
model (4), respectively.

The paper is organized as follows: In Sec. II we present
a detailed calculation of the magnetization and the specific
heat for both the S = 1 model (1) and the effective S = 1/2
model (4) using a variety of numerical techniques. In Sec. III
we address the calculation of dynamic correlation functions
pertinent to the study of thermal transport in both models.
Finally, in Sec. IV we take advantage of the effective S = 1/2
model in order to elucidate the field dependence of ESR in the
intermediate phase H; < H < H, and thus complete recent

PHYSICAL REVIEW B 89, 224418 (2014)

theoretical analyses [10] carried out within the S = 1 model.
Our main conclusions are summarized in Sec. V, while some
theoretical issues are relegated to two brief Appendices.

II. THERMODYNAMICS

This section is devoted to the calculation of the thermody-
namic quantities, such as magnetization and the specific heat.
It is important that this calculation be done for the original
Hamiltonian directly in some numerical ways in order to test
the validity of the approximations used while performing the
mapping.

For this reason an algorithm based on the application of
the renormalization group to transfer matrices (TMRG) is
employed, where the S = 1 quantum chain is mapped onto a
two-dimensional classical system by a Trotter-Suzuki decom-
position of the partition function [13]. The main advantage of
this method is that the thermodynamic limit can be performed
exactly and results can be obtained with satisfactory accuracy.
Moreover, a second numerical calculation is carried out on the
basis of the finite-temperature Lanczos method (FTLM) [14].
Although the TMRG results of thermodynamic quantities are
considered to be more accurate, the FTLM applies also to the
calculation of dynamic correlations, such as those presented
in Sec. III for the discussion of thermal transport.

According to thermodynamic Bethe ansatz (TBA), a system
of nonlinear integral equations provides all the required
information for the calculation of the free energy of model (4)
in the thermodynamic limit [15]. The particular value of
the anisotropy parameter A = 1/2 is especially convenient
because the calculation of thermodynamic quantities requires a
solution of only two nonlinear integral equations. More details
are discussed in Appendix B.

A. Magnetization

In this subsection, we calculate the magnetization curve
as a function of temperature and applied magnetic field. In
a gapped spin system in the presence of external magnetic
field, the Zeeman term is responsible for the closure of the gap
and spontaneous magnetization is developed in the ground
state. The behavior of the magnetization curve near a critical
field H. is nontrivial and depends on the model and its
dimensionality. In most cases where second-order transitions
occur, the magnetization M near H., behaves like

M~ (H — H;)'?. 5

Models with the same critical exponent § are said to
belong to the same universality class independently of the
microscopic details of the system. In general, the universality
class of the model is hard to derive prior to a direct calculation
of magnetization. For the § = 1 Haldane chain, the critical
exponent was found equal to § =2, a result based on an
equivalent continuum limit of quantum chains and a mapping
of the effective low-energy Lagrangian to a Bose fluid with
3 repulsion [16]. Nevertheless, a similar low-energy quantum
field theory is not available for the large-D S = 1 chain and
hence an independent calculation of the magnetization curve
is needed. Among the models that have the same critical
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FIG. 1. (Color online) The magnetic field dependence of magne-
tization M at fixed temperature (a) 7/J = 0.02 and (b) 7/J = 0.2.
The solid line corresponds to TMRG results obtained for the § =1
large-D chain and the dashed line corresponds to TBA results
obtained for the S = 1/2 XXZ chain. Vertical lines indicate the
location of critical fields H,/J = 2.28 and H,/J = 8. Satisfactory
agreement between the two models is achieved, particularly close to
H, where the two curves are indistinguishable.

exponent § = 2 are the S = 1/2 ladders [17] and the S = 1/2
bond-alternating chain [18].

The zero temperature magnetization of the § = 1/2 XXZ
model is based on a Bethe ansatz solution of the Hamiltonian.
More specifically, C. N. Yang and C. P. Yang [19] studied the
ground state energy as a function of A and magnetization, and
among the various results, they proved that M close to H,
behaves as follows:

~ 1 1 /= ~ o~
M=—-—-—/H.—H for H<H,,
2
L (6)
M=—+— ﬁ—ﬁc for ﬁ>—ﬁc
2 7w

Note that the dependence of M on the anisotropy constant
A enters only through the critical field H. = 2J(1 + A) and
thus does not affect the value of the critical exponent § = 2.
However, ﬁni~te temperature will cause a smoothing in the
shape of the M (H) curve close to H,.

In Fig. 1 we depict the magnetic field dependence of
magnetization M for a § =1 large-D chain, superimposed
with the magnetization M + 1/2 for the § = 1/2 XXZ chain
for (a) T/J =0.02 and (b) T/J = 0.2. Among the facts
that become apparent are the following: (i) Temperature
T/J = 0.02is considered to be low enough that the anticipated
square-root behavior is evident for both models. The critical
exponent is extracted and is found to be § ~ 2 close to Hj,
as well as close to H,. This foreseen result renders model (1)
in the same universality class as the Haldane or S = 1/2 XXZ
chain. (ii) As mentioned already, we expect that the mapping
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FIG. 2. (Color online) The temperature dependence of magneti-
zation for (a) the S = 1 large-D model and (b) the S = 1/2 XXZ
model, for various fields. Dots indicate the position of extrema that
correspond to the Luttinger liquid crossover. T, decreases toward
T = 0 as H approaches H; or H,.

close to H, is more accurate than close to H;. This expectation
is verified by the magnetization curves close to H, which are
indistinguishable.

Let us now focus on the temperature dependence of
magnetization for a wide range of fixed magnetic fields, as
illustrated in Fig. 2. For H < H;, magnetization vanishes
exponentially toward 7 = 0; for H > H;, a minimum appears
at low temperatures that persists up to H,, = (H, + H,)/2,
whereas maxima occur at larger magnetic fields for H,, <
H < H,. A further increase of the magnetic field will reopen
the gap, and for H > H, the M(T) curve decreases with
increasing temperature and vanishes exponentially. In Fig. 2(a)
we present the above-described behavior of M and the position
of the extrema 7, is indicated by dots.

The presence of minima and maxima at low temperatures
is not a surprising result, since similar features were found
for systems of S = 1/2 ladders [20-22,24] and Haldane
chains [25], where this nontrivial behavior was interpreted
as a Luttinger liquid (LL) crossover, with 7, corresponding to
the temperature below which the description of the system in
terms of a LL is valid.

Here we examine this behavior in terms of the § = 1/2
model, and in Fig. 2(b) we have plotted the temperature
dependence of magnetization for the same values of magnetic
field. For small values of temperature, magnetization behaves
in a similar way, with a minimum or maximum being present
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FIG. 3. (Color online) Magnetic phase diagram of the § =1
chain with a strong easy-plane anisotropy (full points) and of the
S = 1/2 XXZ chain (open points). Symbols indicate the crossover
into a finite-temperature LL regime present for both models.

for every value of magnetic field. Any deviations for higher
temperature can be attributed to the missing component of
the doublet. At the value H/J =35 (H = 0), the extrema
are expected to disappear and M = O for every temperature.
The position of the extrema is symmetric around H/J =5,
reflecting the symmetry around H = 0, where every minimum
for H < 0 corresponds to a maximum under the substitution
H — —H. As expected, this symmetry holds for the S = 1
model only in the D/J > 1 limit. This lack of symmetry is
easily seen in Fig. 3, where we present the magnetic phase
diagram for both models, with symbols marking the crossover
into a low-temperature Luttinger liquid regime. Note that the
discontinuity close to H,, is an artifact of the way in which we
identify the LL transition [24].

The results presented in this section, namely, the low-
temperature critical exponent § = 2 and the extrema of the
M (T) curve, should be accessible to experimental verification.
Magnetization measurements on DTN [26,27] revealed a linear
dependence of M(H) at low temperatures, and M(T') traces
at fields close to H; display a cusplike dip that was attributed
to the onset of 3D XY AFM order rather than a LL crossover.
Exchange couplings perpendicular to the chain J, play an
important role in determining the dimensionality of DTN close
to the QPT at H; and H,, where the gap closes and the system
behaves as three-dimensional. The power-law behavior of the
observed phase boundary [8] H{(T) — H{(0) & T* has been
identified as o = 1.47 £ 0.10 consistent with the 3D BEC
universality class. We should emphasize that the phase diagram
of Fig. 3 does not correspond to a real phase transition but to a
crossover between different regimes with an @ ~ 1 exponent,
and should lie above the phase diagram of BEC or XY AFM

type.

B. Specific heat

The magnetic field and temperature dependence of specific
heat C, is now investigated. A well-established result [28] is
that the specific heat of the S = 1/2 XXZ model develops a
characteristic double peak as a function of an applied longitu-
dinal magnetic field at relatively low-7". This characteristic
behavior cannot be explained by noninteracting magnons,
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FIG. 4. (Color online) The magnetic field dependence of specific
heat C, at fixed temperature 7/J = 0.1. The solid line corresponds
to TMRG results for the S = 1 large-D model and the dashed line
corresponds to TBA results of the S = 1/2 XXZ model.

where a single peak should be expected with its maximum
at the position of the critical field.

The numerical calculation of C, for the S = 1 large- D chain
reveals that the double peak is indeed present for adequately
low temperatures. This is presented in Fig. 4, where C, is
plotted as a function of magnetic field at fixed temperature
T/J = 0.1. The position of the double peak is around critical
fields H; and H,. Note that the curve is symmetric around
H,, for the S = 1/2 XXZ chain due to the the spin-inversion
symmetry, whereas some asymmetry arises for the § =1
large-D chain, which is apparent near the lower critical field
H,.

The temperature dependence of specific heat is also studied
at various magnetic fields, and the main features are depicted
in Fig. 5, calculated for the original S = 1 model using the
TMRG algorithm. More specifically, for H < H; specific heat
decays exponentially at low temperatures due to the presence
of the gap. The curve has a single peak which can be attributed
to the thermal population of the S = %1 doublet excitations.
An increase of H will cause a decrease of the C, curve. As
H — H, the gap is reduced and the line shape is changed,
as we find linear dependence on H atlow T. For Hy < H <
H, an additional peak is gradually developed, below which
the temperature dependence remains linear. This behavior is
is consistent with the LL phase where specific heat scales
like C,/ T oc T¢~! for excitations with relativistic dispersion,
where d is the dimension. Finally, for H > H,, the second
peak vanishes and the reopening of the gap will again cause
C, to decay exponentially at low 7.

The characteristic behavior of specific heat described in
this section can be found in other models as well, for example,
S = 1/2ladders. Measurements on systems of weakly coupled
ladders [24] revealed qualitatively the same C,(T") behavior,
where the first peak in 7' was explained as a sign of deviations
from the LL linear regime. Moreover, the characteristic double
peak of C, as a function of magnetic field presented in Fig. 4
has been found experimentally [22,23]. Note that the S = 1/2
ladder compounds are considered to be good candidates to
explore effects that occur in 1D quantum systems, with the
interladder coupling being 2 orders of magnitude smaller than
the intraladder couplings.
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FIG. 5. (Color online) The temperature dependence of specific
heat for various fields, calculated for the S = 1 model using TMRG.

On the contrary, the specific heat data of DTN exhibit
sharp peaks as a function of T and H, suggesting that DTN
can partially be described as a quasi-1D system, making the
inclusion of interchain couplings necessary in order to explain
the experimental data. The low-T dependence of specific
heat data is 7%/ at H), in agreement with the expected 3D
BEC [27]. In addition, the C, (H ) data exhibit sharp asymmetric
peaks at the critical fields H, and H,, an asymmetry that was
explained in terms of mass renormalization of the elementary
excitations due to quantum fluctuations that exist for H < H;
and are absent for H > H, [29]. The free magnon picture at
any dimensionality is not sufficient to reproduce the double-
peak shape. On the contrary, a single, rather sharp peak is
predicted with a maximum at the critical fields. In Fig. 4 we
notice that the asymmetry in C, is present for the 1D case
as well, with the value of C, at the double peak around H,
being larger than the one around H;. In terms of the effective
mapping that we are discussing here, perfect symmetry is only
expected in the D/J >> 1 limit.

Finally, in Fig. 6 we compare the TMRG result with
FTLM calculation on the chain L = 16 with periodic boundary
conditions at 7/J = 0.5 in order to establish a reliable
comparison between them. The two curves are in good
agreement, especially in the vicinity of the two critical fields,
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FIG. 6. (Color online) The magnetic field dependence of specific
heat C, at fixed temperature 7'/J = 0.5 as calculated with TMRG
(solid line) and FTLM (points) for the S = 1 model. Deviations are
due to finite-size effects of FTLM data.

with some deviations in the center of the intermediate phase
that are due to finite-size effects of FTLM data.

III. THERMAL TRANSPORT

In this section we turn our attention to the transport
properties of the § = 1 large-D model (1). Within the linear
response theory, the heat current 7 and the spin current Js
are related to gradients of magnetic field V H and temperature
VT by the transport coefficients C;; [30]:

Jo\ _ (Coo Cos\(—VT
Js)] " \Cso CssJ\ VH )

where Cpg = ko (Css = oys) is the heat (spin) conductivity.
The coefficients C;; correspond to the dc limit of the
real part of the appropriate current-current correlation func-
tions (frequency-dependent conductivities), C;; = Cjj(w —
0). Note that under the assumption of vanishing spin current,
which is relevant to certain experimental setups, the thermal
conductivity « is redefined as follows:

Kk =kKgg — BChs/Css, ©)

where the second term is usually called the magnetothermal
correction. Such a term originates from the coupling of the
heat and spin currents in the presence of magnetic field
[31-33]. Here we present results for the heat conductivity
kpo(w) calculated for § = 1 model with FTLM on the chain
up to L = 16 sites and exact results obtained for S = 1/2
model. In the latter case, we comment also on the 8C %2 ¢/ Css
term.

The real part of a given current-current correlation function
(real part of the conductivity) can be written as

Cij(®) =2 D;;jé(w) + C;;g(w)’ ®

where the regular part C;;*(w) can be expressed in terms of
eigenstates |n) and eigenenergies €,:

ap’ 1 —e P
L w
X Z pn{m|Tin) (n]T;|lm)d(e, — €m — @), (9)

€nFe€m

reg.
Ci¥ () =
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FIG. 7. (Color online) Integrated conductivity Ipo(w) for (a)
T/J =1 and (b) T/J =10 as calculated for L = 16 sites and
different fields H. Dashed vertical line represents wy/J = 2mw /L ~
0.4.

while the dissipationless component with the Drude weight is
related to the degenerate matrix elements:

IBrJrl
Pu="a0

Y palmlTiin)(nlTjlm),  (10)

€n=€nm

where p, = exp(—p¢,)/Z are corresponding Boltzmann
weights and Z is the partition function.

In the case of heat conductivity, Cgo(®) = kgg(w),
i=j=0, and r = 1. The heat current Jp = > j< can
be defined by the lattice continuity equation j2 — j2 =
—i[H,H,_1], where H, is the local energy density of (1),
with H = )", H,. Such a definition leads to

\7Q :Z[JZS;«I—] (Sn X Sn+1)+(2DS}2+H)-];lS‘]’ (11)

n

where j3 = J(SXS),, — SySi,,) is the local spin current.
Note that in the presence of a finite magnetic field, H # O,
the heat current 7 is not simply equal to energy current Jg
but instead is [30]

Jo =Je + HJs, (12)

with Js = Y, js.
Since our numerical calculation is performed on a finite
chain, it is expected that the kgpp(w) is a sum of weighted

6 functions. Therefore in Fig. 7 we present the integrated
conductivity

1 w
Igo(w) = E/ do' kgo(@), (13)

which is a much more reliable, monotonically increasing
function, when numerically dealing with finite-system results.

Conductivity
[

0 4 8 12 16
Frequency w/J

FIG. 8. (Color online) Frequency dependence of kgo(w) at
H =2and T/J = 1. Labels w, g indicate the boundaries of the band
with nonvanishing weight at low 7.

From Fig. 7 it becomes apparent that « o o (w) exhibits two,
well-separated regions: the low-w part and the high-w part
that is activated around w/J 2 D. The spectral representation
of kgo(w) of Eq. (9) implies that nonzero matrix elements
exist only for states |n) and |m), which obey the AS* = 0 and
Ak = 0 selection rules. At low enough T, the high-frequency
part of KrQegQ(a)) should be dominated by transitions between
the ground state and the next in energy state with the same
total magnetization. As mentioned already, for H < H;, the
ground state |€2) carries zero azimuthal spin $* = 0 and the
elementary excitations are the degenerate S° =1 excitons
and S° = —1 antiexcitons with energy momentum dispersion
€(k) [3]. The next in energy state that belongs to the total
S§* =0 subspace is constructed by an exciton with crystal
momentum k; and an antiexciton with k, and energy equal
to e(k;) + €(kp), which will be referred to as an exciton-
antiexciton continuum. Therefore, at low T, the simplest
possibility is a transition between the ground state and the
exciton-antiexciton continuum at k = k| + k, = 0, resulting
contributions from a band of frequencies with boundary lines
g, p, Where

wap =2D F4J +2J*/D £ J?/D*. (14)

In Fig. 8 we plot the frequency dependence of «go(w) at
H = 2 and relatively low temperature 7/J = 1. As predicted,
the high-frequency part of fchegQ(w) is activated at frequencies
around w, and terminates at wg, a result consistent with the
preceding analysis.

For H > H, the ground state is fully polarized with no other
state sharing the same S° subspace; therefore it is expected
that contributions at high frequencies will vanish. This is
supported by our numerical results and is evident in Fig. 7(a),
where for H > H, only the w ~ 0 contributions are present.
In the intermediate phase for H; < H < H,, the elementary
excitations are difficult to calculate and there can be no
analytical predictions such as lines wq, g. From the numerical
data presented in Fig. 7(a), we conclude that for H} < H < H,
the high-o part of k7 () is active at a band roughly between
lines w, and wg with intensity that is gradually reduced as
H — Hz.

Several conclusions can be drawn also for « — 0 behavior
of kgg(w). To begin with, in Fig. 7(b) an anticipated result
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FIG. 9. (Color online) System size scaling of Drude weight Dy
at (a) T/J =10 and (b) T/J =1, obtained for systems with L =
6, ...,16 sites with various magnetic fields H/J = 2,4,8,10.

for nonintegrable systems is illustrated, namely, that Drude
weight Dpo vanishes for high temperatures. On the other
hand, at low temperatures, D¢ remains finite at any value of
H, as can be seen in Fig. 7(a). Moreover, for H > J thew ~ 0
contributions are dominant in the total sum rule /o (w = 00)
and almost all weight is in Drude weight itself. Since the
model (1) is a nonintegrable, one would expect that Dy is
vanishing exponentially fast (at least for 7 — o00) with system
size L, leading to diffusive transport in the thermodynamic
limit [1,34].

In order to clarify this, we present in Fig. 9 inverse system
size 1/L scaling of the D for various values of 7 and H.
For T >> J the Drude weightis indeed vanishing exponentially
fast, consistent with diffusive transport. However, this is not
the case for low T, where the scaling of D seems to weakly
depend on system size. The choice of H that determines
whether the system is in the gapped or gapless phase does
not seem to affect this scaling. Yet, a finite value of Dy in
the thermodynamic limit is one of the features of integrable
systems [35], which is clearly not the case of the considered
model (1) [1,34]. One of the possible explanations of this
phenomenon is that the intrinsic diffusive processes at low
T, that will result in a zero Dg¢ in the thermodynamic
limit, become effective beyond the reachable system size
or the energy resolution of the method presented here. As
a result, it is expected that as one increases the system
size, the spectral weight from Do shifts to KggQ(a) < wp),
with wy/J ~ 2m /L [36,37]. The latter completely dominates
the low-w behavior of xpo(w) in the thermodynamic limit
(L — o0). Therefore, to capture this finite-size effect, in the
following we will consider integrated conductivity [y g(wo)
(frequency wy is depicted as vertical dashed line in Fig. 7).

To gain insight into the origin of the slowly decaying
Drude weight at low T, let us consider thermal transport in
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FIG. 10. (Color online) Comparison of S = 1 integrated conduc-
tivity IQQ(wO) at wy = 2w /L for L = 16 with exact S = 1/2 Drude
weight Dy calculated in the thermodynamic limit for 7 = 0.5,1,
and 2 as a function of the magnetic field H.

the effective low-energy S = 1/2 Hamiltonian (4). The heat
current JQ is defined for this model in the same way, i.e.,

], —], = = —1[H,H;_1] with H = > H;, leading to

Jo=Y_[478,-1-Su xS, p+HJT). (15

n

with §;l = (§j{,§3{ ,Agj). Other definitions and properties of
the currents and conductivity remain the same [Egs. (7)-(10)
and (12)] with appropriate J,, « = Q,E,S,and J =2J.

Itis known thatthe S = 1/2 Heisenberg model is integrable,
with heat current being one of the conserved quantities,
[Jo.H] = 0, leading directly to its nondecaying behavior and
within the linear response to infinite thermal conductivity.
Also, the integrability of the model (4) makes the calculation
of Dy feasible in the thermodynamic limit. As a consequence
of Eq. (12), one can decompose Drude weight in terms of the
energy and spin contribution,

Do = Dgp +2BHDgs + BH Dss, (16)

where Drude weights are defined in Eq. (10), with » = 1 for
i=j=Qori=j=E,andr=0fori=j=Sori=
E,j=S§. _

The Dgg and Dgg at finite temperatures have been calcu-
lated by Sakai and Kliimper [31] using a lattice path integral
formulation, where a quantum transfer matrix (QTM) in the
imaginary time is introduced. Correlations and thermodynamic
quantities can be evaluated in terms of the largest eigenvalue
of the QTM. The importance of this method yields to the
fact that all quantities are found by solving two nonlinear
integral equations at arbitrary magnetic fields, temperatures,
and anisotropy parameters. Here we repeat the calculation
using A = 1/2.

On the other hand, spin Drude weight Dss at finite magnetic
field is computed based on a generalization of a method
that was proposed by Zotos [38], where Dgg was calculated
using the Bethe ansatz technique at zero magnetic field. The
presence of magnetic field will cause some changes to the TBA
equations [15], but the overall analysis is essentially the same.

InFig. 10 we compare Dy for the § = 1/2 model with the
numerically obtained integrated conductivity /g ¢ at w for the
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FIG. 11. (Color online) Magnetic field dependence of 5QQ, K ths
and MTC term at fixed temperature (a) 7/J =0.5and (b) T/J = 1.
Vertical lines indicate the critical fields.

S = 1 model on L = 16sites. As is clearly visible, the overall
agreement is satisfactory. The magnetic field dependence of
Drude weight D¢ includes all characteristic features of the
S =1 low-w behavior. From the results obtained for the
thermal transport, as in the case of magnetization and specific
heat, we observe that the mapping is much more accurate
close to H, than close to Hj. Also, due to spin-inversion
symmetry, the § = 1/2 results are symmetric with respect to
H =5 (H = 0), where lack of such a symmetry for the § = 1
model is expected.

Let us now comment on the magnetothermal corrections
(MTC:s) to heat conductivity [Eq. (7)] for the S = 1/2 model.
Frequency-dependent thermal conductivity x can be written in
the same form as Eq. (8), with the weight of the singular part
given by [30]

K= Dgg — ,352Qs/55s, (17

where r =0 for i = Q, j = §. Both of the two competing
terms that contribute to Ky become important at finite
magnetic fields. In Fig. 11 we depict the magnetic field depen-
dence of Dgp, K, and the MTC term at fixed temperature
(@) T/J =0.5and (b) T/J = 1, as have been calculated for
the S = 1/2 model (4).

As ewected, the MTC term is exactly zero at the zone
center (H = 0), but it becomes finite at finite H, where we
see a bell curve behavior, with the peak centered close to
the critical fields at low 7'. Upon increasing T, the position of
the first (second) peak is shifted to lower (higher) magnetic
fields. While Dy, exhibits a pronounced nonmonotonic
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behavior as a function of H, with two peaks centered close to
the critical fields, the inclusion of the second term of Eq. (17)
results in an overall suppression of Ky, and the cancellation of
this behavior. This finding is confirmed by a numerical study of
the thermal transport in the S = 1/2 XXZ chain in the presence
of a magnetic field [33] based on exact diagonalization of a
finite chain.

In all cases considered here, the thermal conductivity at
T < J has a maximum located at H >~ H,, = (H| + H,)/2.
However, this is not what is observed in the experiment. The
thermal conductivity measurements at low 7 of the DTN
compound [29,39] exhibit sharp peaks in the vicinity of critical
fields H, ,. Detailed analysis of spin contribution to the total
thermal conductivity is a nontrivial task due to the presence of
phononic contribution. Also, the DTN compound is a quasi-
1D material with J; /J ~ 0.18, and for temperatures below
Ty < 12K (T/J <0.5)is in a 3D ordered state [6,8,11,40]
with long-range correlations [40,41].

IV. ELECTRON SPIN RESONANCE

Electron spin resonance has been one of the main tools
for experimental investigation of DTN [42] for a wide field
range including the intermediate region H; < H < H,. The
original experiment was repeated in Ref. [10] in order to clarify
certain important features predicted by theory [5], such as the
occurrence of a two-magnon bound state for strong fields in
the region H > H,. One of the main conclusions of the above
references is that the essential features of the ESR spectrum
observed in DTN are accounted for by the strictly 1D § =1
model (1). Yet, even within this 1D model, calculation of the
ESR spectrum has been difficult especially for fields in the
intermediate phase.

It is the purpose of the present section to investigate the
structure of the zero-temperature low-lying ESR spectrum
throughout the intermediate region H; < H < H, using the
mapping to the effective S = 1/2 model (4), for which a
rigorous solution can be obtained using the Bethe ansatz. As
a preparation for our main result, we recall that the extent of
the intermediate phase predicted by the S = 1/2 XXZ model
is given by —H, < H < H,, where H. =2J(1+ A)=3J
for A = 1/2. Upon translating this prediction in terms of the
original field H = H + J + D, the extent of the intermediate
phase is given by

H =D-2J, H,=D+4J, (18)

where H, coincides with the exact upper critical field of
Eq. (3) predicted by the S = 1 model, whereas H; is an
approximate prediction for the lower critical field that is
consistent with Eq. (2), restricted to first order in the 1/D
expansion. Accordingly, the field dependence of the ESR
spectrum outside the intermediate phase is given by

wg=D+2J—H for H < Hy,

19)
wc=H—-D for H> H,,
where wc is the k = 0 value of the magnon dispersion for H>
H., and wp is the corresponding value for H < —H,. Note

that w¢ coincides with the exact value of the corresponding
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prediction in the S = 1 model, whereas wp is again the first-
order approximation within a systematic 1/D expansion [10].

The preceding elementary calculation of the ESR spectrum
cannot be simply extended into the intermediate phase,
even within the effective S = 1/2 model. However, recent
developments in the Bethe ansatz method [43,44] allow
the semianalytical evaluation of matrix elements between
eigenstates in the S = 1/2 Heisenberg model for any mag-
netization: the calculations reduce to the numerical evaluation
of determinants of the order of the size of the spin system.
When applied to the ESR operator |(m|St0t|52)|2 where |Q)
is the ground state, |m) an excited state, and S, = ), S , it
is found that there is essentially only one excited state, |m*),
that has significant weight in the spectrum. This state is a
highly unusual one in the Bethe ansatz literature. While usually
eigenstates are characterized by sets of real pseudomomenta
A or pseudomomenta with imaginary parts symmetrically
arranged around the real axis (‘“strings”), this state has all
the A’s real except one that is complex with an imaginary part
17 /2. The existence of this state was recently discussed [45~],
and it physically corresponds to a uniform change of the S$*°
component of the magnetization by 1. It is fascinating that the
ESR experiments exactly probe this state and its dynamics.

From a computational point of view, it turns out to be
rather difficult to find the pseudomomenta A for this state.
The nonlinear Bethe ansatz equations at finite magnetization,
in general, do not converge by iteration. To circumvent this
problem, it was suggested [46] to study chains with an
odd number N of spins, where indeed the problem is far
less crucial [44]. In the following we present data for the
magnetic field H dependence of the ESR resonance frequency
Wy = €+ — € and of the ESR matrix element | (m* |Smt|§2)|2
for N = 51.The quantum numbers characterizing the ground
state |Q) with M reversed spins are given by [j— y =
-M /24+1,...,4+ M/2, corresponding to a magnetization
S* = N/2 — M. The excited state |m*) has M + 1 reversed
spins and is characterized by the quantum numbers /;_; y =
-M/2+1/2,...,+M/2—-1/2,1y = (N + M)/2.

The results of this intriguing calculation are summarized in
Fig. 12, which depicts the field dependence of the low-lying
ESR lines as a function of the field H. As expected, these
coincide with the straight lines wp and w¢ of Eq. (19) for fields
H outside the intermediate phase, which bend downwards
upon entering the intermediate phase to meet at the center and
thus form a V-like structure. The calculated slope is £3/2 at
the center and +1 at and beyond the edges of the intermediate
phase. Also shown in Fig. 12 is the calculated field dependence
of the matrix element |(m *|Stm|§2)| which vanishes at the
center but reaches a finite value 1/4 that remains constant for
all fields outside the intermediate phase.

The currently predicted V-like ESR spectrum with van-
ishing intensity at its center is consistent with our earlier
prediction [10] made by a rough numerical calculation on small
(N = 10) chains within the S = 1 model (1), but disagrees
with a Y -like structure with nonvanishing intensity at the center
made by Cox et al. [47] by a calculation within the same
S = 1 model. Concerning possible experimental observation,
the rapid vanishing of intensity near the center would make
the V mode especially sensitive to small perturbations that are
ever present in effective Heisenberg models [10,42].
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FIG. 12. (Color online) Field dependence of T =0 low-lying
ESR lines calculated from the effective S = 1/2 model diagonalized
through the Bethe ansatz. Lines B and C are the straight lines wp and
wc given in Eq. (19) for fields outside the intermediate phase but bend
downwards in a nontrivial manner upon entering the intermediate
phase to meet at the center and thus form a V -like structure. The inset
depicts the field dependence of the matrix element |(m*|§;t|f~2)|2,
which is directly relevant for the calculation of the intensity of ESR
modes. Vertical dotted lines indicate the location of the critical fields
H, and H, calculated from Eq. (18).

Some caution is necessary with regard to the results
presented in this section concerning the structure of the ESR
spectrum in the intermediate phase. As stated earlier, most of
the intensity is concentrated on a single resonance frequency
wy,+ With a §-function line shape, emerging from transitions
between the ground state and the excited state |m*). Apart
from this dominant contribution, the Bethe ansatz calculation
revealed that the ESR spectrum consists of secondary transi-
tions with small, but nonvanishing intensity. These transitions
correspond to resonance frequencies that lie above w,,» with
negligible matrix elements and are thus omitted from Fig. 12.
These secondary peaks exist throughout the intermediate phase
for —H. < H < H_ but lose their intensity for H > H. and
H < —H,. In this case, the only ESR transition is the one
between the ferromagnetic ground state and the k = O single
magnon, with resonance frequency

g =2J(1—=A)+H for H>H,
~ ~ ~ (20)
=2J(1-A)—H for H<—-H..

In order to clarify this more complicated ESR spectrum, two
limiting cases are considered: the isotropic chain (A = 1) and
the XY model (A = 0). In the presence of isotropic interaction,
the resonance frequency ws,, = H with a §-function line shape
is extended in the intermediate region. The line is precisely
at the Zeeman energy for any magnetic field, with intensity
that gradually vanishes as H — 0. In the presence of a small
perturbation to the isotropic Hamiltonian, the ESR spectrum is
again dominated by a single line, but the presence of anisotropy
causes a shift in the position of the resonance peak that varies
with magnetic field [48].
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On the other hand, the picture gets more involved for
A = 0. A numerical calculation performed by Maeda and
Oshikawa [49] showed that the single magnon picture with a
d-function line shape at w;,, = 2J & H holds only for H > H,
and H < —H,. This picture breaks down in the intermediate
phase, where absorption takes place over a finite frequency
range with boundaries 2H < w < 4J.

From the discussion above it follows that the value of
anisotropy considered here, A = 1/2, lies approximately in the
middle of the 0 < A < 1region, combining features from both
extreme cases. The argument of a single line is substantially
correct and adequately describes the ESR spectrum, while
secondary peaks exist with negligible intensity. These peaks
will evolve into a band of resonance frequencies in the A = 0
limit.

V. CONCLUSIONS

We have investigated the thermodynamic and dynamical
properties of the one-dimensional S = 1 antiferromagnetic
chain with large easy-plane anisotropy, in the presence of
a uniform magnetic field. An effective S = 1/2 Heisenberg
XXZ7 Hamiltonian is derived based on a mapping of the original
S = 1 Hamiltonian into its low-energy subspace, which enable
us to gain a better physical understanding of the considered
model. For all quantities studied here, results for both the § = 1
and S = 1/2 model are presented and compared in order to test
the effectiveness of the mapping, and results from the exactly
solvable XXZ model are collated to complete the theoretical
description.

The temperature and magnetic field dependence of magneti-
zation and specific heat of the S = 1 model have been studied
using a TMRG algorithm, which allows us to obtain these
quantities with satisfactory accuracy in the thermodynamic
limit. The thermodynamic Bethe ansatz is applied to derive the
same quantities for the S = 1/2 model. The critical exponent
that describes the behavior of magnetization near the critical
fields at very low T is extracted from the numerical data
of the S =1 model and found equal to § = 2. This result
renders the considered model in the same universality class as
a broad collection of various models of quantum magnetism.
Furthermore, the temperature dependence of magnetization
for both models reveals the existence of extrema at some
temperature T, which is interpreted as the critical temperature
below which the description of the system in terms of Luttinger
liquid is valid. A magnetic phase diagram is constructed
that represents the crossover into a low-T Luttinger liquid
regime. The section of thermodynamics is completed with
the investigation of specific heat as a function of H and
T. The C,(H) curve exhibits a characteristic double peak
around critical fields Hj ;, and the C,(T') curve reveals a linear
dependence at low T, consistent with the LL phase.

We also give a description of the heat conductivity k¢,
calculated for the S = 1 model with a FTLM algorithm on a
finite chain of length L = 16. We observe that the singular part
of kg, namely, the Drude peak D, vanishes for high 7', an
anticipated result for nonintegrable systems. On the contrary,
at low T, Dgo remains the significant contribution to the
total sum rule of kg at all considered fields. Therefore the
low-w part of the integrated conductivity Ipo is compared
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with the S =1/2 Drude weight 5QQ calculated in the
thermodynamic limit. The overall agreement is satisfactory,
with Dg¢ including all the characteristic features of the
S =1 behavior. Within the integrable S = 1/2 model, the
heat current 7 is a conserved quantity giving infinite thermal
conductivity. Nevertheless, it is a nontrivial question as to
which extent integrability of the low-energy effective S = 1/2
Hamiltonian influences transport properties of the full § = 1
model. However, this is beyond the scope of this paper, and
we leave it as a motivation for further studies.

Finally, the low-lying ESR spectrum of the effective S =
1/2 model is analyzed for fields in the intermediate region
in order to complete earlier work on the § = 1 model. A
semianalytical evaluation based on the Bethe ansatz predicts
that ESR lines form a V-like structure in the low-lying
intermediate phase with vanishing intensity at its center.

Concerning the experimental observations of the results
presented throughout the paper, we conclude that measure-
ments on DTN showed that some characteristics expected
for a one-dimensional system are not present, indicating that
the system exhibits 3D behavior. In the case of thermal
conductivity, not only the dimensionality of the system but
the inclusion of scattering mechanisms such as phonons are
necessary in order to reach a realistic description.
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APPENDIX A: EFFECTIVE HAMILTONIAN

Here we give more details about the derivation of the
effective spin Hamiltonian. For H < H, the ground state |<2)
and lowest excitations |¥;) and |\W,) are

1€2) =11,0) ® 1,0) ® [1,0) ® [1,0) ® - - - ® |1,0),
(AD)

zkn|n:':>7

1
Uo) = —
[W1.2) ‘/ﬁne

where states |[n_) and |n) carry nonzero azimuthal spin equal
to —1 and +1, respectively, only at the site n. At zero magnetic
field the states |W;) and |\W;) are degenerate with a known
energy momentum dispersion €(k) [3]. This degeneracy is
lifted at nonzero magnetic field H due to the Zeeman energy.
Upon increasing H the state | W) approaches the ground state,
whereas the energy difference of states |W;) and |\W,) equals
2H and becomes larger. Close to H; the low-energy space is
spanned only by states |¥;) and |2) and the contribution of
|W,) can be neglected. A new S = 1/2 representation can be
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used:

=R ® ),

~ 1
W) = — ) e*n),
| ﬁ;

where state |7) differs from | §~2) by a spin-up at site n. Therefore
we project the original Hamiltonian (1) into this subspace, and
the resulting effective Hamiltonian up to a constant is

(A2)

H= Z [2J(§jf:§,f+1 + ngg}fﬂ + Agjgﬁﬂ) + ﬁgn]
-~ (A3)
where A=1/2and H=—-J - D+ H.
For H > H, the fully FM ground state and the single-
magnon eigenstate are

12) =11,-1)® [I,-1) ® [1,—1)
,-1®- - -®|1,-1),

) = ﬁ;e’k%,

where state |n) differs from the ground state by the fact that
SZ = 0. By identifying these two states with the S = 1/2 states
given in Eq. (A2), the resulting model is again described by
the Hamiltonian (A3).

(A4)

APPENDIX B: THERMODYNAMIC BETHE
ANSATZ EQUATIONS

According to the thermodynamic Bethe ansatz, a system of
nonlinear integral equations provides all the required informa-
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tion for the calculation of the free energy of model (4) in the
thermodynamic limit [15]. The number of these equations is
determined by the value of parameter A. For A = cos(w/n)
there are n such equations with f;(x) unknown functions,
where i = 1,2, ...,n. In the case we are studying here, we
have A = 1/2 and n = 3; therefore the full set of equations is

In[1 + fi(x)] = —271%/5 8(x),

2J o0
In fo(x) = —?3\@8(10 + / dyg(x —y)

—0Q

x In[1 + 2 f3(y) cosh(3H /2T) + f(»)*],

In f3(x) = / dy g(x — [l + A,

[ee]

(B

where g(x) = sech(mrx/2)/4. The above equations are solved
numerically by an iterative process, where we generate a
sequence of improving approximate solutions that converge
rapidly. Once function f,(x) is determined, the free energy is
given from

oo
F = / dx g(x)In[1 4+ fo(x)]. (B2)
—0o0
The specific heat and magnetization are given by
5~ ,0F  ~  3F
= =-—=, (B3)

L=p, M
B2 OH

where 8 = 1/T is the inverse temperature. To avoid numerical
differentiation, one can derive similar nonlinear equations and
directly calculate the derivatives.

[1] E. D. M. Haldane, Phys. Lett. A 93, 464 (1983).

[2] A. Langari, F. Pollmann, and M. Siahatgar, J. Phys.: Condens.
Matter 25, 406002 (2013).

[3] N. Papanicolaou and P. N. Spathis, J. Phys.: Condens. Matter 1,
5555 (1989); Phys. Rev. B 52, 16001 (1995).

[4] A. F. Albuquerque, C. J. Hamer, and J. Oitmaa, Phys. Rev. B
79, 054412 (2009).

[5] N. Papanicolaou, A. Orenddcovd, and M. Orendac, Phys. Rev.
B 56, 8786 (1997).

[6] V. S. Zapf, D. Zocco, B. R. Hansen, M. Jaime, N. Harrison,
C. D. Batista, M. Kenzelmann, C. Niedermayer, A. Lacerda,
and A. Paduan-Filho, Phys. Rev. Lett. 96, 077204 (2006).

[7] V. Zapt, M. Jaime, and C. D. Batista, Rev. Mod. Phys. 86, 563
(2014).

[8] L. Yin, J. S. Xia, V. S. Zapf, N. S. Sullivan, and A. Paduan-Filho,
Phys. Rev. Lett. 101, 187205 (2008).

[9] T. Giamarchi and A. M. Tsvelik, Phys. Rev. B 59, 11398 (1999);
F. Mila, Eur. Phys. J. B 6, 201 (1998).

[10] C. Psaroudaki, S. A. Zvyagin, J. Krzystek, A. Paduan-Filho,
X. Zotos, and N. Papanicolaou, Phys. Rev. B 85, 014412
(2012).

[11] S. A. Zvyagin, J. Wosnitza, C. D. Batista, M. Tsukamoto,
N. Kawashima, J. Krzystek, V. S. Zapf, M. Jaime, N. F.
Oliveira, Jr., and A. Paduan-Filho, Phys. Rev. Lett. 98, 047205
(2007).

[12] S. A. Zvyagin, C. D. Batista, J. Krzystek, V. S. Zapf, M. Jaime,
A. Paduan-Filho, and J. Wosnitza, Physica B 403, 1497 (2008).

[13] X. Wang and T. Xiang, Phys. Rev. B 56,5061 (1997); N. Shibata,
J. Phys. Soc. Jpn. 66, 2221 (1997).

[14] For a recent review, see P. PrelovSek and J. Bonca, in Strongly
Correlated Systems—Numerical Methods, edited by A. Avella
and F. Mancini, Springer Series in Solid-State Sciences Vol. 176
(Springer, Berlin, 2013), pp. 1-29.

[15] M. Takahashi and M. Suzuki, Prog. Theor. Phys. 48, 2187
(1972).

[16] 1. Affleck, Phys. Rev. B 43, 3215 (1991).

[17] R. Chitra and T. Giamarchi, Phys. Rev. B 55, 5816 (1997).

[18] T. Sakai and M. Takahashi, Phys. Rev. B 57, R8091 (1998).

[19] C. N. Yang and C. P. Yang, Phys. Rev. 150, 327 (1966); 151,
258 (1966).

[20] X. Wang and L. Yu, Phys. Rev. Lett. 84, 5399 (2000).

[21] S. Wessel, M. Olshanii, and S. Haas, Phys. Rev. Lett. 87, 206407
(2001).

[22] C. Ruegg, K. Kiefer, B. Thielemann, D. F. McMorrow, V.
Zapf, B. Normand, M. B. Zvonarev, P. Bouillot, C. Kollath,
T. Giamarchi, S. Capponi, D. Poilblanc, D. Biner, and K. W.
Kramer, Phys. Rev. Lett. 101, 247202 (2008).

[23] A. V. Sologubenko, T. Lorenz, J. A. Mydosh, B. Thielemann,
H. M. Rgnnow, C. Riiegg, and K. W. Kramer, Phys. Rev. B 80,
220411(R) (2009).

224418-11


http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1088/0953-8984/25/40/406002
http://dx.doi.org/10.1088/0953-8984/25/40/406002
http://dx.doi.org/10.1088/0953-8984/25/40/406002
http://dx.doi.org/10.1088/0953-8984/25/40/406002
http://dx.doi.org/10.1088/0953-8984/1/32/028
http://dx.doi.org/10.1088/0953-8984/1/32/028
http://dx.doi.org/10.1088/0953-8984/1/32/028
http://dx.doi.org/10.1088/0953-8984/1/32/028
http://dx.doi.org/10.1103/PhysRevB.52.16001
http://dx.doi.org/10.1103/PhysRevB.52.16001
http://dx.doi.org/10.1103/PhysRevB.52.16001
http://dx.doi.org/10.1103/PhysRevB.52.16001
http://dx.doi.org/10.1103/PhysRevB.79.054412
http://dx.doi.org/10.1103/PhysRevB.79.054412
http://dx.doi.org/10.1103/PhysRevB.79.054412
http://dx.doi.org/10.1103/PhysRevB.79.054412
http://dx.doi.org/10.1103/PhysRevB.56.8786
http://dx.doi.org/10.1103/PhysRevB.56.8786
http://dx.doi.org/10.1103/PhysRevB.56.8786
http://dx.doi.org/10.1103/PhysRevB.56.8786
http://dx.doi.org/10.1103/PhysRevLett.96.077204
http://dx.doi.org/10.1103/PhysRevLett.96.077204
http://dx.doi.org/10.1103/PhysRevLett.96.077204
http://dx.doi.org/10.1103/PhysRevLett.96.077204
http://dx.doi.org/10.1103/RevModPhys.86.563
http://dx.doi.org/10.1103/RevModPhys.86.563
http://dx.doi.org/10.1103/RevModPhys.86.563
http://dx.doi.org/10.1103/RevModPhys.86.563
http://dx.doi.org/10.1103/PhysRevLett.101.187205
http://dx.doi.org/10.1103/PhysRevLett.101.187205
http://dx.doi.org/10.1103/PhysRevLett.101.187205
http://dx.doi.org/10.1103/PhysRevLett.101.187205
http://dx.doi.org/10.1103/PhysRevB.59.11398
http://dx.doi.org/10.1103/PhysRevB.59.11398
http://dx.doi.org/10.1103/PhysRevB.59.11398
http://dx.doi.org/10.1103/PhysRevB.59.11398
http://dx.doi.org/10.1007/s100510050542
http://dx.doi.org/10.1007/s100510050542
http://dx.doi.org/10.1007/s100510050542
http://dx.doi.org/10.1007/s100510050542
http://dx.doi.org/10.1103/PhysRevB.85.014412
http://dx.doi.org/10.1103/PhysRevB.85.014412
http://dx.doi.org/10.1103/PhysRevB.85.014412
http://dx.doi.org/10.1103/PhysRevB.85.014412
http://dx.doi.org/10.1103/PhysRevLett.98.047205
http://dx.doi.org/10.1103/PhysRevLett.98.047205
http://dx.doi.org/10.1103/PhysRevLett.98.047205
http://dx.doi.org/10.1103/PhysRevLett.98.047205
http://dx.doi.org/10.1016/j.physb.2007.10.174
http://dx.doi.org/10.1016/j.physb.2007.10.174
http://dx.doi.org/10.1016/j.physb.2007.10.174
http://dx.doi.org/10.1016/j.physb.2007.10.174
http://dx.doi.org/10.1103/PhysRevB.56.5061
http://dx.doi.org/10.1103/PhysRevB.56.5061
http://dx.doi.org/10.1103/PhysRevB.56.5061
http://dx.doi.org/10.1103/PhysRevB.56.5061
http://dx.doi.org/10.1143/JPSJ.66.2221
http://dx.doi.org/10.1143/JPSJ.66.2221
http://dx.doi.org/10.1143/JPSJ.66.2221
http://dx.doi.org/10.1143/JPSJ.66.2221
http://dx.doi.org/10.1143/PTP.48.2187
http://dx.doi.org/10.1143/PTP.48.2187
http://dx.doi.org/10.1143/PTP.48.2187
http://dx.doi.org/10.1143/PTP.48.2187
http://dx.doi.org/10.1103/PhysRevB.43.3215
http://dx.doi.org/10.1103/PhysRevB.43.3215
http://dx.doi.org/10.1103/PhysRevB.43.3215
http://dx.doi.org/10.1103/PhysRevB.43.3215
http://dx.doi.org/10.1103/PhysRevB.55.5816
http://dx.doi.org/10.1103/PhysRevB.55.5816
http://dx.doi.org/10.1103/PhysRevB.55.5816
http://dx.doi.org/10.1103/PhysRevB.55.5816
http://dx.doi.org/10.1103/PhysRevB.57.R8091
http://dx.doi.org/10.1103/PhysRevB.57.R8091
http://dx.doi.org/10.1103/PhysRevB.57.R8091
http://dx.doi.org/10.1103/PhysRevB.57.R8091
http://dx.doi.org/10.1103/PhysRev.150.327
http://dx.doi.org/10.1103/PhysRev.150.327
http://dx.doi.org/10.1103/PhysRev.150.327
http://dx.doi.org/10.1103/PhysRev.150.327
http://dx.doi.org/10.1103/PhysRev.151.258
http://dx.doi.org/10.1103/PhysRev.151.258
http://dx.doi.org/10.1103/PhysRev.151.258
http://dx.doi.org/10.1103/PhysRevLett.84.5399
http://dx.doi.org/10.1103/PhysRevLett.84.5399
http://dx.doi.org/10.1103/PhysRevLett.84.5399
http://dx.doi.org/10.1103/PhysRevLett.84.5399
http://dx.doi.org/10.1103/PhysRevLett.87.206407
http://dx.doi.org/10.1103/PhysRevLett.87.206407
http://dx.doi.org/10.1103/PhysRevLett.87.206407
http://dx.doi.org/10.1103/PhysRevLett.87.206407
http://dx.doi.org/10.1103/PhysRevLett.101.247202
http://dx.doi.org/10.1103/PhysRevLett.101.247202
http://dx.doi.org/10.1103/PhysRevLett.101.247202
http://dx.doi.org/10.1103/PhysRevLett.101.247202
http://dx.doi.org/10.1103/PhysRevB.80.220411
http://dx.doi.org/10.1103/PhysRevB.80.220411
http://dx.doi.org/10.1103/PhysRevB.80.220411
http://dx.doi.org/10.1103/PhysRevB.80.220411

C. PSAROUDAKI et al.

[24] P. Bouillot, C. Kollath, A. M. Lauchli, M. Zvonarev, B.
Thielemann, C. Riiegg, E. Orignac, R. Citro, M. Klanjsek,
C. Berthier, M. Horvati¢, and T. Giamarchi, Phys. Rev. B 83,
054407 (2011).

[25] Y. Maeda, C. Hotta, and M. Oshikawa, Phys. Rev. Lett. 99,
057205 (2007).

[26] A. Paduan-Filho, X. Gratens, and N. F. Oliveira, Jr., Phys. Rev.
B 69, 020405 (2004).

[27] F. Weickert, R. Kiichler, A. Steppke, L. Pedrero, M. Nicklas,
M. Brando, F. Steglich, M. Jaime, V. S. Zapf, A. Paduan-Filho,
K. A. Al-Hassanieh, C. D. Batista, and P. Sengupta, Phys. Rev.
B 85, 184408 (2012).

[28] N. Papanicolaou and P. Spathis, J. Phys. C: Solid State Phys. 20,
L783 (1987).

[29] Y. Kohama, A. V. Sologubenko, N. R. Dilley, V. S. Zapf, M.
Jaime, J. A. Mydosh, A. Paduan-Filho, K. A. Al-Hassanieh,
P. Sengupta, S. Gangadharaiah, A. L. Chernyshev, and C. D.
Batista, Phys. Rev. Lett. 106, 037203 (2011).

[30] G. D. Mahan, Many-Particle Physics, 3rd ed. (Kluwer Aca-
demic/Plenum Publishers, New York, 2000), pp. 177-181.

[31] K. Sakai and A. Klimper, J. Phys. Soc. Jpn. 574, 196 (2005).

[32] K. Louis and C. Gros, Phys. Rev. B 67, 224410 (2003).

[33] F. Heidrich-Meisner, A. Honecker, and W. Brenig, Phys. Rev. B
71, 184415 (2005).

[34] J. Karadamoglou and X. Zotos, Phys. Rev. Lett. 93, 177203
(2004).

[35] X. Zotos, F. Naef, and P. Prelovsek, Phys. Rev. B 55, 11029
(1997).

[36] M. W. Long, P. Prelovsek, S. El Shawish, J. Karadamoglou, and
X. Zotos, Phys. Rev. B 68, 235106 (2003).

PHYSICAL REVIEW B 89, 224418 (2014)

[37] F. Naef and X. Zotos, J. Phys.: Condens. Matter 10, L183
(1998).

[38] X. Zotos, Phys. Rev. Lett. 82, 1764 (1999).

[39] X. F. Sun, W. Tao, X. M. Wang, and C. Fan, Phys. Rev. Lett.
102, 167202 (2009).

[40] S. Mukhopadhyay, M. Klanjsek, M. S. Grbi¢, R. Blinder,
H. Mayaftre, C. Berthier, M. Horvati¢, M. A. Continentino,
A. Paduan-Filho, B. Chiari, and O. Piovesana, Phys. Rev. Lett.
109, 177206 (2012).

[41] O. Chiatti, A. Sytcheva, J. Wosnitza, S. Zherlitsyn, A. A.
Zvyagin, V. S. Zapf, M. Jaime, and A. Paduan-Filho, Phys.
Rev. B 78, 094406 (2008).

[42] S. A. Zvyagin, J. Wosnitza, A. K. Kolezhuk, V. S. Zapf,
M. Jaime, A. Paduan-Filho, V. N. Glazkov, S. S. Sosin, and
A. 1. Smirnov, Phys. Rev. B 77, 092413 (2008).

[43] N. Kitanine, J. M. Maillet, and V. Terras, Nucl. Phys. B 554,
647 (1999).

[44] J.S. Caux, R. Hagemans, and J. M. Maillet, J. Stat. Mech. (2005)
P09003.

[45] A. A. Ovchinnikov, Phys. Lett. A 377, 3067 (2013).

[46] R.J. Baxter, J. Stat. Phys. 108, 1 (2002).

[47] S. Cox, R. D. McDonald, M. Armanious, P. Sengupta, and
A. Paduan-Filho, Phys. Rev. Lett. 101, 087602 (2008).

[48] M. Oshikawa and I. Affleck, Phys. Rev. Lett. 82, 5136 (1999);
Phys. Rev. B 65, 134410 (2002); Y. Maeda, K. Sakai, and
M. Oshikawa, Phys. Rev. Lett. 95, 037602 (2005); M. Brock-
mann, F. Gohmann, M. Karbach, A. Klimper, and A. Weisse,
ibid. 107, 017202 (2011).

[49] Y. Maeda and M. Oshikawa, Phys. Rev. B 67, 224424
(2003).

224418-12


http://dx.doi.org/10.1103/PhysRevB.83.054407
http://dx.doi.org/10.1103/PhysRevB.83.054407
http://dx.doi.org/10.1103/PhysRevB.83.054407
http://dx.doi.org/10.1103/PhysRevB.83.054407
http://dx.doi.org/10.1103/PhysRevLett.99.057205
http://dx.doi.org/10.1103/PhysRevLett.99.057205
http://dx.doi.org/10.1103/PhysRevLett.99.057205
http://dx.doi.org/10.1103/PhysRevLett.99.057205
http://dx.doi.org/10.1103/PhysRevB.69.020405
http://dx.doi.org/10.1103/PhysRevB.69.020405
http://dx.doi.org/10.1103/PhysRevB.69.020405
http://dx.doi.org/10.1103/PhysRevB.69.020405
http://dx.doi.org/10.1103/PhysRevB.85.184408
http://dx.doi.org/10.1103/PhysRevB.85.184408
http://dx.doi.org/10.1103/PhysRevB.85.184408
http://dx.doi.org/10.1103/PhysRevB.85.184408
http://dx.doi.org/10.1088/0022-3719/20/29/005
http://dx.doi.org/10.1088/0022-3719/20/29/005
http://dx.doi.org/10.1088/0022-3719/20/29/005
http://dx.doi.org/10.1088/0022-3719/20/29/005
http://dx.doi.org/10.1103/PhysRevLett.106.037203
http://dx.doi.org/10.1103/PhysRevLett.106.037203
http://dx.doi.org/10.1103/PhysRevLett.106.037203
http://dx.doi.org/10.1103/PhysRevLett.106.037203
http://dx.doi.org/10.1143/JPSJS.74S.196
http://dx.doi.org/10.1143/JPSJS.74S.196
http://dx.doi.org/10.1143/JPSJS.74S.196
http://dx.doi.org/10.1143/JPSJS.74S.196
http://dx.doi.org/10.1103/PhysRevB.67.224410
http://dx.doi.org/10.1103/PhysRevB.67.224410
http://dx.doi.org/10.1103/PhysRevB.67.224410
http://dx.doi.org/10.1103/PhysRevB.67.224410
http://dx.doi.org/10.1103/PhysRevB.71.184415
http://dx.doi.org/10.1103/PhysRevB.71.184415
http://dx.doi.org/10.1103/PhysRevB.71.184415
http://dx.doi.org/10.1103/PhysRevB.71.184415
http://dx.doi.org/10.1103/PhysRevLett.93.177203
http://dx.doi.org/10.1103/PhysRevLett.93.177203
http://dx.doi.org/10.1103/PhysRevLett.93.177203
http://dx.doi.org/10.1103/PhysRevLett.93.177203
http://dx.doi.org/10.1103/PhysRevB.55.11029
http://dx.doi.org/10.1103/PhysRevB.55.11029
http://dx.doi.org/10.1103/PhysRevB.55.11029
http://dx.doi.org/10.1103/PhysRevB.55.11029
http://dx.doi.org/10.1103/PhysRevB.68.235106
http://dx.doi.org/10.1103/PhysRevB.68.235106
http://dx.doi.org/10.1103/PhysRevB.68.235106
http://dx.doi.org/10.1103/PhysRevB.68.235106
http://dx.doi.org/10.1088/0953-8984/10/12/001
http://dx.doi.org/10.1088/0953-8984/10/12/001
http://dx.doi.org/10.1088/0953-8984/10/12/001
http://dx.doi.org/10.1088/0953-8984/10/12/001
http://dx.doi.org/10.1103/PhysRevLett.82.1764
http://dx.doi.org/10.1103/PhysRevLett.82.1764
http://dx.doi.org/10.1103/PhysRevLett.82.1764
http://dx.doi.org/10.1103/PhysRevLett.82.1764
http://dx.doi.org/10.1103/PhysRevLett.102.167202
http://dx.doi.org/10.1103/PhysRevLett.102.167202
http://dx.doi.org/10.1103/PhysRevLett.102.167202
http://dx.doi.org/10.1103/PhysRevLett.102.167202
http://dx.doi.org/10.1103/PhysRevLett.109.177206
http://dx.doi.org/10.1103/PhysRevLett.109.177206
http://dx.doi.org/10.1103/PhysRevLett.109.177206
http://dx.doi.org/10.1103/PhysRevLett.109.177206
http://dx.doi.org/10.1103/PhysRevB.78.094406
http://dx.doi.org/10.1103/PhysRevB.78.094406
http://dx.doi.org/10.1103/PhysRevB.78.094406
http://dx.doi.org/10.1103/PhysRevB.78.094406
http://dx.doi.org/10.1103/PhysRevB.77.092413
http://dx.doi.org/10.1103/PhysRevB.77.092413
http://dx.doi.org/10.1103/PhysRevB.77.092413
http://dx.doi.org/10.1103/PhysRevB.77.092413
http://dx.doi.org/10.1016/S0550-3213(99)00295-3
http://dx.doi.org/10.1016/S0550-3213(99)00295-3
http://dx.doi.org/10.1016/S0550-3213(99)00295-3
http://dx.doi.org/10.1016/S0550-3213(99)00295-3
http://dx.doi.org/10.1088/1742-5468/2005/09/P09003
http://dx.doi.org/10.1088/1742-5468/2005/09/P09003
http://dx.doi.org/10.1088/1742-5468/2005/09/P09003
http://dx.doi.org/10.1016/j.physleta.2013.10.009
http://dx.doi.org/10.1016/j.physleta.2013.10.009
http://dx.doi.org/10.1016/j.physleta.2013.10.009
http://dx.doi.org/10.1016/j.physleta.2013.10.009
http://dx.doi.org/10.1023/A:1015437118218
http://dx.doi.org/10.1023/A:1015437118218
http://dx.doi.org/10.1023/A:1015437118218
http://dx.doi.org/10.1023/A:1015437118218
http://dx.doi.org/10.1103/PhysRevLett.101.087602
http://dx.doi.org/10.1103/PhysRevLett.101.087602
http://dx.doi.org/10.1103/PhysRevLett.101.087602
http://dx.doi.org/10.1103/PhysRevLett.101.087602
http://dx.doi.org/10.1103/PhysRevLett.82.5136
http://dx.doi.org/10.1103/PhysRevLett.82.5136
http://dx.doi.org/10.1103/PhysRevLett.82.5136
http://dx.doi.org/10.1103/PhysRevLett.82.5136
http://dx.doi.org/10.1103/PhysRevB.65.134410
http://dx.doi.org/10.1103/PhysRevB.65.134410
http://dx.doi.org/10.1103/PhysRevB.65.134410
http://dx.doi.org/10.1103/PhysRevB.65.134410
http://dx.doi.org/10.1103/PhysRevLett.95.037602
http://dx.doi.org/10.1103/PhysRevLett.95.037602
http://dx.doi.org/10.1103/PhysRevLett.95.037602
http://dx.doi.org/10.1103/PhysRevLett.95.037602
http://dx.doi.org/10.1103/PhysRevLett.107.017202
http://dx.doi.org/10.1103/PhysRevLett.107.017202
http://dx.doi.org/10.1103/PhysRevLett.107.017202
http://dx.doi.org/10.1103/PhysRevLett.107.017202
http://dx.doi.org/10.1103/PhysRevB.67.224424
http://dx.doi.org/10.1103/PhysRevB.67.224424
http://dx.doi.org/10.1103/PhysRevB.67.224424
http://dx.doi.org/10.1103/PhysRevB.67.224424



