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Role of dimensionality in spontaneous magnon decay: Easy-plane ferromagnet
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We calculate the magnon lifetime in an easy-plane ferromagnet on a tetragonal lattice in a transverse magnetic
field. At zero temperature magnons are unstable with respect to spontaneous decay into two other magnons.
Varying the ratio of intrachain to interchain exchanges in this model, we consider the effect of dimensionality
on spontaneous magnon decay. The strongest magnon damping is found in the quasi-one-dimensional case for
momenta near the Brillouin zone boundary. The sign of a weak interchain coupling has little effect on the magnon
decay rate. The obtained theoretical results suggest the possibility of an experimental observation of spontaneous
magnon decay in a quasi-one-dimensional ferromagnet CsNiF3. We also find an interesting enhancement of the
magnon decay rate for a three-dimensional ferromagnet. The effect is present only for the nearest-neighbor model
and is related to an effective dimensionality reduction in the two-magnon continuum.
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I. INTRODUCTION

Magnons are commonly viewed as bosonic quasiparticles
with integer spin Sz = 1. This is certainly true for isotropic
ferromagnets, which were originally treated by Bloch in his
seminal paper [1]. In the isotropic case the total spin (magneti-
zation) is conserved and the magnon interaction in an isotropic
ferromagnet amounts to simple particle-particle scattering or
four-magnon processes [2,3]. In the presence of magnetic
anisotropy, e.g., dipolar or single ion, the total spin is no longer
conserved and definite spin of a magnon ceases to exist as well.
As a result, additional three-particle interaction terms appear in
the magnon Hamiltonian [2,4]. Spin waves in antiferromagnets
have no definite value of Sz even in the isotropic case since the
quantum ground state is now a superposition of states with dif-
ferent total spins [5]. Still, three-magnon processes appear only
in noncollinear antiferromagnetic structures with completely
broken spin-rotational symmetry [6,7], whereas magnon-
magnon interactions in collinear antiferromagnets are repre-
sented by particle nonconserving four-magnon processes [3,8].

The special role of three-magnon dipolar processes for spin
relaxation in ferromagnets was recognized already in the early
works [4,9,10]. Besides that, three-particle processes may
produce a spectacular quantum effect, spontaneous magnon
decay, which leads to a finite magnon lifetime even at T = 0
[11]. Theoretical predictions of spontaneous magnon decay
were made for dipolar ferromagnets [12–14], for easy-plane
ferromagnets [15,16], and various noncollinear antiferromag-
nets (see the literature cited in Ref. [11]). At the moment
there are only a few experimental evidences of spontaneous
magnon decay [17–20]. Therefore, a natural question to ask
theoretically is what are the physical conditions that can
enhance the magnon decay rate. In the present paper we
focus on the role of low dimensionality in magnon decay
and specifically consider whether the decay rate is enhanced
in the quasi-one-dimensional (1D) geometry. This question
was previously studied in the context of quantum disordered
magnets [21], but needs to be investigated for ordered magnetic

systems. Our study is motivated, in part, by a prominent
example of the quasi-1D easy-plane ferromagnet CsNiF3

[22]. We investigate the feasibility of observing spontaneous
magnon decays in inelastic neutron-scattering experiments on
this material. The paper is organized as follows. In Sec. II
we formulate the spin model and give the necessary details
of 1/S spin-wave expansion. Sections III and IV are devoted
to the discussion of magnon damping in the quasi-1D and the
3D cases, respectively. Section V considers the case of weak
antiferromagnetic coupling between ferromagnetic chains, and
Sec. VI gives our conclusions.

II. MODEL

We consider a Heisenberg ferromagnet with the easy-plane
single-ion anisotropy described by the spin Hamiltonian

Ĥ = −J‖
∑

i

Si · Si+1 − J⊥
∑
〈ij〉

Si · Sj

+D
∑

i

(
Sz

i

)2 − H
∑

i

Sz
i . (1)

The nearest-neighbor exchange interactions consist of cou-
pling J‖ along chains parallel to the z axis and interchain
coupling J⊥. Without loss of generality, we consider a square-
type arrangement of chains in the x-y plane (see Fig. 1). The
choice J‖ � J⊥ corresponds to a 3D ferromagnet, J‖ � J⊥
to a quasi-1D magnet, whereas for J‖ � J⊥ a quasi-2D case
is recovered. The quasi-1D ferromagnetic material CsNiF3

has a significant easy-plane anisotropy with D ≈ 0.32J‖ [22].
Motivated by this experimental example we fix in the following
D ≡ 0.3J , where J is the largest of the two exchange constants
J = max(J‖,J⊥). Since we are interested in the behavior of
high-energy magnons with εk ∼ J‖ we are justified to neglect
the much weaker dipolar interactions in the Hamiltonian (1).

We investigate the transverse field geometry with an
external field applied along the hard axis and the ferromagnetic
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FIG. 1. (Color online) Sketch of the unit cell of a tetragonal
ferromagnet with nearest-neighbor exchange interactions (left panel)
and its Brillouin zone with notations for high symmetry points (right
panel).

magnetization tilted from the easy plane by angle θ :

sin θ = H

Hc

, Hc = 2DS. (2)

Above the critical field Hc the ordered moments become
completely aligned with the hard axis. Note that the critical
field does not depend on the ferromagnetic exchanges in (1).
As a result, the strength of the three-magnon vertex remains
unchanged under variations of J⊥/J‖ [see Eq. (5) below], and
the magnon damping at fixed H solely depends on the magnon
dispersion εk and its dimensionality.

To study excitations in the model (1) we use the transforma-
tion from spins to bosons introduced by Holstein and Primakoff
[2]. As usual, the Holstein-Primakoff transformation is applied
in the local frame such that the local z axis is collinear
with a spin on a given site. After performing a few standard
steps [11,16], including an expansion of the square roots
and subsequent Fourier and Bogolyubov transformations of
the magnon operators, one obtains a spin-wave Hamiltonian
structured in powers of 1/S:

Ĥ =
∑

k

εkb
†
kbk + 1

2

∑
k,q

Vk,q[b†qb
†
k−qbk + H.c.] + · · · . (3)

Here the magnon energy is εk = O(S), the three-particle
(cubic) vertex responsible for spontaneous decays is Vk,q =
O(S1/2), and the ellipsis stand for the higher-order terms.

An explicit expression for the harmonic magnon energy is

εk = 2S
√

Ak(Ak + D cos2 θ ), γk = 1
2 (cos kx + cos ky),

Ak = J‖(1 − cos kz) + 2J⊥(1 − γk). (4)

The decay vertex is given by

Vk,q = D

√
S

2
sin 2θ (gk,q,q′ + fq,q′,k + fq′,q,k), (5)

where q′ = k − q, f1,2,3 = (u1 + v1)(u2u3 + v2v3), g1,2,3 =
(u1 + v1)(u2v3 + v2u3), and uk,vk are the Bogolyubov coeffi-
cients:

u2
k − v2

k = 1, 2ukvk = −DS cos2 θ/εk.

k

k − q

q

V ∗
k,qVk,q

k

FIG. 2. The self-energy diagram corresponding to the considered
two-magnon decay process.

Note that the vertex (5) has a nonmonotonous dependence
on the magnetic field, Vk,q ∝ H

√
H 2

c − H 2, resulting in the
strongest amplitude for magnon decay at H/Hc = 1/

√
2.

For a weakly interacting magnon gas, the magnon decay
rate is given by the imaginary part of the self-energy diagram
shown in Fig. 2 and coincides with the Fermi’s golden-rule
expression:

�k = π

2

∑
q

V 2
k,qδ(εk − εq − εk−q). (6)

The two-magnon decay processes for easy-plane ferro-
magnets were theoretically studied in Refs. [15,16]. Their
appearance is determined by two conditions [11]: (i) the
presence of the cubic vertex in the magnon Hamiltonian
(3), which is a direct consequence of the fully broken spin-
rotational symmetry for a state with tilted magnetization, and
(ii) fulfillment of the energy conservation condition for the
two-magnon decays,

εk = εq + εk−q, (7)

where the harmonic magnon energy (4) can be safely used due
to the smallness of the quantum effects in ferromagnets. The
same kinematic conditions allow also three-magnon decays,
which are present in an easy-plane ferromagnet already in
zero field [16]. The amplitude of these processes is, however,
rather small as they correspond to higher-order 1/S terms of
the spin-wave expansion and we shall not consider them in the
following.

Since the cubic vertex (5) depends only on D and H ,
the effect of dimensionality on the magnon decay rate (6)
in anisotropic ferromagnets is present only via the varying
dispersion εk. The two-dimensional case was investigated in
detail in our previous work [16]. In the following sections we
calculate the magnon decay rate (6) for quasi-1D and 3D cases.

III. QUASI-ONE-DIMENSIONAL CASE

We begin the analysis of the magnon decay for J‖ � J⊥
by treating analytically the case of long-wavelength magnons.
In this limit the decay rate can be calculated perturbatively
because of the smallness of the interaction among low-energy
excitations and due to the reduction of the phase-space volume
available for decay processes. Note that at small momenta
k,q � 1, the decay vertex (5) has the standard “hydrody-
namic” form Vk,q ∝ √

kqq ′. As a result, the long-wavelength
excitations exhibit a usual 3D asymptote �k ∝ k5 for the
decay rate [11], because the dispersion εk is eventually three
dimensional. Therefore, the proper question to be addressed
analytically is how the coefficient in the k5 law depends on a
small parameter J⊥/J‖.
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An analytical derivation of the low-energy asymptote for �k
closely follows a similar computation for 2D or 3D magnetic
systems with three-particle vertices [11]. Below we present
only the essential steps. Expanding (4) in small k, one obtains

εk ≈ c

√
k2
z + jk2

⊥
[
1 + αk2

z

]
,

c = S cos θ
√

2DJ‖, α = J‖/(4D cos2 θ ) − 1/24, (8)

where j = J⊥/J‖ and k2
⊥ = k2

x + k2
y . Strictly speaking, the

above expression for α loses its validity for kz � k⊥. However,
as we shall see shortly, the region of interest in the quasi-1D
case is k⊥ � kz, which justifies Eq. (8).

Selecting the momentum of an incident magnon on the z

axis, k = (0,0,k), we obtain in the same approximation

εk − εq − εk−q ≈ − cjk

2qz(k − qz)

(
q2

⊥ − q2
0

)
, (9)

where q2
0 = 6αq2

z (k − qz)2/j . Substituting (9) into the expres-
sion for the decay rate (6) and performing a separate integration
of q⊥ and qz, we obtain the following long-wavelength
asymptote in the quasi-1D case,

�k = a
J 2

‖
J⊥

tan2 θk5, (10)

where a dimensionless constant is a ∼ 10−3 and θ is the
canting angle (2). In a 3D case for J‖ = J⊥ a similar
computation yields [15]

�k = 3J‖
160π

tan2 θk5. (11)

Thus, in the quasi-1D case the damping of acoustic magnons
is inversely proportional to a small J⊥ and is, therefore,
parametrically enhanced compared to damping of acoustic
magnons in 3D. We have verified such an enhancement by
a direct numerical integration of Eq. (6).

Figure 3 shows the magnon decay rate (6) evaluated
numerically at a representative field value H/Hc = 0.75 in
the �Z direction. The curves correspond to three J‖/J⊥
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FIG. 3. (Color online) Decay rate for magnons in a quasi-1D
ferromagnet for momenta along the �Z direction for different J‖/J⊥
(legend) and H/Hc = 0.75. The inset shows the field dependence of
the peak in �k near the Z point.

ratios portraying crossover from a strong J‖/J⊥ = 100 to a
weak J‖/J⊥ = 10 quasi-one-dimensionality. The two curves
corresponding to J‖/J⊥ = 50,100 exhibit large peaks in �k
near the Brillouin zone boundary, which originate from a
1D van Hove singularity in the spectrum. A more detailed
structure of this peak in the inset illustrates the role of 3D
coupling, which cuts off the square-root divergence of the
peaks and restores 3D van Hove singularities at the boundary
of the decay region and for the saddle points in the continuum.
Similar 3D van Hove singularities are also prominent for small
momenta towards the � point. Importantly, the height of the
peak in �k near the Z point decreases rapidly as the magnon
dispersion becomes increasingly 3D. This demonstrates that
the decays along the �Z direction in the Brillouin zone are
most prominent for the quasi-1D case.

The magnetic field dependence of the magnon damping in
the region, where �k is largest, is illustrated in the inset of
Fig. 3. One can see a nonmonotonous field dependence of
the peak height: �k is smallest at H/Hc = 0.5, it is largest at
H/Hc = 0.75, while it again goes down at H/Hc = 0.9. Such
a behavior is related to the field dependence of the decay vertex
(5), which is zero at H = 0 and H = Hc and has a maximum
at H/Hc = 1/

√
2 ≈ 0.707.

IV. THREE-DIMENSIONAL CASE

Spontaneous magnon decays for a 2D easy-plane ferro-
magnet in a transverse magnetic field were studied in our
previous work [16]. In particular, the decay rate �k exhibits
logarithmic peaks, which are determined by saddle-point
van Hove singularities in the two-magnon density of states.
Changing the type of anisotropy, exchange versus single ion,
has no significant effect on the decay dynamics. Taking into
account 1D (Sec. III) and 2D results [16], one can speculate
that the magnon decay in 3D shows no major enhancement and
thus should be small compared to low dimensional magnets.

To study the magnon damping in 3D we fix the exchange
ratio to J‖/J⊥ = 1 as an example. It is instructive to consider
in this case magnons with momenta belonging to the cubic
diagonal, the �A direction. Numerical results for �k along this
axis look very similar to Fig. 3, including a surprisingly high
peak near the A point. A zoom into this region is shown in Fig. 4
for different values of an applied magnetic field. The overall
shape of the numerical data is qualitatively similar to the results
shown in the inset of Fig. 3 for the quasi-1D case. The peak in
�k is most prominent for H/Hc > 0.75, while at smaller fields
it is much less pronounced. The arrows show the magnon decay
boundaries, obtained from the kinematic condition εk = 2εk/2

(see further details in Ref. [11]). The above fact actually
means that the predominant decay channel for a magnon in
the vicinity of the damping peak is a decay into two magnons
with equal momenta lying on the same cubic diagonal. With
increasing H the decay region extends further towards the A

point, k0 = (π,π,π ), and the two magnons emitted in a decay
process become close to k0/2. A remarkable property of the
nearest-neighbor magnon dispersion (4) near k0/2 is that εk is
almost perfectly flat, with the exception of a few special direc-
tions. Such an effective dimensionality reduction is responsible
for the enhanced two-magnon density of states (DOS), which
in turn leads to large values of the magnon decay rate (6).
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FIG. 4. (Color online) Decay rate for magnons in a 3D ferromag-
net (J⊥/J‖ = 1) with momenta along the �A direction for different
magnetic fields (figures near curves). Vertical arrows mark the
magnon decay boundaries k∗, obtained from the kinematic condition
εk = 2εk/2.

To check the above scenario for the magnon damping
enhancement in 3D case we calculate the two-magnon DOS:

N2(k,ω) =
∑

q

δ(ω − εk/2+q − εk/2−q). (12)

At H = Hc the DOS exhibits a delta peak for k = k0. Indeed,
in that case the magnon energy (4) is given by a sum of the
cosine harmonics. For k = k0 one has cos(k0/2 + q) → sin q

and the sum of two magnon energies on the right-hand side of
(12) yields a constant. Hence,

N2(k0,ω) = δ
(
ω − εk0

)
, εk0 = 2J0S, (13)

where J0 = 2J‖ + 4J⊥. For H � Hc, we expand E(k0,q) =
εk0/2+q − εk0/2−q in small q as follows:

E(k0,q) ≈ 2S
√

J0JD

[
1 − a2

q
(JD − J0)2

2J 2
DJ 2

0

]
,

JD = J0 + 2D cos2 θ, aq = J‖qz + J⊥(qx + qy). (14)

The dependence of E(k0,q) on q enters only via a linear
combination aq (14). Thus, neglecting higher-order terms,
one finds an effective 1D dispersion of the decay surface
E(k0,q) = ω. As a result, an integration of the delta function
in Eq. (12) generates a conventional 1D square-root van Hove
singularity in the DOS:

N2(k0,ω) � 1

cos θ

√∣∣ω − 2εk0/2

∣∣ . (15)

At H = Hc (θ = π/2) the square-root peak transforms into
the delta peak discussed above. Note also that εk0 < 2εk0/2

for H < Hc with the equality (signifying a fulfillment of
the kinematic decay condition) reached only at H = Hc. The
above analytical results for DOS can be compared with the
direct numerical evaluation of (12) presented in Fig. 5.

For small departures from the k0 point, H < Hc, the two-
magnon energy E(k,q) acquires full dispersion on components
of q and the van Hove singularity (15) is smeared. Still, an

3.9 4 4.1 4.2
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FIG. 5. (Color online) The two-magnon density of states for
different values of a magnetic field (figures near curves) and
J‖/J⊥ = 2. The curve for H/Hc = 0.9 and k0 = (3,3,3) is shown
for comparison.

enhanced DOS at the former peak position survives for a range
of values of k. As an illustration, Fig. 5 shows the numerical
result for k = (3,3,3) at H = 0.9Hc. A remnant peak in DOS
(mind the logarithmic scale in Fig. 5) leads to a stronger decay
rate �k once the magnetic field approaches Hc and magnons
with momenta close to k0 become unstable.

V. ANTIFERROMAGNETIC INTERCHAIN COUPLING

As was mentioned in the Introduction, our study is in a
large part motivated by the quasi-1D ferromagnet CsNiF3 [22].
Magnetic Ni2+ ions (S = 1) are arranged in this material in
a hexagonal lattice with a ferromagnetic exchange J‖ ≈ 24 K
along the c axis and an antiferromagnetic interchain coupling
|J⊥/J‖| ∼ 10−2. The strength of the single-ion anisotropy
in CsNiF3 is D ≈ 8 K. The antiferromagnetic transition
in CsNiF3 takes place at TN = 2.5 K, however, magnetic
moments on adjacent chains do not form the 120◦ structure
with the propagation wave vector (1/3,1/3,0) expected for
a triangular geometry, but rather order collinearly with Q =
(1/2,0,0) [23]. The collinear order has been explained by
a competition between the antiferromagnetic exchange and
the long-range dipolar interactions [24]. In this section we
consider the effect of the sign of an interchain coupling on the
magnon decay in quasi-1D chains. We shall use a simplified
model (1) with J⊥ < 0 assuming a tetragonal arrangement
of chains and neglecting dipolar interactions. In this model,
spin chains are still ordered ferromagnetically while an
ordering between chains is described by the wave vector Q =
(π,π,0) and corresponds to a two-sublattice antiferromagnetic
structure.

We again assume that an external magnetic field is oriented
along the hard axis. Theoretical calculations in this case
become very similar to the spin-wave theory for a Heisen-
berg square-lattice antiferromagnet [7,25]. The two magnetic
sublattices tilt from the easy plane by an angle θ ,

sin θ = H

2S(D + 4|J⊥|) . (16)
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FIG. 6. (Color online) Comparison of magnon decay rates for
ferromagnetic (FM, J⊥ > 0, solid line) and antiferromagnetic (AFM,
J⊥ < 0, dashed line) for H/Hc = 0.8. Left column: �Z direction;
right column: MA direction. The ratios |J⊥/J‖| are 10−3 (upper
panels), 10−2 (middle panels), and 10−1 (lower panels).

In contrast to the ferromagnetic case (2), the critical field Hc =
2S(D + 4|J⊥|) depends on an antiferromagnetic exchange
J⊥. After performing a standard spin-wave calculation (see
Sec. II), we obtain the magnon energy

εk = 2S
√

Ak(Ak + D cos2 θ − 4|J⊥|γk cos2 θ ),

Ak = J‖(1 − cos kz) + 2|J⊥|(1 + γk). (17)

Due to a staggered canting of spins in the antiferromagnetic
structure, the three-particle term in (3) now contains q′ = k −
q + Q instead of k − q. The explicit expression for the decay
vertex is

Vk,q =
√

2S sin θ cos θ (gk,q,q′ + fq,q′,k + fq′,q,k), (18)

where f1,2,3 = λ1,2,3(u1 + v1)(u2u3 + v2v3), g1,2,3 =
λ1,2,3(u1 + v1)(u2v3 + v2u3), and λk = D − 4J⊥γk.

The magnon decay rates for ferromagnetic (J⊥ > 0) and an-
tiferromagnetic (J⊥ < 0) signs of the interchain coupling are
compared in Fig. 6. The presented results illustrate a crossover
from an extreme |J⊥/J‖| = 0.001 to a moderate |J⊥/J‖| = 0.1
quasi-one-dimensionality. Plots in the left column show �k for
momenta on the �Z line, while the right column corresponds
to the MA cut, which includes the antiferromagnetic vector
Q = (π,π,0) (see Fig. 1 for the notations). For a very weak
interchain coupling |J⊥/J‖| = 10−3, there is no significant
difference in the magnon damping �k between the two signs
of J⊥ and also between the two lines. Overall, �k exhibits the
same behavior as the results shown in Fig. 3 calculated for
different values of the magnetic field. In particular, high peaks
are present near the BZ boundary for both lines, �Z and MA.

Some differences start to develop for |J⊥/J‖| ∼ 0.01
and become quite significant at |J⊥/J‖| ∼ 0.1. The magnon
dispersion between chains becomes more substantial and plays
a more prominent role in the energy conservation. As a result,
for the ferromagnetic interchain coupling J⊥ > 0, a stronger
magnon damping with two characteristic peaks is present for
magnons on the MA line, whereas �k on the �Z line is

significantly smaller for J⊥/J‖ = 0.1. For the antiferromag-
netic interchain coupling J⊥ < 0, one can observe an opposite
tendency. In fact, there is a remarkable mirror symmetry be-
tween the plots on the left and on the right with a simultaneous
sign change of J⊥. It is related to the fact that the position of the
acoustic magnon branch alters its place between the �Z and
MA lines with the sign reversal. Overall, the most favorable
conditions for observing spontaneous magnon decay, i.e., large
�k for an extended region in the momentum space, are found
for |J⊥/J‖| = 0.01, a value close to the exchange ratio in
CsNiF3.

VI. CONCLUSIONS

In summary, magnetic excitations in an easy-plane fer-
romagnet placed in a transverse magnetic field become
intrinsically damped at T = 0 due to two-magnon decays
[15,16]. We have studied the effect of dimensionality on the
magnon decay rate for such an ordered magnetic system. For
weak interchain coupling the decay rate �k is strongest in
the vicinity of the Brillouin zone boundary exhibiting a peak
�k ∼ 0.4–0.7J‖. Such a peak is related to the 1D-like van
Hove singularity in the two-magnon density of states and
its height needs to be compared to the characteristic energy
of magnons at the Brillouin zone boundary εk = 4J‖S. For
S = 1/2 and S = 1 the decay rate is a sizable fraction of
the magnon energy. Therefore, spontaneous magnon decays
can be observed in the neutron-scattering experiments as a
significant line broadening of the zone boundary magnons.
In particular, our results for a model system (1) with ferro-
magnetic spin chains, which are weakly coupled antiferro-
magnetically, indicate that spontaneous magnon decay should
be prominent in the quasi-1D easy-plane ferromagnet CsNiF3

[22].
Somewhat surprisingly, we have found a large decay rate

�k also in a 3D case, J⊥ ∼ J‖, for certain magnon momenta k.
The increase in �k is again rooted in the two-magnon density
of states N2(k,ω) [see Eq. (12)], which develops a peak due to
a very weak q dependence of the two-magnon energy εk/2+q +
εk/2−q. The latter property is a consequence of the exchange
coupling only between the nearest neighbors. Being a model
assumption, this property is nevertheless satisfied with good
accuracy in many magnetic insulators.

Overall, we conclude that lower dimensionality has a
pronounced effect on spontaneous magnon decay by means
of an enhanced two-magnon DOS. In the quasi-1D limit,
the van Hove singularities in the DOS become largest and
correspond to a strong damping of magnons in the vicinity
of the decay threshold boundary. Thus, a small shift in the k
space may lead to striking changes in the behavior of the
corresponding magnon modes. Our theoretical results call
for inelastic neutron-scattering measurements of the magnon
lifetime in spin-chain materials. Materials with ferromagnetic
chains are especially suitable for such experiments since the
required magnetic fields H ∼ max{D,J⊥} can be rather small
and the effect of magnon decay can be clearly distinguished
from the spinon physics, which is present for antiferromagnetic
chains.
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[9] E. Schlömann, Phys. Rev. 121, 1312 (1961).

[10] M. Sparks, R. Loudon, and C. Kittel, Phys. Rev. 122, 791 (1961).
[11] M. E. Zhitomirsky and A. L. Chernyshev, Rev. Mod. Phys. 85,

219 (2013).
[12] V. I. Lymar and Yu. G. Rudoi, Theor. Math. Phys. 11, 376 (1972).
[13] A. V. Syromyatnikov, Phys. Rev. B 82, 024432 (2010).
[14] A. L. Chernyshev, Phys. Rev. B 86, 060401(R) (2012).
[15] V. G. Baryakhtar, A. I. Zhukov, and D. A. Yablonskii, Fiz. Tverd.

Tela 21, 776 (1979) ,[Sov. Phys. Solid State 21, 454 (1979)].

[16] V. A. Stephanovich and M. E. Zhitomirsky, Europhys. Lett. 95,
17007 (2011).

[17] M. B. Stone, I. A. Zaliznyak, T. Hong, C. L. Broholm, and D. H.
Reich, Nature (London) 440, 187 (2006).

[18] T. Masuda, S. Kitaoka, S. Takamizawa, N. Metoki, K. Kaneko,
K. C. Rule, K. Kiefer, H. Manaka, and H. Nojiri, Phys. Rev. B
81, 100402(R) (2010).

[19] H. Kurebayashi, O. Dzyapko, V. E. Demidov, D. Fang, A. J.
Ferguson, and S. O. Demokritov, Nat. Mater. 10, 660 (2011).

[20] J. Oh, M. D. Le, J. Jeong, J. H. Lee, H. Woo, W.-Y. Song, T. G.
Perring, W. J. L. Buyers, S.-W. Cheong, and J.-G. Park, Phys.
Rev. Lett. 111, 257202 (2013).

[21] M. E. Zhitomirsky, Phys. Rev. B 73, 100404(R) (2006).
[22] M. Steiner, J. Villain, and C. G. Windsor, Adv. Phys. 25, 87

(1976).
[23] M. Steiner and H. Dachs, Solid State Commun. 14, 841 (1974).
[24] M. Baehr, M. Winkelmann, P. Vorderwisch, M. Steiner, C. Pich,

and F. Schwabl, Phys. Rev. B 54, 12932 (1996).
[25] M. Mourigal, M. E. Zhitomirsky, and A. L. Chernyshev, Phys.

Rev. B 82, 144402 (2010).

224415-6

http://dx.doi.org/10.1007/BF01339661
http://dx.doi.org/10.1007/BF01339661
http://dx.doi.org/10.1007/BF01339661
http://dx.doi.org/10.1007/BF01339661
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRev.117.117
http://dx.doi.org/10.1103/PhysRev.117.117
http://dx.doi.org/10.1103/PhysRev.117.117
http://dx.doi.org/10.1103/PhysRev.117.117
http://dx.doi.org/10.1143/JPSJ.62.3277
http://dx.doi.org/10.1143/JPSJ.62.3277
http://dx.doi.org/10.1143/JPSJ.62.3277
http://dx.doi.org/10.1143/JPSJ.62.3277
http://dx.doi.org/10.1103/PhysRevLett.82.4536
http://dx.doi.org/10.1103/PhysRevLett.82.4536
http://dx.doi.org/10.1103/PhysRevLett.82.4536
http://dx.doi.org/10.1103/PhysRevLett.82.4536
http://dx.doi.org/10.1103/PhysRevB.3.961
http://dx.doi.org/10.1103/PhysRevB.3.961
http://dx.doi.org/10.1103/PhysRevB.3.961
http://dx.doi.org/10.1103/PhysRevB.3.961
http://dx.doi.org/10.1103/PhysRev.121.1312
http://dx.doi.org/10.1103/PhysRev.121.1312
http://dx.doi.org/10.1103/PhysRev.121.1312
http://dx.doi.org/10.1103/PhysRev.121.1312
http://dx.doi.org/10.1103/PhysRev.122.791
http://dx.doi.org/10.1103/PhysRev.122.791
http://dx.doi.org/10.1103/PhysRev.122.791
http://dx.doi.org/10.1103/PhysRev.122.791
http://dx.doi.org/10.1103/RevModPhys.85.219
http://dx.doi.org/10.1103/RevModPhys.85.219
http://dx.doi.org/10.1103/RevModPhys.85.219
http://dx.doi.org/10.1103/RevModPhys.85.219
http://dx.doi.org/10.1007/BF01028670
http://dx.doi.org/10.1007/BF01028670
http://dx.doi.org/10.1007/BF01028670
http://dx.doi.org/10.1007/BF01028670
http://dx.doi.org/10.1103/PhysRevB.82.024432
http://dx.doi.org/10.1103/PhysRevB.82.024432
http://dx.doi.org/10.1103/PhysRevB.82.024432
http://dx.doi.org/10.1103/PhysRevB.82.024432
http://dx.doi.org/10.1103/PhysRevB.86.060401
http://dx.doi.org/10.1103/PhysRevB.86.060401
http://dx.doi.org/10.1103/PhysRevB.86.060401
http://dx.doi.org/10.1103/PhysRevB.86.060401
http://dx.doi.org/10.1209/0295-5075/95/17007
http://dx.doi.org/10.1209/0295-5075/95/17007
http://dx.doi.org/10.1209/0295-5075/95/17007
http://dx.doi.org/10.1209/0295-5075/95/17007
http://dx.doi.org/10.1038/nature04593
http://dx.doi.org/10.1038/nature04593
http://dx.doi.org/10.1038/nature04593
http://dx.doi.org/10.1038/nature04593
http://dx.doi.org/10.1103/PhysRevB.81.100402
http://dx.doi.org/10.1103/PhysRevB.81.100402
http://dx.doi.org/10.1103/PhysRevB.81.100402
http://dx.doi.org/10.1103/PhysRevB.81.100402
http://dx.doi.org/10.1038/nmat3053
http://dx.doi.org/10.1038/nmat3053
http://dx.doi.org/10.1038/nmat3053
http://dx.doi.org/10.1038/nmat3053
http://dx.doi.org/10.1103/PhysRevLett.111.257202
http://dx.doi.org/10.1103/PhysRevLett.111.257202
http://dx.doi.org/10.1103/PhysRevLett.111.257202
http://dx.doi.org/10.1103/PhysRevLett.111.257202
http://dx.doi.org/10.1103/PhysRevB.73.100404
http://dx.doi.org/10.1103/PhysRevB.73.100404
http://dx.doi.org/10.1103/PhysRevB.73.100404
http://dx.doi.org/10.1103/PhysRevB.73.100404
http://dx.doi.org/10.1080/00018737600101372
http://dx.doi.org/10.1080/00018737600101372
http://dx.doi.org/10.1080/00018737600101372
http://dx.doi.org/10.1080/00018737600101372
http://dx.doi.org/10.1016/0038-1098(74)90147-1
http://dx.doi.org/10.1016/0038-1098(74)90147-1
http://dx.doi.org/10.1016/0038-1098(74)90147-1
http://dx.doi.org/10.1016/0038-1098(74)90147-1
http://dx.doi.org/10.1103/PhysRevB.54.12932
http://dx.doi.org/10.1103/PhysRevB.54.12932
http://dx.doi.org/10.1103/PhysRevB.54.12932
http://dx.doi.org/10.1103/PhysRevB.54.12932
http://dx.doi.org/10.1103/PhysRevB.82.144402
http://dx.doi.org/10.1103/PhysRevB.82.144402
http://dx.doi.org/10.1103/PhysRevB.82.144402
http://dx.doi.org/10.1103/PhysRevB.82.144402



