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Autocatalytic spin-crossover transition: Nonlinear dynamics induced by a photothermal instability
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This predictive theoretical contribution demonstrates that spin-crossover (SC) solids, under light in the regime
of the thermally induced hysteresis loop, contain all necessary ingredients for observing autocatalytic behaviors.
The sustained oscillations of the high-spin (HS) fraction emerge spontaneously as a result of a subtle balance
between the nonlinear relaxation of the HS fraction and the photothermal effect caused by a steady light excitation.
Here, we perform a detailed analytical study based on linear stability investigations to clarify the conditions of
emergence of such phenomena with respect to the system’s parameter in SC solids. Very accurate predictions
were obtained and confirmed by the numerical investigations. The treatment developed here should generate
experimental results on the nonlinear dynamics and self-induced oscillations in SC solids, and furthermore it
should open the perspective of future observations of dissipative structures and pattern formation in all kinds of
switchable molecular solids.
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I. INTRODUCTION

Nature shows a tremendous number of examples illustrating
nonlinear phenomena drawn from various subjects (mechan-
ics, hydrodynamics, chemistry, population dynamics, life
sciences, biology, etc.), demonstrating the universal reach of
these behaviors. Thus, one of the most profound and definitive
teachings of nonequilibrium thermodynamics relates to the
double and ambivalent role of the irreversible processes, which
destroy the order near the equilibrium and create the order
far from equilibrium. There is, however, no evidence for the
existence of a general extrema principle allowing us to predict
towards which state a nonequilibrium system is evolving.
Contrary to equilibrium states, the evolution of which is
moving towards a state minimizing a thermodynamical poten-
tial, nonequilibrium states bring elements of unpredictability,
even when the equations of motion are known. Indeed, when
the thermodynamical branch becomes unstable, several states
become accessible. Thus, under the influence of fluctuations or
other random factors, the system may evolve towards one state
among several others possible. Chemical reactions with proper
feedback mechanisms (caused by complex kinetics or thermal
effects) may, when maintained far from equilibrium, show
multiple stationary states. In particular, when the reactions
are coupled with transport processes (e.g., with diffusion),
spatial concentration structures may arise [1]. One of the
most interesting and intriguing behaviors observed in systems
maintained far from equilibrium is the autocatalytic reactions,
which have long fascinated physicists and chemists because
of their unique features [2]. The situation becomes much more
interesting in the presence of many chemical reactions, where
one or more reactions produce a catalyst for some of the other
reactions. Then the whole collection of constituents is called an
autocatalytic set [3]; these constituents have been identified as
important processes playing a key role in producing complex
or self-replicating molecules, which are required for the origin
of life on earth [4–6].
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From a general point of view, the buzzword “nonlinearity”
is the key feature of several exotic physical phenomena
carrying feedback in closed or open systems. Examples
are found in the oscillatory and patterned fronts emerging
around spontaneous instabilities in phase transitions, when
the reactant diffuses much more rapidly than the autocatalyst
or heat [7]. Such self-organizations also appear in cardiac
arrhythmias [8], where the synchronization of the cardiac
cells still attracts a lot of interest. Since the pioneering work
of Turing [9], it has been well known that systems showing
feedback in situations where not all species diffuse with the
same mobility may give rise to spontaneous pattern formation.
Interpreted in the language of phase transitions, systems in a
situation of instability with enough nonlinear character and
subject to several order parameters may show a spontaneous
self-organization. In particular, the formation of self-organized
localized structures may occur during the dynamics as a result
of the autocatalytic behavior. One common aspect of these
various features lie in their description with the three classes of
models based on reaction-diffusion (RD), Ginzburg-Landau,
and Swift-Hohenberg equations. Among these three classes,
RD equations were widely used to describe two diffusion
equations with source of reactants [10,11].

The source amplitude may increase linearly or nonlinearly
with the concentration of one component (activator) and
decreases with the other component (inhibitor). In waves
of exothermic reaction, the roles of activator and inhibitor
are played by heat and reaction products, respectively. Spin-
crossover solids [12], which are prototypes of cooperative
bistable materials, can be subject to activation and inhibition
processes when they are submitted to light, which causes
their local heating through a photothermal effect. Light is
usually used in these systems to investigate their thermal
properties, like in reflectivity measurement [13], UV-VIS
spectroscopy [14], or optical microscopy investigations [15],
as well as in Atomic Force Microscopy (AFM) [16] and other
near-field microscopy measurements. For very small crystals
or particles (a few hundred microns), the thermal heating
resulting from the presence of light cannot be neglected,
so most of these observations should take into account this
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photoheating effect. It is worth noticing that quite recently,
experimental evidence of nonlinear behavior of the high-spin
(HS) fraction has appeared, such as oscillations of the HS frac-
tion during the photoexcitation and the relaxation processes
of spin-crossover microparticles [17]. Furthermore, recent
theoretical developments have showed that the propagation of
the HS-LS interface during the thermally induced HS to low-
spin (LS) transition and vice versa can be described well by an
RD equation [18]. In these works, however, only isothermal
properties of the front propagation have been considered,
and no nonlinear effects have emerged from this description,
although it reproduces well the interface propagation process
in spin-crossover single crystals.

The theoretical work taking into account the photother-
mal effects and the subsequent photothermal instability was
provided only recently [19]. In that work, we analyzed
numerically the various behaviors of the system and found that
in some conditions the latter can show sustained oscillations.
However, in this preliminary work, we did not establish the
general theoretical frame leading to the understanding of the
necessary physical conditions to observe nonlinear dynamics
effects in spin-crossover (SC) solids under photoexcitation.
In the present work, we consider the general behavior of SC
solids under light with photoheating, and we develop a general
analytical approach to predict a number of nonlinear behaviors,
including autocatalytic effects. For the sake of simplicity, we
restrict the study to the thermally induced transition, where the
quantum yield of the light-induced electronic Franck-Condon
transitions between the LS and the HS states is negligible but
the photoheating of the sample is not. As a consequence, the
theoretical description of the system requires two equations of
motion, one on the high-spin fraction (activator) and the other
one on the temperature (the inhibitor), which will be explicitly
developed in this work.

This paper is organized as follows: in Sec. II, we introduce
the generalized master equation approach, and in Sec. III we
give the equations of motion of the homogeneous system and
perform a linear analysis of the stability in Sec. IV. In Sec. V,
we present the time dependences of the HS fraction and
temperature, showing the presence of autocatalytic regimes,
and in Sec. VI, we conclude.

II. DYNAMICAL ASPECTS OF THE PHOTOTHERMAL
INSTABILITY

A huge number of nonequilibrium properties of SC solids
have been described within the macroscopic master equation
approach [13,14,20]. This equation is based on the homoge-
neous mean-field approach and involves the time dependence
of the net magnetization per site m as function of temperature,
interactions, and intrinsic energy barriers in the LS and HS
states.

A. Equation of motion of the high-spin fraction

From a microscopic treatment, based on a description of
the SC by an Ising-like model, it is straightforward to establish
that one of the ways to get the dynamical properties of these
systems consists of using a free-energy dynamics to derive the
time dependence of the HS fraction (or the net magnetization),

which is then given in the case of a homogeneous system by,

∂m

∂t
= −∂F

∂m

hom

= �J [−m + tanh β(Jm − �eff)], (1)

whereFhom is the homogeneous mean-field free-energy whose
expression is given in [21], � is a phenomenological frequency
factor, J is the interaction parameter between the SC units, �eff

accounts for the effective ligand field energy where �eff =
� − 1

2kBT ln g, � is the ligand field energy contribution, g is
the degeneracy ratio between the HS and the LS states, kB is the
Boltzmann constant, T is the temperature and β = (kBT )−1.

Very recently [18], we extended this approach to include the
description of inhomogeneous systems in which the net mag-
netization is space and time dependent, so that m(�r,t) repre-
sents the spatiotemporal dependence of the net magnetization
per site. Expanding the free energy [21] about its homogeneous
value of power gradients and assuming an isotropic material
lead to the following reaction-diffusion equation:

∂m

∂t
= �J [−m + tanh β(Jm − �eff)] + Dm∇2m, (2)

in which Dm is the diffusion constant which relates to the
second derivative of the free energy with respect to power gra-
dients and � is a frequency factor fixing the time scale (which
can be temperature dependent), which clearly appears here as
a phenomenological parameter. In addition, the coordination
number (z = 4) is absorbed in the interaction parameter J . We
recall that the high-spin fraction nHS is related to m through

nHS = (m + 1)/2. (3)

It is important to mention that within the dynamical potential
description [20], where the transition rates are of the Arrhenius
type, the equation of motion is written

∂nHS

∂t
= −nHSKHL + (1 − nHS)KLH, (4)

where the expressions of the transition rate KHL (KLH) from
HS to LS (LS to HS) are given by KHL = k∞ exp (−βEHL) exp
[−βJ (nHS − 1/2)] (KLH = gk∞ exp(−βELH) exp[βJ (nHS −
1/2)]). Here, EHL and ELH are the intrinsic energy barriers
of the noninteracting molecular units. Both descriptions,
however, lead to the same self-consistent equation at high
temperature. So, for the sake of simplicity, we use here the
free-energy dynamics in which the system evolution follows
the free-energy landscape.

B. Photothermal effect and equation of motion of temperature

In most of the works dedicated to studying the light-induced
effects of SC solids, except for some rare cases [17,19], the
thermal effects have been neglected in nonlinear kinetics
by anticipating a very efficient energy transfer through an
instantaneous heat conduction, ensuring a constant and spa-
tially homogeneous value of the temperature. Whenever these
conditions are not satisfied, the temperature can play a very
efficient role as a source of oscillation, especially if the system
releases heat locally through certain exothermic reactions.

In the following, we discuss the case of one of the
first examples of sustained oscillations in a temperature-
dependent system that we predicted theoretically but have
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not yet revealed experimentally in SC solids. In a recent
experimental work [15], we have demonstrated the efficiency
of light excitation in controlling the front transition (the HS-LS
interface) of a SC solid. It is important to mention here
that this effect is purely photothermal due to the fact that
the photoinduced processes are operating only at very low
temperatures, typically below 90 K.

Let Io be the intensity of the light used to investigate the
spin-crossover properties in reflectivity measurements, optical
microscopy, AFM, or other types of experimental setups. Let
us denote by aLS (aHS) the optical absorption of the LS (HS)
state; usually, we have aHS < aLS because the optical density
of the LS state (which is much darker) is higher than that of
the HS state. Let nHS be the HS fraction present in the system
at time t and temperature T ; then the heating effect induced by
the light intensity can be considered to be simply proportional
to the fractions of the HS and LS species in the system, i.e.,
Io[aLS(1 − nHS) + aHSnHS]. The second source of heat comes
for the enthalpy variation �H accompanying the LS ←→
HS change, whose contribution depends on the transformation
rate as −�H

Cp

∂m
∂t

, where Cp is the specific heat. Finally, the
interaction between the spin-crossover crystal maintained at
temperature T and the thermal bath, with a temperature TB <

T , tends to cool down the crystal, thus introducing another
contribution, −α(T − TB), to the temperature flow, where α is
the cooling coefficient. Then, the balance of the heat (giving the
evolution of temperature), including the previously mentioned
contributions and thermal diffusion, is written as

∂T

∂t
= −α(T − TB) − �H

Cp

∂m

∂t

+ IoaLS

Cp

M

ma

(
1 + (ρ − 1)

1 + m

2

)
+ DT ∇2T , (5)

where Cp is the system heat capacity given in J K−1 mol−1,
ρ = aHS

aLS
< 1 is the ratio between the absorption coefficients of

the HS and LS states, ma is the sample mass, M is its molar
mass, and DT ∇2T relates to thermal diffusion, with a diffusion
constant DT . For the sake of simplicity, the product IoaLS

Cp

M
ma

will hereafter be denoted I .
Equations (2) and (5) form a set of nonlinear coupled partial

derivative equations describing the spatiotemporal properties
of a SC system under photothermal effects. In the next section,
we will consider spatially uniform systems and study situations
where the equations of evolution admit more than one steady
state.

C. On the choice of the parameter values

Hereafter, we choose the realistic parameter values, derived
from optical microscopy experiments [15] on the SC single
crystal [Fe(NCSe)(py)22(m-bpypz)], where py = pyridine
and bpypz = 3,5-bis(2-pyridyl)-pyrazolate [22], hereafter
abbreviated Fe(NCSe). For this system, we have J = 152 K
for the interaction between the spin states, � = 0.5 K−1 s−1,
� = 394 K for the ligand field, ln g = 7 for the logarithm
of the degeneracy ratio (leading to an entropy change at the
transition, �S = R ln g � 57 J K−1 mol−1), and a transition

temperature (also called the equilibrium temperature)

Teq = 2�

kB ln g
(6)

of 112.6 K. The corresponding enthalpy change is then �H =
Teq�S ∼ 6340 J mol−1. The single crystals of Fe(NCSe) have
a molar mass M = 880 g mol−1. Those used in optical mi-
croscopy experiments have a typical size 400 μm × 20 μm ×
10 μm (volume V = 8 × 10−8 cm3), their density is around
d = 1.5 g cm−1, and their associated specific heat at the
transition is Cp � 176 J K−1 mol−1. The heat of the reaction
associated with such a single crystal (assuming a total change
from LS to HS) is then easily evaluated as equal to �HdV

M
�

10−7 J. Equation (1) shows that, in the homogeneous case
(Dm = 0) and around the transition temperature, �eff = 0,
it is quite easy to demonstrate that ∂m

∂t
� �J (βeqJ − 1)m,

where m takes small values around zero. Inserting this
contribution in the equation of evolution of temperature leads
to an additional source term which plays the same role as
photoheating [because (1 − ρ) < 0]. However, since we are
mainly interested in the photothermal effects and for the sake
of simplicity, we will not consider this term in this study;
its role in the general case will be investigated in a future
work. Now, we turn to the evaluation of the photoheating part.
α = 2.0 s−1 is a typical value of the thermal coupling time of
the crystal to the thermal bath, in other words, the response time
(0.5 s) under vacuum to an instantaneous change in the shining
power, determined by suited (unpublished) optical microscopy
experiments. The usual optical microscopy measurements
allowing us to follow the spatiotemporal aspects of SC solids
are performed with a specific intensity Is ∼ 50 mW/cm2. So
the power received by the crystal is P = aIsS � 1.6 μW,
where a (aLS ∼ 0.4 and aHS ∼ 0.2) is the optical absorption
of the crystal and S = 8000 μm2 is its surface (aIs = Io).
This results in a contribution to the crystal temperature change
[given by Eq. (5)] of I = aIsSM

CpdV
� 66 K s−1, which is two times

bigger than the contribution of the enthalpy of the reaction,
which is omitted in the investigations presented in this work.

III. HOMOGENEOUS SYSTEM

Based on the previous discussion, we investigate the
nonequilibrium thermodynamics of the homogeneous system
for which, obviously, we neglect the diffusion terms in both
Eqs. (2) and (5). The physical system is then described by the
following equations of motion:

∂m

∂t
= �J [−m + tanh β(Jm − �eff)], (7)

∂T

∂t
= −α(T − TB) + I

(
1 + (ρ − 1)

1 + m

2

)
. (8)

The equations of the stationary states are given by setting
∂m
∂t

= ∂T
∂t

= 0 in Eqs. (7) and (8), which leads to

m0 = tanh β0(Jm0 − �eff), (9)

T0 = TB + I

2α
[ρ + 1 + m0 (ρ − 1)], (10)

where β0 = (kBT0)−1 and, obviously, T0 > TB .
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Here, we are mainly interested in the dynamic properties
of the system inside the hysteresis loop, that is, the bistable
region. To make the analytical developments easier, we chose
to work around the transition temperature Teq [given by Eq. (6)]
at which m0 = 0 and for which it corresponds to the intensity
Ieq , given by

Ieq = 2α

ρ + 1
(Teq − TB). (11)

Injecting relation (11) in (10) leads to the simple stationary
temperature,

T0 = Teq − γ (Teq − TB)m0, (12)

where, for the sake of simplicity, we define γ = 1−ρ

1+ρ
. Re-

lation (12) has to be used with Eq. (9) in order to explore
the thermodynamical properties of this system under light.
In Fig. 1 we show the temperature dependence of the HS
fraction for both stationary solutions given in Eqs. (9) and (12)
for different values of the photoexcitation’s intensity, I = Ieq

[whose expression is given by Eq. (11)]. The latter can be
monitored by changing the bath temperature TB . We have
considered here the situation where the thermal dependence
of the HS fraction, resulting from Eq. (9), leads to a thermal
hysteresis loop, a behavior which is possible only if we fulfill
the condition (βeqJ − 1) > 0, as already reported several times
in the literature. So, in this situation, the system admits
an unstable branch, which is easily identified since it is
characterized by ∂nHS

∂T
< 0. We will see later that this condition

is an essential prerequisite for the emergence of spontaneous
nonlinear dynamics under light. One can remark in Fig. 1
that according to Ieq values, the system transforms from
monostable to bistable when the equilibrium intensity is below
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FIG. 1. (Color online) The black line shows the thermal hystere-
sis loop arising from the mean-field analysis of the homogeneous
system. The colored lines correspond to the HS fraction dependence
of the systems’ temperature for various values of the bath temperature,
TB = 112.6 (=Teq ), 97.0, 78.8 (= T crit

B ), and 60.0 K, corresponding to
Ieq values of 0, 41.6 (2.17 μW), 90 (4.7 μW), and 140 K s−1 (7.3 μW),
respectively. The other parameter values are as follows: J = 152 K,
� = 394.1 K, ln g = 7, ρ = 0.5, α = 2.0 s−1, Dm = DT = 0.
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FIG. 2. (Color online) Dependence of the real (black curve) and
the imaginary (red curve) parts of the eigenvalues on the parameter
α, which represents the thermal coupling between the system and
the reservoir. Several regions emerge and correspond to different
expected dynamical behaviors of the system. See text for further
explanation. Parameter values are � = 1/19.0 K−1 s−1, J = 152 K,
ln g = 7, ρ = 0.5, TB = 75 K, Teq = 112.6 K, and � = 394 K.

the critical value,

I crit
eq = 4α

J − kBTeq

(1 − ρ)kB ln g
, (13)

which is obtained from Eqs. (9) and (10) by comparing the
slopes of the corresponding m(T ) curves (see Fig. 1) when
m = 0. Using the parameter values given in the caption of
Fig. 1, expression (13) leads to I crit

eq � 90 K s−1 (4.7 μW). In
Fig. 2, Ieq was monitored by varying the TB values,

T crit
B = Teq

(
1 − 2

βeqJ − 1

γ ln g

)
, (14)

and the critical bath temperature corresponding to the critical
intensity value below which the system shows a single fixed
point is given by T crit

B � 78.8 K. Hereafter, we study the case
of one fixed point, corresponding to I > I crit

eq and TB < T crit
B .

IV. LINEAR ANALYSIS OF THE STABILITY

To investigate the nonequilibrium properties of Eqs. (7)
and (8), we first perform a linear analysis of the stability to get
the global tendencies. Around the stationary states, m0 and T0,
the variables m and T can be written m = m0 + δm(t) and T =
T0 + δT (t), where δm(t) and δT (t) are small perturbations.
Simple mathematical developments show that the previous
system becomes

d �x
dt

= 
�x, (15)

where the vector �x = (δm(t),δT (t)) and the matrix 
 is the
Jacobian of the system of Eqs. (7) and (8), which is written as


 =
(


11 
12


21 
22

)
=

(
∂f

∂m

∣∣
0

∂f

∂T

∣∣
0

∂g

∂m

∣∣
0

∂g

∂T

∣∣
0

)
, (16)
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where the expressions of the functions f (m,T ) and g(m,T )
are given by

f (m,T ) = �J [−m + tanh β(Jm − �eff)], (17)

g(m,T ) = −α(T − TB) + Ieq

(
1 + (ρ − 1)

1 + m

2

)
. (18)

The subscript 0 indicates that the derivatives are taken around
the stationary states (m0 = 0 and T0 = Teq). The elements
of the Jacobian 
 are given by

∂f

∂m

∣∣∣∣
0

= 
11 = �J (βeqJ − 1),
∂f

∂T

∣∣∣∣
0

= 
12 = �J ln g

2Teq

,

∂g

∂m

∣∣∣∣
0

= 
21 = −α γ (Teq − TB),
∂g

∂T

∣∣∣∣
0

= 
22 = −α.

(19)

The characteristic equation of the previous system is written
Det|
 − λI| = 0, where λ are the eigenvalues of the Jacobian
matrix. They satisfy the relation

λ2 − (
11 + 
22)λ + 
11
22 − 
12
21 = 0. (20)

The expressions of the two eigenvalues λ1 and λ2 are

λ± = (
11 + 
22) ± √
Dλ

2
, (21)

where

Dλ = (
11 − 
22)2 + 4
12
21. (22)

According to the Jacobian element values, the discriminant Dλ

has the expression

Dλ = [�J (βeqJ − 1) + α]2 − 2 α
�J ln g

Teq

γ (Teq − TB), (23)

which can be written as Dλ = (α − α−
c )(α − α+

c ), where the
expressions of the critical values α±

c are given in Eq. (A1).
For the values of Fig. 2, α−

c = 1.44 s−1 and α+
c = 5.41 s−1,

corresponding to thermal relaxation times of ∼0.7 and ∼0.2 s,
respectively.

The sum S and the product P of the two eigenvalues
correspond respectively to the trace and the determinant of

 and are given by

S = λ+ + λ− = 
11 + 
22 = Tr(
) (24)

and

P = λ+λ− = 
11
22 − 
12
21 = Det(
), (25)

which are expressed as functions of the model parameters as
follows:

S = �J (βeqJ − 1) − α, (26)

P = α�J
2Teq

γ ln g

(
T crit

B − TB

)
. (27)

In Fig. 2, we have summarized the α dependence of the
real and imaginary parts of the two eigenvalues λ±, given by
Eqs. (21), (22), and (23). The study of the signs of S and P

allows us to classify the singular points. The solutions of the
differential equation have the form

δm(t) = c1e
λ+t + c2e

λ−t , δT (t) = c3e
λ+t + c4e

λ−t . (28)

From these expressions one also obtains straightforwardly the
following stability criteria:

(1) If both Re(λi) < 0, the steady state (m0,T0) is asymp-
totically stable. This case is represented by regions (iii) and
(iv) of Fig. 2, where the black curve (the red curve) is the real
part (the imaginary parts) of λ±.

(2) If for at least one of the roots Re(λi) > 0, the state
(m0,T0) is unstable. This corresponds to regions (i) and (ii) of
the phase diagram in Fig. 2. One can easily see from Eqs. (19)
that this inequality is realized only if �J (βeqJ − 1) > 0,
which is also the condition to fulfill in Eq. (9) to obtain a
thermal hysteresis loop.

(3) If for at least one of the roots Re(λi) = 0 while the
others remain negative, the system is stable in the sense of
Lyapunov but is not asymptotically stable.

Once again, once the dependence of S = Tr(
) and P =
Det(
) on the parameters is specified [see Eqs. (24) and (25)],
it is immediately possible to see which situation is realized. In
addition, from Eqs. (28) we can determine how the perturbed
system evolves back or departs from the singular point.

V. ON THE SPONTANEOUS EMERGENCE OF
AUTOCATALYTIC OSCILLATIONS IN SC SOLIDS

Here, we analyze the time dependence of the HS fraction
and the temperature for the various situations mentioned in
the last section. For that we solve numerically the equations
of motion (7) and (8) and discuss the results in relation to
the predictions derived for the linear stability in the previous
section.

A. Both roots are real

When Dλ > 0, both eigenvalues are strictly real, which
implies the conditions α < α−

c [region (i) in Fig. 2] and α >

α+
c [region (iv) in Fig. 2], and the α dependence of the two

eigenvalues are given by the following expressions:

λ±(α) = 1

2
[�J (βeqJ − 1) − α]

±
√

[�J (βeqJ − 1) + α]2

4
− α

�J ln g

2Teq

γ (Teq − TB).

(29)

If, in addition, P ≡ Det(
) > 0, which corresponds to TB <

T crit
B (=78.8 K), then the eigenvalues λ+ and λ− have the same

sign, as we can observe in Fig. 2. According to Eq. (28), this
implies a nonoscillatory approach to (or a departure from)
the singular point. We obtain in this case a stable (λ± < 0;
see Fig. 3) or an unstable (λ± > 0; see Fig. 4) node, which
corresponds to regions (i) and (iv) in Fig. 2. Figure 4 depicts
the temporal evolution of the HS fraction and temperature
for α = 0.2 s−1 [corresponding to region (i) in Fig. 2, where
both eigenvalues are positive], deduced from the numerical
resolution of the differential equations (7) and (8). The periodic
behavior of nHS(t) and T (t) leading to a limit cycle in the phase
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FIG. 3. (Color online) (top) Portrait of the time evolution of the
system in the nHS-T plane in the case where the two eigenvalues
of the Jacobian matrix are negative, leading to a stable focus
[region (iv) in Fig. 2]. (bottom) Time dependence of nHS and
T showing a nonoscillatory approach to the stable fixed point
(nHS = 1/2, T = Teq ). Initial values were nHS = 0.9, T = 107.5 K
[> T crit

B (=78.8 K)]. The stationary solutions are shown as guide-
lines. Parameter values are the same as those in Fig. 2, except
α = 6.0 s−1.

space nHS − T (t) contrasts with the linear stability analysis,
which predicts an exponential growth of the perturbation,
which is clearly not adapted far from m = 0 (nHS = 0.5),
where nonlinear contributions cannot be neglected and even
become dominant. In this case, the exponential growth of the
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FIG. 4. (Color online) (top) Portrait of the time evolution of the
system in the nHS-T plane showing a limit cycle in the case where
the two eigenvalues of the Jacobian matrix are positive, leading to an
unstable focus [region (i) in Fig. 2]. (bottom) Time dependence of
nHS and T showing nonlinear but periodic oscillations, arising from
the numerical resolution of Eqs. (7) and (8). The coordinates of the
initial state are nHS = 0.9, T = 110.0 K. The stationary solutions are
shown as guidelines. Parameter values are the same as those in Fig. 3,
except α = 0.2 s−1.

perturbation will be stopped by the action of the nonlinear
terms (∝ m3 at second order), which will drive the system
from an unstable state to a steady state.

In the other case, P ≡ Det(
) < 0, i.e., for TB > T crit
B , the

two real λ± roots have different signs. We will obtain in this
case a three-fixed-point system like the one shown in Fig. 1
for TB > T crit

B .

B. Both roots are complex

This situation appears when Dλ < 0 (which implies α−
c <

α < α+
c ) is satisfied. This range of values for α corresponds to

regions (ii) and (iii) in the phase diagram in Fig. 2, where the
red curves are the imaginary parts of the eigenvalues.

The real and complex parts of the two eigenvalues involved
are given by

Re(λ±)= 1

2
[�J (βeqJ − 1) − α],

Im(λ±)=±
√

α�J ln g

2Teq

γ (Teq − TB) − [�J (βeqJ − 1) + α]2

4
.

(30)

In this case, the black curve in Fig. 2, representing the real part
of the eigenvalues, behaves linearly with α, in agreement with
the analytical expression Re(λi) = �J (βeqJ − 1) − α.

If, in addition, S ≡ �J (βeqJ − 1) − α �= 0, then the two
roots have nonvanishing real parts. According to Eq. (28), this
implies an oscillatory departure from [S > 0 or Re(λi) > 0] or
approach (S < 0 or Re(λi) < 0) to the singular point (nHS =
1
2 ,T = Teq), as depicted respectively in Figs. 5 and 6 [obtained
in region (ii) for α = 2.5 s−1 using different initial conditions]
and Fig. 7 [obtained in region (iii) for α = 3 s−1]. In this case,
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FIG. 5. (Color online) (top) Portrait of the time evolution of the
system in the nHS-T plane in the case where the roots are complex with
a positive real part [region (ii) in Fig. 2], leading to an unstable focus
and a limit cycle. The initial coordinates are nHS = 0.95 and T =
108.5 K. The stationary solution (black and green curves) are shown
as guidelines. (bottom) Time dependence of nHS and T showing
autocatalytic oscillations. Parameter values are the same as those in
Fig. 3, except α = 2.5 s−1.
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FIG. 6. (Color online) Temporal evolution of the system in the
phase space nHS-T in the case of an unstable focus, starting at time
t = 0 s from the coordinates (nHS = 0.5, T = Teq + ε = 112.61 K).
The stationary solutions are shown as guidelines. After a stationary
period, the system starts to oscillate around the unstable focus, which
describes a stable limit cycle. Parameter values are the same as those
in Fig. 5.

the respective stationary solution is called an unstable or a
stable focus. The trajectories corresponding to this case are
spirals which enter the stationary state (see Figs. 5 and 7) or
depart from the stationary state (compare Fig. 6). To check the
stability of the obtained limit cycle of Fig. 5, we have restarted
the system (at time t = 0) from the values nHS = 0.5 and T =
Teq + ε = 112.61 K, which are very close to the coordinates
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FIG. 7. (Color online) (top) Portrait of the time evolution of
the system in the nHS- T plane in the case where the roots are
complex with a negative real part [region (iii)], which leads to a
stable focus. The initial coordinates are nHS = 1 and T = 108 K.
The stationary solutions (black and green curves) are shown as
guidelines. (bottom) Time dependence of nHS and T showing damped
oscillations. Parameter values are the same as in Fig. 3, except
α = 3.0 s−1.

of the unstable focus (0.5, 112.6 K). Its temporal evolution,
presented in Fig. 6, first shows a transitional period of 20 s
during which the HS fraction and the temperature are almost
constant or weakly fluctuating; then, suddenly, the amplitude
of the oscillations increases until it reaches, at t � 30 s, a
stationary state, characterized by a well-defined frequency and
amplitude.

C. Critical values and the properties of the limit cycles

To visualize the existence of bifurcation phenomena, we
have drawn in Fig. 2 the eigenvalues λ± against the control
parameter α (it is also possible to do this with TB or another
parameter of the model). There are four regions, denoted (i),
(ii), (iii), and (iv), as already discussed, which implies three
critical values, α±

c and αc, corresponding to the respective
situation where Dλ = 0 and Re(λ±) = 0. At these points,
a bifurcation phenomenon occurs. Then the behavior of the
system can be analyzed as a function of the cooling parameter
α.

When S = 0, i.e., Re(λ) = 0 but P > 0, which happens at
some critical value of α,

αc = �J (βeqJ − 1), (31)

with the condition that TB < T crit
B , the roots become purely

imaginary, λ± = ±iω. Within the parameter values used
in Fig. 2, αc ∼ 2.8 s−1 is the α value separating regions
(ii) and (iii). In this case, the system’s behavior in the phase
space is represented by closed trajectories surrounding the
singular point, referred to as a center. They represent a system
which undergoes sustained oscillations, provided, of course,
linearization constitutes a valid approximation. The singular
point exhibits the so-called Lyapunov stability, although
neither the singular point nor the orbits are asymptotically
stable.

In the following, we quote the different cases near αc:
(1) When α > αc = 2.8 s−1, the system admits a negative

real-part solution, as already presented in the previous sections.
The singular point is then a stable focus, and the trajectory is a
spiral entering the stationary state. Over time, we get damped
oscillatory solutions (see Figs. 3 and 7), the amplitude of
which decreases exponentially, e−σ t , with a relaxation time
σ = −Re(λ+), whose expression can straightforwardly be
written as

σ ∝ (α − αc). (32)

In order to test this theoretical prediction, we have carried
out numerical simulations by solving the set of two coupled
differential equations [(7) and (8)] for α > αc and have
determined from the time dependence of the HS fraction (and
temperature), which showed damped oscillations, the damping
factor σ , which has been drawn as function of α in Fig. 8.
The obtained results show a linear plot of σ (α), in excellent
agreement with the theoretical predictions of Eq. (32).

(2) For α < αc the real part of the two eigenvalues is
positive, and the solution becomes an unstable focus, around
which the trajectories describe a limit cycle (compare Figs. 4
and 5). The amplitude An of the oscillations (the size of the
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FIG. 8. (Color online) Dependence of the relaxation time σ and
the amplitude of oscillations A on the thermal coupling between the
SC solid and its surrounding bath α. A critical behavior obeying
Eqs. (32) and (33) is obtained. Parameter values are the same as those
in Fig. 2

limit cycle) undergoes a critical behavior,

An ∝ √
α − αc, (33)

while the frequency is independent of α. In this specific
case, the period τ of the oscillations is that obtained for
the value α = αc. As a result, we calculate the eigenvalue
in this specific situation. Remarking that, at α = αc, we
have 
11 + 
22 = 0, the characteristic equation becomes
λ2 + 
11
22 − 
12
21 = 0, which gives the expression of
the period of the limit cycles as τ = 2π√


2
22−
12
21

. Replacing

the different elements of the Jacobian by their expressions, one
gets the expression

τ = 2π

αc

√
1 + Teq−TB

Teq−T crit
B

, (34)

which gives τ = 1.54 s for the parameter values used Fig. 2.
This value of the oscillation period is in excellent agreement
with the thermal relaxation times (several seconds) fixing the
time scale of the coupling between the SC single crystals and
the thermal bath.

Figure 8, in which we plot the αc dependences of σ and
A, summarizes the previously obtained results. Clearly, the
simulations are in excellent agreement with the predictions of
the linear stability analysis, which reproduces quantitatively
the numerical data.

(3) For α = αc = �J (βeqJ − 1), the real part of the eigen-
values becomes equal to zero, and only imaginary solutions
remain, giving rise to a marginal stable state in which the
system oscillates at the frequency |Im(λ±)|. The amplitude of
the oscillations is then invariant (at second order) and is fixed
by the initial conditions.

VI. CONCLUSION

We have presented a predictive theoretical work showing
that the time evolution of the HS fraction of a SC single
crystal or particle under light causing photoheating can
result in nonlinear dynamics behavior, such as autocatalytic
oscillations. The self-oscillations are distinct from resonant
systems (including both forced and parametric resonators), in
which the oscillation is driven by a source of power which is
modulated externally. In the present situation, spontaneous

oscillations of the system are obtained with a source of
power that lacks a corresponding periodicity. Indeed, only a
self-oscillator can generate and maintain a regular periodicity
without requiring a similar external periodicity to drive it.
In the present case, we show that a steady intensity signal
can generate sustained oscillations in spin-crossover solids
in some specific situations that we have analyzed in detail.
We found that the control of the intensity of light or the
coupling between the thermal bath and the sample (cooling
factor here) may induce bifurcations as well as critical
phenomena on the amplitude of the oscillations of the HS
fraction. Resonant oscillations have recently been observed
experimentally [17] on SC microparticles under illumination
around the thermally induced hysteresis region of the SC
system, through the time dependence of the reflectivity signal,
but they are not autocatalytic oscillations, which are still
highly desired in this field. Since, in general, the possibility
of spontaneous oscillations is diagnosed as an instability of
the linearized equations of motion for perturbations about
an equilibrium, the latter is usually caused by the presence
of a positive feedback between the oscillator “motion” and
the power source. In this work, we provided a general and
detailed analysis of the prerequisite conditions for observing
these nonlinear phenomena in SC materials. In particular,
we demonstrate that the presence of a bistability (i.e., a
thermally or optically induced hysteresis loop) is an unavoid-
able condition for observing such autocatalytic behaviors.
Several switchable molecular systems, among them Jahn-
Teller switches, Prussian blue analogs, and organic bistable
crystals, are then possible candidates for observing these
nonlinear dynamics. As a consequence, these behaviors are
not expected in noncooperative solids. Further extensions
of this work to nonhomogeneous lattices should produce
Turing patterns and dissipative structures around the bifur-
cation points, behaviors which will be tracked in the near
future.
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APPENDIX: THE EXPRESSIONS OF α±
c

The discriminant Dλ, given in Eq. (23), can be factorized
under the form Dλ = (α − α−

c )(α − α+
c ), where the expres-

sions of the critical values α−
c and α+

c are given by

α±
c = �J

γ ln g

Teq

(
Teq + T crit

B

2
− TB

±
√

(Teq − TB)2 − 1
2 (Teq − TB)

(
Teq − T crit

B

))
. (A1)

Both α±
c are real, thanks to the condition [Eq. (14)] on the

critical bath temperature.
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