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Local structural excitations in model glasses
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Structural excitations of model Lennard-Jones glass systems are investigated using the activation-relaxation
technique (ARTn), which explores the potential energy landscape around a local minimum energy configuration
by converging to a nearby saddle-point configuration. Performing ARTn results in a distribution of barrier energies
that is single-peaked for well-relaxed samples. The present work characterizes such atomic-scale excitations in
terms of their local structure and environment. It is found that, at zero applied stress, many of the identified events
consist of chainlike excitations that can either be extended or ringlike in their geometry. The location and barrier
energy of these saddle-point structures are found to correlate with the type of atom involved, and with spatial
regions that have low Kelvin eigenshear moduli and are close to the excess free volume within the configuration.
Such correlations are, however, weak and more generally the identified local structural excitations are seen to
exist throughout the model glass sample. The work concludes with a discussion within the framework of α and
β relaxation processes that are known to occur in the undercooled liquid regime.
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I. INTRODUCTION

Local structural excitations (LSEs) occurring at the atomic
scale of bulk metallic glasses (BMGs) are believed to mediate
their unique mechanical properties. In the early work of
Spaepen [1], a free-volume model was proposed in which
single atoms would migrate to a neighboring free-volume
region. Subsequently, Argon [2] introduced the idea that
small groups of atoms undergo a structural transformation
that could modify the local shear-stress state. The early
atomistic simulations of Falk and Langer [3] confirmed this
picture and referred to these LSEs as shear transformation
zones (STZs), leading to a series of static and dynamical
atomistic simulations to better understand how such STZs lead
collectively to macroscopic plasticity [4–8]. The structural
transformations studied in these works were obtained via
application of strain rates that are many orders of magnitude
higher than that normally seen in experiment, leading to
localized material instabilities often identified as STZs. In
terms of the traditional thermal activation picture for plasticity,
such simulations therefore study the athermal limit of plasticity
in bulk metallic glasses.

A common question has been as to whether there exist local
structural features within the glass configuration that facilitate
the existence of LSEs. Indeed, from the early athermal
atomistic simulation work, those spatial regions that generated
a localized material instability and the subsequent observation
of STZs have been referred to as pre-existing liquidlike
regions—spatial domains that are not fully relaxed [9–12].
In the work of Langer, a relatively low density of such regions
was theoretically considered [12]. From this perspective, it is
then valid to ask whether there are structural features of the
unstrained glass configuration that allow identification of re-
gions predisposed to LSE’s—the so-called liquidlike regions?
In the work of Léonforte et al. [13], reversible nonaffine atomic
displacements associated with a finite elastic distortion were
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considered. Such displacements give insight into the spatial
extent of the low curvature of the unstrained potential energy
landscape (PEL). This work found a percolative network of
large nonaffine displacements. However, when the applied
strain was increased to promote plastic activity, the location
of the observed structural changes did not show a strong
correlation with the nonaffine displacements, suggesting that
the corresponding athermal energy barriers were not directly
related to the unstrained PEL curvature. Mayr [14], who
analyzed the local elastic constants (Born plus the kinetic
fluctuation contributions) as a function of applied stress and
temperature, found a strong connection between emerging
elastic instabilities and eventual plasticity as the temperature
approached the glass transition. While these simulations were
fully dynamical, the necessarily high strain rates place these
results close to the athermal regime.

Atomistic simulation methods that avoid the high-stress
athermal limit are the so-called PEL exploration methods.
The relevance of these methods to BMGs relies on the idea
that the atomic configuration of a structural glass spends
much of its time in a local potential energy minimum, only
occasionally transiting it via a saddle-point region to a new
local minimum. Such structural changes are assumed to occur
via thermal fluctuations and therefore do not involve a local
material instability driven by the applied stress. A well-known
example of this approach is the activation-relaxation technique
nouveau (ARTn) [15–17], which has been applied to both
two- and three-dimensional model glass systems [18–21].
Starting from a well-defined local minimum, the ARTn method
uses the local Hessian structure of the PEL to climb out
of its current PEL valley and to eventually converge to a
nearby saddle point region. The energy difference between
the minimum and the saddle point gives the corresponding
energy barrier of the associated LSE. When applied to model
glass systems a wide range of energy barriers are obtained
producing a distribution of energy barriers that appear to
converge when several thousand of such LSEs have been
identified. For sufficiently relaxed glass configurations, the
barrier energy distribution is found to be single-peaked and
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analysis of the associated LSEs revealed their corresponding
plastic strain increments to be uncorrelated with barrier
energy [18]. Moreover, with respect to a particular loading
geometry the plastic strains have equal numbers of positive
and negative sign. However, upon application of the load, the
distribution becomes slightly weighted towards positive strains
with a large number of negative strain LSEs still occurring. The
situation is quite different for the case of stress-driven energy
barriers, which generally only yield LSEs that are positive in
strain. Thus athermal stress-driven simulations probe only a
subset of possible LSEs—those compatible with the driving
mode chosen.

In this paper, the ARTn method is applied to three-
dimensional model Lennard Jones (LJ) structural glass config-
urations to obtain a large number of LSEs and their associated
barrier energies. The present work will only consider the
case of zero external load. Using these data, the spatial
location of the identified LSEs will be investigated in terms
of local structural properties and a statistical analysis will
be performed. The local quantities investigated will be atom
type, local energy, local elastic constants, local pressure, and
Voronoi volume. In addition, the spatial nature of the structural
changes and the number of atoms involved will be determined.
All such information will also be correlated with the barrier
energy. Additionally, the correlation between the spatial extent
of the LSEs and that of the low-frequency vibrational modes
will be investigated, since the latter is known to correlate with
elastically soft regions [22]. In Sec. II the sample preparation
procedure will be outlined and the local structural quantities to
be investigated defined. Section III contains the major results
of the present work encompassing the ARTn results and the
ensuing statistical analysis of the identified LSEs. In Sec. IV,
the spatial nature of a number of representative LSEs will
be atomistically visualized and characterized. Finally, Sec. V
will discuss the results in terms of contemporary pictures of
microscopic plastic deformation in BMGs.

II. METHODOLOGY

A. Sample preparation and ARTn calculations

Model glass samples have been prepared by molecular
dynamics and statics using a 50/50 binary mixture of a LJ
system, which is defined by the interatomic potential,

VLJ(r) = 4ε

[(σαβ

r

)12
−

(σαβ

r

)6
]

, (1)

where ε and σ set the microscopic energy and length scale of
the model material. The parametrization presently used is that
of Wahnström parametrization [23]. All simulation results are
reported in LJ units where time is measured with respect to
τ =

√
mσ 2/ε and temperature with respect to ε/kb.

Four samples, each with 1728 atoms, are prepared using
different quench rates (η1 = 24.57/500, η2 = 24.57/5000,
η3 = 24.57/50 000, and η4 = 24.57/50 000). The sample
preparation involves three steps: (1) equilibration of the liquid
state by constant particle number, pressure, and temperature
(NPT) molecular dynamics at a temperature of 10 000 × kb

[ε/kb] and hydrostatic pressure of 8/160 [ε/σ 3
11], (2) slow

quenching of the sample from this well-equilibrated liquid

state, which involves an incremental reduction in both tempera-
ture (−198.0 × kb [ε/kb]) and pressure (−0.158/160 [ε/σ 3

11])
by NPT molecular dynamics to form the disordered amorphous
glass at a temperature of 100 × kb [ε/kb] and hydrostatic
pressure of 0.1/160 [ε/σ 3

11], and (3) relaxation of the atomic
coordinates to zero temperature and zero hydrostatic pressure
by molecular statics using the Parrinello-Rahman method [24].
For steps 1 and 2, the Parrinello-Rahman [24] barostat is used
for pressure control and the Anderson-Hoover [25] thermostat
is used for temperature control.

The ARTn technique is then applied to these samples. The
ARTn identification of an LSE involves randomly choosing
one atom and displacing it by a small distance (<0.1σ ) from
its equilibrium position—the starting condition for ARTn.
The lowest eigenvalue of the corresponding Hessian matrix is
determined and the system is moved along the corresponding
3N dimensional eigenvector until the eigenvalue of the Hessian
becomes negative. This part of the algorithm is referred to
as the “activation” phase. At this point, the configuration
has passed an inflection region of the PEL and enters the
new phase of “relaxation.” Here, the configuration is moved
in the direction of the eigenvector of the lowest eigenvalue,
which is now negative, with a new eigenvalue and eigenvector
to be calculated at each iteration. This is repeated until the
dot product of the total force of the configuration with the
eigenvector is zero. When this occurs, the configuration has
reached a saddle-point which, following Ref. [18], is referred
to as the activated state. It should be emphasized here that it
is assumed that ARTn provides an unbiased probe to nearby
saddle-point configurations within the PEL—an assumption
that underlies all previous work applying ARTn to structural
glasses [18–21].

To study the atomic scale environment of each identified
LSE, an appropriate atomic weight for the ith atom is
calculated via the displacement vectors (referred to as 	Ri)
between the initial state and either the activated or the final
state configuration. Presently, the normalised weights (which
sum to unity) are defined as

wi = |	Ri |4∑N
i=1 |	Ri |4

. (2)

This form is motivated by the standard definition of the
participation number (PN) of an eigenvector [26], which gives
information about the number of elements contributing to the
norm of the vector. Indeed,

PN = 1∑N
i=1 w2

i

(3)

gives the effective number of atoms involved in the identified
LSE.

Given a local atomic quantity (LAQ) for each atom, the
weighted average of the quantity, according to Eq. (2), gives
a representative value for the region occupied by a particular
LSE. That is,

LAQLSE =
N∑

i=1

wi × LAQi . (4)

With this quantity, an average over many LSEs can be made
and compared to the unweighted LAQ average where all
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atoms equally contribute to the average. Scatter diagrams for
the weighted LAQ with respect to barrier energy are also
investigated to determine if any correlation exists between
local structural features and the barrier energy of an LSE.
To find out any possible linear correlation of such plots, the
Pearson coefficient (PC) is used. For n data points, this is given
by

PC =
∑n

i=1(Xi − X̄)(Yi − Ȳ )√∑n
i=1(Xi − X̄)2

√∑n
i=1(Yi − Ȳ )2

, (5)

where Xi and Yi are the data sets, and X̄ and Ȳ are their
respective arithmetic means. The value of PC ranges from −1
to 1, where the extremal values −1 and 1 refer to a perfect linear
correlation, and a value of zero indicates no linear correlation.

B. Local atomic quantities

The local atomic quantities (the LAQs) presently consid-
ered are (1) volume, calculated via an atomic scale Voronoi
tessellation using the voro++ package [27], (2) energy, (3)
pressure, (4) dilation elastic modulus (three times the local
bulk modulus), and (5) the five linearly independent Kelvin
eigenshear elastic moduli.

Since a LJ pair potential is presently being used, the
expressions for the local stress and elastic moduli are of a
simple form, where

σμν
a = 1

2Va

∑
ij

V ′(Rij )
R

μ

ijR
ν
ij

Rij

�a,ij (6)

and

Cμναβ
a = 1

2Va

∑
ij

[
V ′′(Rij ) − V ′(Rij )

Rij

]
R

μ

ijR
ν
ijR

α
ijR

β

ij

R2
ij

�a,ij

+ σ νβ
a δμα + σ να

a δμβ. (7)

In the above expressions, �a,ij represents the proportion of
the ij th bond within the volume of atom a. It is noted that
bonds between two atoms, neither of which is atom a, may
also contribute to these two local quantities. Equations (6)
and (7) properly partition volume and therefore correctly take
into account the contribution of each atomic bond [28,29].
The local pressure is obtained by taking one-third the trace
of the local shear stress tensor. To obtain the Kelvin elastic
moduli [30] from the fourth rank elastic stiffness tensor
[Eq. (7)], the usual Voigt elastic stiffness matrix is first
constructed from which the Kelvin matrix (second-rank tensor)
is obtained via C

μν

K = AμνC
μν

V . For an explicit form of Aμν ,
see Ref. [22]. The five linearly independent eigenshear moduli
are obtained by first projecting out the pure dilation distortions
and then diagonalizing the resulting Kelvin matrix—for more
details, see Refs. [14,22].

In contrast to the popular Voigt notation, the Kelvin notation
preserves the norm of the actual elastic stiffness tensor and
hence their eigenvalues and eigenvectors have geometrical
significance [31]. Since the Kelvin matrix is a tensor, the
eigenvalues of the stiffness matrix can be computed to obtain
the bulk modulus and the five linearly independent eigenshear
moduli. The invariance of these eigenshear moduli with respect

to coordinate systems and thereby their role as an intrinsic
material property has been highlighted in Ref. [32].

C. Natural mode analysis

The natural modes of an N atom configuration can be
obtained via the solution to∑

jν

(
mi[ωn]2δij δ

μν − 	
μν

ij

)
uν

j,n = 0, (8)

where 	
μν

ij is the translationally invariant dynamical matrix
obtained from

	
μν

ij =
∑
a,a �=i

H
μν

ia δij − H
μν

ij (1 − δij ). (9)

Here, H
μν

ij is the Hessian. In terms of the LJ interaction V (r),
the Hessian may be written as

H
μν

ij =
[
V ′′(Rij ) − V ′(Rij )

Rij

]
R

μ

ijR
ν
ij

R2
ij

+ V ′(Rij )

Rij

δμν. (10)

In Eq. (8), mi is the atomic mass of the ith atom, and uν
j,n is

the eigenvector associated with the eigenfrequency ωn of the
nth natural mode.

The vibrational density of states (VDOS) may be formally
defined via

ρVDOS(ω) =
∑

n

δ(ω − ωn), (11)

where δ(· · · ) is the Dirac δ function which, in practice, is
replaced by a continuous function of finite width. The number
of atoms participating in a particular eigenstate, uν

j,n, may be
obtained via the vibrational participation number [26]

PNn =
(∑

i

|�ui,n|4
)−1

, (12)

where �ui,n is the three-dimensional polarization vector of
atom i coming from the eigenvector of eigenfrequency ωn.
Assuming a normalized eigenvector, PNn will range between
unity (when the eigenstate is concentrated on just one atom)
and N (when the eigenstate is distributed evenly over the entire
sample).

III. RESULTS

A. ARTn

In total 4262 unique activated states are identified using the
ARTn method. To verify that each activated state is directly
connected to the initial atomic configuration, the activated
configuration is perturbed in a direction towards the initial
atomic state configuration and allowed to relax. If the resulting
structure differed from the initial structure the LSE is discarded
from the data set, as was done in Ref. [18]. In a similar
way, the final state is determined by perturbing the activated
configuration in a direction away from the initial atomic state
configuration and allowed to relax.

To determine the spatial location of a particular LSE,
the center-of-position of those saddle-point atoms displaced
relative to the initial configuration by more than 0.1σ is
calculated. Figure 1 displays these positions within a boundary
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FIG. 1. (Color online) Red balls represent the center of positions
of all identified LSEs and the green balls represent regions containing
free-volume within the simulation cell of the model glass.

box defining the three-dimensional periodic simulation cell. A
general inspection of their spatial distribution reveals some
heterogeneity and, in particular, regions where many LSEs are
located in very close proximity. A more detailed inspection of
such LSEs (as in a manner described in Sec. IV) reveals them
to be quite different in spatial extent and barrier energy, despite
some LSEs having their center of position almost coincident.
The goal of the proceeding section will be to see if any local
structural feature correlates with this observed heterogeneity.

Figure 2(a) displays the distribution of barrier energies
obtained from the 4262 identified activated states for the
sample with the slowest quench rate. In agreement with
Refs. [18–21], the distribution peaks at a nonzero barrier
energy and appears to approach zero for small enough barrier
energies. The barrier energy scale is comparable to that seen
in a previous fully three-dimensional ARTn simulation using
the same LJ potential parametrization [21].

Figure 2(b) shows a histogram of the LSE participation
number, indicating that the LSEs identified by ARTn generally
involve one to several atoms. Histograms are shown for both
the activated and final state configurations demonstrating that
little difference occurs in the statistics of the number of atoms
involved when considering either the activated or the final
state configurations. Inspection of a given saddle point and
its corresponding final state PN did show either an increase

(a) (b)

FIG. 2. (Color online) (a) Normalized distribution of barrier en-
ergies of LSEs in a 3D model glass system. (b) Histogram of
participation number.

or decrease of participating atoms. However, on average, the
change in the PN is close to zero indicating no strong bias to
whether the final state contains more or less participating atoms
than the activated state. A scatter diagram (not shown) of PN
and barrier energy revealed no strong correlation with barrier
energy. It is noted that detailed inspection of such a scatter
plot revealed final state PNs which exactly equaled an integer.
Subsequent visual inspection of these LSEs revealed them to
involve a permutation of nearby atoms of the same type, where
the activated configuration involved a closed loop of displaced
neighboring atoms [see Fig. 7(a), for an example]. Because
such LSEs (which numbered 389) cannot produce any strain
these are removed from the data set used in the LAQ analysis
of the proceeding section.

B. Statistical analysis of LAQs

Figure 3 displays the normalized histograms of a number
of LSE-averaged LAQs with respect to the activated and final
state configurations. Also shown are the equivalent unweighted
histograms derived from the total sample. The two types
of distributions will be referred to as LSE-weighted and
unweighted distributions of the LAQ. For the unweighted
distributions, the (atom-type resolved) partial histograms are
also shown.

Figure 3(a) represents the normalized distribution of
potential energy of atoms. The double peak structure of
the total unweighted distribution is clearly seen to arise
from the single-peaked distributions of each atomic type.
The LSE-weighted distributions, on the other hand, do not
exhibit a double-peak structure, with the single observed peak
coinciding with the unweighted partial distribution of atoms of
type 2. This result suggests that the atoms involved in an LSE

(a)

(c)

(b)

FIG. 3. (Color online) Normalized distribution of local (a)
energy, (b) Voronoi volume, and (c) eigenshear modulus 1. The red
vertical lines represent the corresponding mean values derived from
the total sample.

224201-4



LOCAL STRUCTURAL EXCITATIONS IN MODEL GLASSES PHYSICAL REVIEW B 89, 224201 (2014)

are mostly of type 2. Figure 3(b) now shows the corresponding
normalized distribution for the Voronoi volume. Inspection of
the unweighted curves shows that atoms of type 2 have lower
volume compared to atoms of type 1, a feature that is expected
given the nature of the Wahnström parametrization (see
Ref. [22]). The distinct double-peak feature is, however, absent
for the LSE-weighted distributions, both the activated and final
state curves showing a single-peaked structure approximately
centered between the unweighted partial distributions. Closer
inspection does, however, reveal a slight bias to the lower
volumes of the type 2 atoms. A similar albeit weaker trend as
in the Voronoi volume is seen in both the local pressure and
local bulk modulus.

Figure 3(c) shows the distribution of the lowest Kelvin
eigenshear modulus for the activated and final relaxed states.
Again, the unweighted total and partial distributions are shown
for comparison. It is noted that for each atom, the local
Voigt matrix is first constructed via Eq. (7), from which the
local Kelvin matrix is built and is then diagonalized (after
the dilation components are projected out), to obtain five
eigenshear moduli (of which the lowest eigenshear modulus
is shown here). Figure 3(c) reveals that the left tail of the
distribution extends into the negative moduli domain. That
some atoms have a local distortion characterized by a negative
modulus does not entail a local material instability, because
their calculation involves only those neighboring atoms with
a direct interaction and not the stabilizing effect of the more
distant surrounding matrix. Such low or negative eigenshear
moduli do, however, indicate the presence of local shear
distortions that are soft. Inspection of the unweighted total
and partial LAQ single-peak distributions reveals that atoms
of type 2 are slightly biased towards regions of softer moduli.
The weighted LAQ single-peak distribution follows this bias,
confirming that atoms of type 2 are often involved in an LSE.
No statistically significant trend is seen in the distributions of
the higher Kelvin eigenshear moduli.

To gain more direct information on the type of atom
involved, normalized atom type LSE-weighted distributions
are generated. Figure 4(a) displays these for both the activated
states and the final states. Both distributions show a maximum
at an average atom-type of two, demonstrating that the most
probable chemical composition of an LSE is only of type 2
atoms. This trend originates from the smaller LSEs (consisting
of one to two atoms), which Fig. 2(b) demonstrates to be
the most numerous. In the intermediate range of average
atom type, Fig. 4(a) shows a weakly varying distribution
demonstrating that on average an LSE will contain a mixture
of both atom types, with a slight bias to atoms of type 2.
Inspection of such LSEs found them to consist of between
three and six atoms—thus the larger LSEs consist of a mixture
of both atom types. This is further demonstrated in Fig. 4(b),
which shows the scatter plot of participation number with
LSE-weighted atom type. Here there is a clustering of small
LSEs around atom type 2, but many larger LSEs consisting
of both type 1 and type 2 atoms are also evident. The lower
boundary in this figure reflects the fact that for an average
atom type of 1.5 at least two atoms must be involved. A closer
inspection also demonstrates that LSEs with predominantly
atoms of type 2 are not only more common, but they also
appear to correspond to lower barrier energies. This is directly

(a)

(c)

(b)

FIG. 4. (Color online) (a) Normalized distribution of LSE-
weighted atom types for the activated and final state configurations.
(b) Scatter plot of participation number vs LSE-weighted atom type.
(c) Scatter plot of barrier energy vs LSE-weighted atom type.

seen in Fig. 4(c), which is a scatter plot of LSE-weighted atom
type and barrier energy. This plot shows that LSEs having a
greater proportion of atoms of type 2 generally have a lower
corresponding barrier energy. The scatter associated with this
trend is, however, large, with both types of LSEs having a
spread in barrier energy comparable to the domain of the
distribution shown in Fig. 2(a).

From the perspective of thermal activation the rate of
occurrence for a particular LSE is given by ν0 exp(−E0/kBT ),
where ν0 is the prefactor (rate of attempt) and E0 is the
barrier energy of the LSE. Therefore those LSEs with the
lowest barrier energy will most likely occur. In the work of
Koziatek et al. [21], this was demonstrated within harmonic
transition state theory, where the corresponding prefactor ν

was also calculated, showing that despite a wide range of
prefactor values (spanning many orders of magnitude) those
identified LSEs with lowest barrier energy generally exhibited
the highest rate of occurrences. It is therefore of interest to
investigate the correlation between barrier energy and the
structural environment as presently defined by the LAQs of
Sec. II B.

Figure 5 displays scatter plots of three of the LSE-weighted
LAQs with respect to their corresponding barrier energy.
Data are shown for local cohesive energy, Voronoi volume,
and lowest Kelvin eigenshear modulus. While the scatter
is strong for all quantities, the local cohesive energy and
lowest Kelvin eigenshear modulus versus barrier energy do
have non-negligible Pearson correlation coefficients equal to
approximately −0.5 and 0.3. For the case of Voronoi volume,
the Pearson coefficient is approximately zero. Again, there
is little statistical difference between the activated and final
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(a)

(c)

(b)

FIG. 5. (Color online) Scatter plots of LSE-weighted local
(a) energy, (b) volume, and (c) lowest eigenshear modulus vs barrier
energy.

state configurations. For the LAQs of local pressure and
bulk modulus no correlation is found with barrier energy,
whereas for the higher Kelvin eigenshear moduli the Pearson
correlation coefficient reduced approximately linearly to a
value of 0.03 for the highest Kelvin eigenshear modulus.

C. Correlation with vibrational modes

Figure 6(a) shows the VDOS [Eq. (11)] demonstrating the
generally featureless distribution, which is typical of structural
glasses. Past work (which uses the present LJ parametrization)
has shown [22] that in the low-frequency regime of Fig. 6(a),
there exists an enhancement of states above that predicted by
the continuum Debye VDOS (∼ω2) reflecting the presence
of the well-known Boson peak anomaly often present in
heterogeneous systems. In the high-frequency regime of the
VDOS in Fig. 6(a), an extended “tail” is also seen. Much
insight can be gained into the origin of these features by
inspecting the “vibrational participation number” [Eq. (12)],
which gives the effective number of atoms participating in
each mode [22,33–35]. Figure 6(b) plots this number for each
eigenmode as a function of its eigenfrequency and shows
for the low-frequency regime of the Boson peak, a reduced
number of atoms participate in the corresponding eigenmodes.
Inspection of the spatial distribution of the participating atoms
of a given low-frequency mode (see, for example, Fig. 13 of
Ref. [22]) reveals them to be concentrated in several regions
of the sample. Such heterogeneous (quasilocalized) features
are believed to underlay the Boson peak phenomenon of
glassy systems [36–40], where local resonant modes (which
are not eigenmodes of the system) couple with each other
via long-wavelength elastic excitations. It is in this way that
the dispersion of sound is intimately connected to the Boson

(a) (b)

(c)

FIG. 6. (Color online) (a) Plot of vibrational density of states
and (b) participation number vs eigenfrequency (in LJ units of
inverse τ = √

mσ 2/ε). (c) Plot of maximum and average overlap
per eigenfrequency.

peak, indeed, it is precisely at the transverse Ioffe-Regel
frequency that the Boson peak occurs [39]. Above a certain
frequency, Fig. 6(b) also reveals that the participation number
begins to decrease with increasing frequency finally resulting
in high-frequency eigenmodes, each involving only a few
neighboring atoms. Such modes are the result of Anderson
localization and occur at frequencies above a critical mobility
edge value [41–44].

Previous work done by two of us has demonstrated a link
between the spatial extent of the low-frequency quasilocalized
modes and regions of the atomic configuration, which have
a low or negative lowest eigenshear mode [22]. Moreover,
high-strain molecular dynamics simulations show that at high
enough temperatures, the location of irreversible structural
transitions correlates strongly with regions of negative local
eigenshear modulus [14]. It is therefore of interest to investi-
gate whether or not there is a correlation between the location
of an LSE and the spatial extent of the above mentioned low-
frequency quasilocalized and high-frequency localized modes.
To do this, the overlap between the vibrational eigenstate and
that of the LSE was determined. This was done by calculating
the scalar product of the atomic weights [Eq. (2)] with the
eigenvector magnitude-squared, |�ui,n|2. Figure 6(c) displays
both the average overlap and the maximum overlap of all
identified LSEs with each vibrational eigenvector as a function
of the corresponding eigenfrequency.

The figure shows that there exists, on average, little overlap
over the entire frequency range. In the low-frequency regime,
the average overlap is a well-defined statistical quantity,
indicating that irrespective of the nature of the quasilocalized
mode, the spatial location and extension of the identified LSEs
are similar for different modes. This is also reflected in the
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maximum overlap, which varies little with eigenfrequency
and is also a small quantity. At higher frequencies, the
situation is somewhat different in that there is much more
scatter in the average value and the maximum value. This
however, does not indicate any important correlation, because
the small average and large maximum values more likely
indicate the scenario that statistically there will be one or
some LSEs that do not strongly overlap with one or some
well-localized high-frequency eigenstates. This does not occur
at the low-frequency quasilocalized eigenstates since these are
more extended involving several tens to hundreds of atoms (see
Fig. 13 of Ref. [22]). In addition, it is noted that no statistically
meaningful correlation was found between the location of
an LSE and that atom with the largest oscillator strength of
each eigenmode. Thus the current analysis reveals little overall
correlation between the spatial extent of the vibrational modes
and the location of the identified LSEs.

D. Effect of quench rates

The ARTn simulations are also performed on glass samples
prepared with faster quench rates (sample 0a with η1, sample
0b with η2, sample 0c with η3) to determine if the results
of Sec. III depend on the quench rate. For the more rapidly
quenched systems, the peak of the barrier energy distribution
is seen to shift to lower activation energies and close to the zero
barrier energy limit the distribution does not reduce to zero (a
result also found in the work of Rodney and Schuh [18,19]).
For the case of the PN distribution [Eq. (3)], an increased
quench rate correlated with a slight shift to a larger number
of atoms being involved in the LSEs and many of these
involve a more mixed number of atom type. These results
suggest that the more rapidly the model system is quenched
the more shallow the local potential minimum is, and that
the corresponding LSEs are somewhat larger, involving both
types (sizes) of atom. In general, however, the weak correlation
with local structural features seen in Sec. III is insensitive to
quench rate.

IV. ATOMIC VISUALISATION

In this section, six identified LSEs are atomistically visual-
ized. These examples are chosen since they represent typical
features seen in all LSEs and are shown in Fig. 7. In all of the
examples, the initial and final atomic positions are represented
respectively by green and orange spheres, whereas the red
arrows represent the displacement from the initial to activated
position and the blue arrows the displacements from the
activated to final position. Only those atoms are shown which
are displaced by more than 0.2σ , either between the initial and
activated, or the activated and final configuration. The large
spheres represent atoms of type 1 and the small spheres atoms
of type 2. Generally, the visualized atoms may be classified into
two groups, those central atoms that involve significant and
irreversible displacement and those atoms that accommodate
the activity either via reversible elastic or irreversible plastic
displacement. In all figures, the first class of initial atom
positions is numbered, with the dashed-corresponding-number
labeling their final position.
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FIG. 7. (Color online) Six examples of LSEs identified by ARTn.
In each case, the initial atomic positions are visualized by green balls
and the final ones by orange balls. The atomic displacements from
the initial to activated and activated to final states are visualized by
red and blue arrows, respectively.

Figure 7(a) represents an LSE with a barrier energy of
11.98ε involving eight atoms. In this LSE, the central atomic
structure forms a symmetrical ringlike (or closed chainlike)
structure (1 → 1′ : 2 → 2′ : 3 → 3′), consisting of smaller
atoms (of type 1). Surrounding this plastic inner structure, there
are mainly larger atoms (of type 2), which move back and forth
during the initial to activated state and then from the activated
to final state transition, respectively. This is an example of an
elastic accommodation mechanism around the inner ringlike
plastic rearrangement. In this case, the LSE results in a final
configuration identical to the initial configuration apart from
a permutation of three labels. As already mentioned such
LSEs are not considered in the detailed statistical analysis
of Sec. II B.

Figure 7(b) represents an LSE with a barrier energy of
6.65ε involving 17 atoms. It shows an extended chainlike
atomic motion with the sequence being specified by (1 →
1′ : 2 → 2′ : 3 → 3′ : 4 → 4′). Although smaller atoms (of
type 2) are involved in the formation of the chain, there
is a relatively large number of large atoms (of type 1) that
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are responsible for accommodating this structural excitation.
There is evidence of both elastic and plastic accommodation by
the surrounding atoms, which is clearly seen by atoms moving
back and forth as well as atoms moving irreversibly in the
region surrounding the inner chain-like formation. From this
LSE (and further confirmed in the subsequent descriptions
of LSEs), it is observed that excitations, which involve a
higher number of atoms in the chainlike structure also involve
proportionally a higher number of atoms in the surrounding
accommodation mechanism.

Figure 7(c) represents an LSE with a barrier energy of
10.35ε involving nine atoms. It also shows a chainlike atomic
reconfiguration, now of a strongly curved extension. The
sequence is specified by (1 → 1′ : 2 → 2′ : 3 → 3′ : 4 → 4′ :
5 → 5′). Here both sized atoms are involved in the reconfig-
uration. This was also the case for the surrounding elastic
accommodation, where both types of atoms were involved.

One of the most spatially extended LSEs identified by
ARTn is shown in Fig. 7(d). This LSE has a barrier energy
of 16.01ε and involves 17 atoms, with the reconfiguration se-
quence being (1 → 1′ : 2 → 2′ : 3 → 3′ : 4 → 4′ : 5 → 5′ :
6 → 6′). It is noted that smaller atoms (of type 2) are involved
at both ends of the chain sequence, and that both types of
atoms are involved in the elastic and plastic accommodation.
Such chainlike activity (including both atom-types) is also
seen in the smaller ringlike LSEs, as shown in Fig. 7(e), which
has a barrier energy of 10.55ε. Finally, Fig. 7(f) represents
an LSE with a barrier energy of 8.96ε involving 11 atoms.
This LSE forms a chain (1 → 1′ : 2 → 2′ : 3 → 3′ : 4 → 4′),
which almost resembles a straight line due to its low curvature.

Upon inspection of these figures, the chainlike sequence of
an LSE generally involves one atom replacing its neighbor (and
so on), such that the chain or part of the chain is fully connected
(with respect to the red and blue displacement arrows). In
addition, one atom can move into a previously unoccupied
location, with another atom doing the same with respect to
another atom (and so on) forming a disconnected chain (with
respect to the red and blue displacement arrows). The smaller
ringlike structures of Figs. 7(a) and 7(e) fall into the first
category and the extended chains fall into both categories.
Very low-energy LSEs are also visualized (not shown) and
these tended to involve just one atom changing its location with
minor elastic and plastic accommodation in the surrounding
regions. Such LSEs typically have activation energies in the
range of less than ∼5ε.

V. DISCUSSION AND CONCLUDING REMARKS

The results of Sec. III suggest that the location of an LSE
is only weakly correlated with the local structural features of
those atoms involved. For the LJ system considered, the only
non-negligible correlation is that the smaller atoms of type 2
are more often involved than the larger atoms of type 1, partic-
ularly when the LSEs consist of only a few atoms and are at the
lower range of the barrier energy spectrum. Despite the strong
scatter, this latter aspect suggests a rather intuitive scenario
where type two atoms generally involve less negative bond
energies. The breaking of bonds that must occur in an LSE
requires less energy and therefore lower barrier energy. Indeed,
this appears to be more important than local Voronoi volume.

Figure 3(b) shows that the volume LSE-weighted distribution
exhibits only a central peak structure not located at volumes
typical of type 2 atoms, whereas the local cohesive energy LSE
distribution clearly correlates with the type 2 unweighted peak
[Fig. 3(a)]. The remaining, somewhat weaker correlation with
barrier energy is that a small or negative lowest local Kelvin
eigenshear tends to have a low barrier energy. This is again,
an intuitive result since a small or negative Kelvin eigenshear
indicates a shallow potential energy minimum and therefore a
smaller activation barrier. In other words, the LSEs occurring
in softer regions tend to have lower activation energies.

The atomistic visualization shown in Sec. IV generally
demonstrates LSEs to be a sequence of atoms that successively
replace each others approximate location, with the surrounding
atoms accommodating such movement through either elastic
or plastic distortion. This appears to be a general result,
although the spatial extension of the atomic sequence can
be quite diverse, ranging from an almost linear extension
to strongly curved and closed ringlike structures (for the
smaller LSEs). Although those central atoms within the chain
show no obvious decrease in their own local Voronoi volume,
it is of interest to investigate whether nearby free volume
is correlated with their existence. This is motivated by the
original assumption of Spaepen in his thermally activated
free-volume theory [1]. To determine the spatial location
of free volume within the computer-generated sample, the
simulation cell is filled with a fine regular cubic mesh of
points at a spacing much smaller than the typical inter-atomic
distance of ∼σ . Those mesh points that have a distance to the
nearest atom greater than Rmax, and which are connected to
each other, will then define the spatial extent of a region of free
local volume. Rmax cannot be too small since then the normal
interstitial regions, which span the entire simulation cell, will
be identified. The parameter should also not be too large since
then no free volume will be identified. Such a method has been
used to identify free volume in grain boundaries [52]. Using a
value of Rmax = 0.76σ , Fig. 1 displays the identified regions
as green balls. This figure shows that the computer-generated
sample contains a few regions in which local free volume is
above the normal background of interstitial regions.

Figure 8 now shows a histogram of Rfv, the nearest distance
of an LSE center-of-position (the red-colored balls in Fig. 1)
to identified free volume (the green-colored balls in Fig. 1).

FIG. 8. (Color online) Distribution of minimum distances be-
tween the center-of-position of an LSE and free volume in the
sample. Also shown for comparison are histograms of four random
realizations of LSE center-of-positions derived from a uniform
distribution within the simulation cell.
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Also shown are histograms of four random realizations of LSE
center-of-positions derived from a uniform distribution within
the simulation cell. Inspection of this figure shows a slight
bias of the ARTn identified LSEs to be closer to free volume
than that of entirely randomly located LSEs. Thus there exists
some correlation between the location of an LSE and nearby
free-volume.

The framework of fast β and slower α structural trans-
formations, originally developed for undercooled liquids,
is now often applied to the regime of amorphous solids
[45–51]. Indeed, in the work of Harmon et al. [45] multiple
microscopic β structural transformations (which are assumed
to be reversible) underlay the emergence of irreversible α

transformations in the form of a less local release of elastic
energy. In more recent work [46], which attempts to explain
dynamical-mechanical-spectroscopy data, the authors have
postulated β structural transformations to consist of atomic
chains of smaller atoms, comparable to those encountered in
the present work. On the other hand, structural transforma-
tions, which involve both small and large atoms, tend to reflect
α transformations—a rather intuitive picture since movement
of the larger atoms will tend to involve more atoms due to
accommodation issues. They will therefore be inherently less
local.

The usage of the terminology of α and β transformations
in the regime of the amorphous solid is an interesting devel-
opment given that from the undercooled liquid perspective the
α relaxations are assumed to be frozen out below the glass
transition temperature [53]. How this freezing occurs and how
far it extends to temperatures and affects plasticity below the
glass transition has recently been considered by one of the
present authors from the perspective of a thermal activation
theory of deformation [49–51].

Within the above framework it is now an important question
to ask, to which class of relaxation processes (α or β) the
identified LSEs should belong to. Figure 9(a) displays a
histogram of the change in energy between the initial and
final atomic configurations found by ARTn. In most cases,
this energy is positive, with a few LSEs leading to a decrease
in energy and therefore a more stable atomic configuration
than the initial configuration reached by dynamical atomistic
simulations. Given that only LSEs are considered that have
a direct path between the initial and activated states (that is,

(a) (b)

FIG. 9. (Color online) (a) Normalized distribution of the change
in energy between the initial and final state configurations and (b) a
scatter plot of this energy difference with the corresponding barrier
energy.

there exists no intermediate stable configuration), Fig. 9(a)
suggests that the initial configuration is in the basin of a
much larger PEL valley and therefore in the valley of the
α landscape. From this context, the ARTn method appears
to be probing primarily the β PEL involving the first LSE
stage that would generate the atomic configuration’s journey
out of its current α megabasin. Figure 9(b) shows the scatter
plot between the change in energy between the initial and
final atomic configurations with respect to the corresponding
barrier energy. The plot demonstrates the obvious fact that a
barrier energy cannot be less than the final-state energy for
LSEs that are directly connected to the initial state. The figure
also reveals that those final states that have an energy less
than the initial state are separated by the full spectrum of
possible activation energies, and that only very few final states
have small activation energies. Generally, little correlation is
seen apart from the observation that both energy scales are
comparable demonstrating that, if the assumed surrounding α

energy landscape does exist, the underlying “ripple” β energy
scale is that of the LSE energy scale. Figure 7 shows, however,
that identifying LSEs as β processes has the consequence that
bonds are broken for β processes—a result that is different
from the view point that only α processes involve the breaking
of bonds (see, for example, Ref. [54] and references therein).

Further insight into the above aspects can be gained from
previous atomistic simulation work investigating structural
transitions occurring in the undercooled liquid regime of a
model glass [55–59]. These works all find cooperative string-
like motion involving many atoms. Detailed inspection reveals
that such stringlike motion can occur either coherently, where
all particles move simultaneously, or incoherently, where
single particles or subgroups of particles (microstrings of
the extended string structure) move sequentially in time [57].
Which behavior is more likely (either coherent or incoherent
atomic motion) is believed to be temperature dependent and
of entropic origin, where within the framework of random-
first-order-transition theory a critical temperature exists above
which cooperative rearrangements are characterized as fractal
or “stringy,” and below which they are more compact [60]. This
temperature also characterizes the transition, with decreasing
temperature, to an undercooled liquid regime more strongly
influenced by thermal activation. Finally, in the work of Vogel
et al. [58], it was found that the stringlike activity tended
to facilitate irreversible structural transformations between
megabasins, i.e., α activity, whereas incoherent activity in-
volving only a few atoms of the string represented reversible
transitions between inherent structures and therefore β activity.

The present work therefore demonstrates that stringlike
structural transformations also emerge in an entirely static
regime of the PEL, where the corresponding saddle-point
configuration is directly connected to the initial stable con-
figuration via no intermediate stable configurations. This
is somewhat different from the above undercooled liquid
scenario, which suggests that stringlike rearrangements of
atoms occur via less direct pathways, with intermediate steps
each involving a subgroup of atoms belonging to the string. It
is, however, noted that the dynamical stringlike excitations
generally involve many more atoms than that seen in the
LSEs identified with ARTn. Together this suggests that the
present LSEs are more likely to be those associated with
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the intermediate stages—the so-called micro-strings—that
together lead to the cooperative atomic rearrangements seen in
the undercooled liquid regime. If this is the case, the present
work clearly extends the concept of the β process to be
beyond that of a simple “rattling” of an atom within its local
environment without the breaking of a bond.

The above result supports the notion that the identified α

and β processes might not be so dissimilar—a conclusion also
recently reached by Ju and Atzmon [61,62] via mechanical
elastic-loss-modulus experiments in which the data suggest a
similar underlying atomic mechanism distinguished only by
STZ (or LSE) size.

In conclusion, the ARTn method has been used to identify
local structural excitations (LSEs) in three-dimensional model
glass samples that have been characterized in terms of their
local atomic quantities (LAQ). Taking advantage of the
localized displacement fields of the LSEs, the mean atomic
quantity of an LSE is computed via a displacement-weighting
technique and its distribution compared with total sample and
atom-type-resolved distributions. It is found that only a weak

correlation exists between the local atomic environment and
where an LSE occurs, and its barrier energy. In particular,
it is found that smaller atoms are more often involved and
that those with lower barrier energy tend to occur in softer
potential energy regions. The origin of this appears to lie in
the weak bond energy between such atoms. In general, LSEs
identified via the ARTn method occur throughout the sample,
and in large number, with a slight bias to be near regions of
free volume. Atomistic visualization of individual LSEs reveal
them to consist of chainlike structures involving the successive
replacement of one atom with that of a nearest-neighbor atom
and a surrounding accommodation mechanism involving both
elastic and plastic distortion.
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