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Influence of short-range forces on melting along grain boundaries
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We investigate a model which couples diffusional melting and nanoscale structural forces via a combined
nano-mesoscale description. Specifically, we obtain analytic and numerical solutions for melting processes at grain
boundaries influenced by structural disjoining forces in the experimentally relevant regime of small deviations
from the melting temperature. Though spatially limited to the close vicinity of the tip of the propagating
melt finger, the influence of the disjoining forces is remarkable and leads to a strong modification of the
penetration velocity. The problem is represented in terms of a sharp interface model to capture the wide range
of relevant length scales, predicting the growth velocity and the length scale describing the pattern, depending
on temperature, grain boundary energy, strength, and length scale of the exponential decay of the disjoining
potential. Close to equilibrium the short-range effects near the triple junctions can be expressed through a contact
angle renormalization in a mesoscale formulation. For higher driving forces strong deviations are found, leading
to a significantly higher melting velocity than predicted from a purely mesoscopic description.
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I. INTRODUCTION

The presence of grain boundaries in a vast range of materials
used in metallurgical processes has crucial influence on their
key features. Elevated temperatures during the processing and
reduced local transition temperatures can lead to phenomena
of grain boundary induced failure, as e.g., hot cracking [1].
Grain boundary melting is of importance in many industrial
processes nowadays, as materials with specifically low grain
boundary melting temperatures become widely used. The
behavior of superheated grain boundaries was investigated
on atomistic scales [2], where symmetric tilts showed an
extended regime of stability above the melting temperature.
Grain boundary premelting was investigated recently, e.g., in
Refs. [3–6], showing that for low misorientation an attractive
interaction between adjacent solid-melt interfaces can stabilize
a grain boundary. Recent investigations of heterogeneous nu-
cleation of liquid droplets in overheated grain boundaries link
the short-range interactions to nucleation processes [7]. Up to
now, the subsequent melting process along the grain boundary
following the nucleation regime has not been investigated,
taking into account the influence of the short-range forces. For
an overheated crystal, the melt phase becomes wide far behind
the triple junction, and a mesoscale perspective has been
developed [8]. In contrast to a classical Mullins grooving [9], a
steady state growth regime is found here. This treatment does
not resolve the behavior near the tip region, which is influenced
by microscopic effects in the spirit of Refs. [7,10]. In fact, a
combined treatment of the short-scale interaction effects and
the mesoscale diffusion limited melting process has not yet
been achieved and is the subject of this paper. A major result
is the establishment of a quantitative link between an effective
mesoscale description and the near tip behavior, using the
scale-bridging approach developed here, which is valid for low
overheating. As a result, we obtain a closed description, which
contains in a single framework the short-ranged interactions on
the nanometer scale and simultaneously captures the kinetics
of the melting process, which is a typical mesoscale process.
We note that this typically demands us to resolve multiple

characteristic length scales, which typically differ by several
orders of magnitude.

Apart from a numerical treatment, which resolves effi-
ciently the phenomena on all of these relevant length scales,
we also provide an analytical description, which is in excellent
agreement with the full model. Its central benefit is that
it delivers a closed expression of the melting velocity, and
therefore gives deeper insights into the dependencies on the
different control and material parameters.

II. MODEL DESCRIPTION

We describe the interaction of structural forces on the
nanoscale and diffusional grain boundary melting via a sharp
interface model in terms of boundary integral equations. The
geometry of the system is shown in Fig. 1. Here a melt
finger is propagating into the overheated solid along a grain
boundary, and we expect that the presence of short-range
structural interactions strongly influences the kinetics of the
process. On large scales (top panel), a mesoscopic melt front is
advancing along the dry grain boundary, with a characteristic
parabolic front profile. Closer inspection of the tip region
(middle panel) shows the appearance of finite contact angles
between apparently straight interfaces. On the microscopic
level (bottom panel) short-ranged effects lead to curved
interface profiles.

The effects on the atomistic scale are incorporated in terms
of the disjoining potential V (W ), where W is the local width
of the liquid as depicted in Fig. 1. It expresses the structural
short-range interaction between the two misoriented grains
which are separated by a melt layer. A repulsive interaction
V ′(W ) < 0, typical for large misorientations, gives rise to
grain boundary premelting, whereas attractive interactions
V ′(W ) > 0 stabilize a dry grain boundary. While combinations
of these two cases with extrema in the disjoining potential
can occur and result from the structure of V (W ) as being
a superposition of exponentially decaying contributions with
different ranges [3–5], we focus here on the elementary case
of monotonic disjoining potentials.
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FIG. 1. (Color online) Melting along an overheated (dry) grain
boundary, seen on three different scales. On the largest scale, the
behavior is dominated by the diffusion limited growth (top), on
intermediate scales by the (mesoscopic) finite contact angle at the
triple junction (center), and on microscopic scales (bottom) by
the solid-melt interface interaction, which bends the interfaces. Far
behind the triple junction the influence of a finite tip angle and the
short-range interactions has decayed, and the contours approach an
Ivantsov parabola (black dotted curve). Solid curves result from a
numerical solution of the full problem (5), points from the analytical
solution of Eq. (10). The axes are scaled by the asymptotic parabola
radius ρ and additionally by the microscopic tip angles φ0 and φ2

0 , in
agreement with the theoretical approach and better visibility of the
thin melt front. The region inside the blue rectangles is magnified in
the following subfigure. On the intermediate scale, the mesoscopic
contact angle φ∞ appears, which differs from the microscopic contact
angle φ0 in the presence of short-ranged interface interactions (bottom
panel). In all cases the microscopic tip angle is φ0 = 0.02, the
overheating � = 0.01, and the range of the short-range interactions
β = 4. By α = �w/� we denote the ratio of the magnitude of the
structural forces and the overheating, x(ξ ) describes the interface
shape, and v is the steady state growth velocity.

From a mesoscopic perspective the grain boundary pre-
melting is characterized by γ̄ = γgb − 2γsl , where γgb is the
energy of a dry grain boundary and γsl is the solid-melt
interfacial energy. It describes the preference of having two
solid-melt interfaces versus a grain boundary. Apparently
γ̄ > 0 represents repulsive grain boundaries and γ̄ < 0 cor-
responds to attractive grain boundaries. We can then write
V (W ) = γ̄ f (W/δ), where δ is the atomistic length scale
characterizing the range of the structural forces, and f (W/δ) =
exp(−W/δ). This type of effective model for the structural
disjoining potential, as described recently via atomistic studies
[11], was originally suggested for the understanding of wetting
transitions [12]. A seminal description for the appearance of
wetting transitions in grain boundaries is found in Ref. [13],
and further discussions of the relation to structural forces in
Refs. [14,15].

Together with the local melting temperature shift due to
the disjoining potential we take the Gibbs-Thomson effect
for curved solid-melt interfaces into account, so in local
equilibrium the transition temperature TI of a melting front
is given by

TI = TM

[
1 + γslκ

L
+ γ̄

Lδ
f ′(W/δ)

]
, (1)

where κ is the curvature (positive for a convex liquid phase),
L is the latent heat, and the last term represents the shift
of the melting temperature TM due to the structural forces
(see Appendix A for a derivation). We rephrase the problem
in dimensionless units and obtain for the temperature at the
solid-melt interfaces

u|int = � − �wf ′ − dκ. (2)

Here we introduce u = (T∞ − T )cp/L, � = (T∞ −
TM )cp/L, �w = TMγ̄ cp/(L2δ), and the capillary length
d = TMγslcp/L2, using the heat capacity cp. T∞ is the
temperature which is applied far away from the grain
boundary. For melting processes, we have T∞ > TM , and
therefore far behind the triple junction, where also the
short-range interactions have decayed, a parabolic profile is
found [8], as shown in the top panel of Fig. 1.

Heat transport is described by the bulk diffusion equation

D∇2u = ∂u/∂t, (3)

with the thermal diffusivity D which is assumed to be equal
in the solid and liquid phase. Typical magnitudes for metals
range from 10−5 to 10−4 m2/s. The difference between the
temperature gradients on the solid (S) and liquid (L) side of
the interface accounts for the latent heat consumption at a
propagating interface,

vn = D�n · (∇uL − ∇uS)|int, (4)

with the interface normal �n and the normal component vn of
the interface velocity.

The equivalent Green’s function formulation of the moving
boundary problem is more convenient for our purposes in view
of a combined numerical and analytical treatment [16–18], as
well as by the need to resolve the dynamics of the process
on various scales as depicted in Fig. 1. Thus, eliminating the
thermal field in Eq. (2) and rescaling all lengths by the tip
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radius of curvature ρ of the asymptotic parabola, we obtain in
a comoving frame of reference for a steady state solution

� + �w exp

(−2|x|ρ
δ

)
− d

ρ
κ

= p

π

∫ ∞

−∞
dx ′e−p(ξ−ξ ′)K0(p|�r − �r ′|), (5)

with the integration along the solid-melt interface,
parametrized by the dimensionless function ξ (x), see
Fig. 1. Notice that we parametrize the disjoining potential in
a small slope approximation by the local melt layer width
W (ξ ) = 2|x|, which changes only slowly on the scale ξ ,
i.e., |dW/dξ | ∼ φ0 � 1 for small opening angles φ0 (see
Fig. 1). This formulation combines Eqs. (2)–(4) in closed
form as a nonlinear eigenvalue problem to determine the
interface contour ξ (x) and the scale d/ρ. By K0 we denote
the modified Bessel function of second kind in zeroth order.
The Peclet number p = ρv/(2D) is the ratio of the tip
radius of curvature of the asymptotically matched parabola
in the region ξ → −∞ and the diffusion length 2D/v. At
the tip, the description is supplemented by the knowledge
of the contact angle, and this will be discussed in more
detail below. The tail region, where the influence of the
triple junction and the short-range interaction is no longer
relevant, determines the relation between the overheating
� and the Peclet number via the classical Ivansov relation
� = √

πp eperfc(
√

p) (see Ref. [19]). This is an important
ingredient, as this relation, which appears on the largest scale
of the model, controls the growth velocity depending on the
parabola radius ρ. In turn, the short-ranged effects, which
can affect the growth kinetics, therefore also influence the
asymptotic front profile, hence coupling short-range effects
with the mesoscopic front profiles.

III. CONTACT ANGLE RENORMALIZATION

We begin our analysis of the model by consideration of an
equilibrium situation � = 0 for an attractive grain boundary,
i.e., γ̄ = V (0) < 0, where the interfaces are stationary. Then,
in Eq. (5) also the integral term, which expresses the latent
heat absorption at solidifying fronts, vanishes. On scales,
which are large in comparison to the microscopic scale δ, the
short-range interactions have decayed, and straight interfaces
form, in order to minimize the interfacial energy. Seen on this
larger scale, these straight interfaces come together at the triple
junction, where they form a mesoscopic contact angle φ∞, as
shown in the second panel of Fig. 1, which in full equilibrium
is given by Young’s law (we consider only isotropic surface
energy, and therefore torque terms do not show up). It reads in
small angle approximation |x ′| � 1,

γ̄ = −φ2
∞γsl . (6)

This relation anticipates that the triple junction is mobile, and
the total interfacial free energy is minimized with respect to
this degree of freedom.

On scales W ∼ δ the short-ranged interface interaction sets
in and bends the solid-melt interfaces. We expect for attractive
interactions convex solid phases, as this effectively brings the
solid-melt interfaces closer to each other and therefore reduces

the energy. As a result, the mesoscopic contact angle φ∞ on
scales W 
 δ deviates from the microscopic angle φ0, which
is defined at the very tip as tan φ0 = −x ′(ξ = 0), as illustrated
in the bottom panel of Fig. 1.

For � = 0 the condition (5) can also be interpreted as
minimization δF/δx(ξ ) = 0 of the energy functional

F =
∫ 0

−∞
[2γsl(1 + x ′2)1/2 + V (W )]dξ, (7)

which consists of the energy of the two solid-melt interfaces
and the disjoining potential V (W ). The prime denotes differen-
tiation with respect to ξ . The origin x = ξ = 0 is chosen as the
position of the triple junction. In small slope approximation
for narrow melt fingers the equilibrium condition becomes
γsl[x ′(ξ )2]′ = {V [2x(ξ )]}′, in agreement with Eq. (5). Integra-
tion yields

φ∞ =
√

φ2
0 − γ̄

γsl

. (8)

Hence for an attractive interaction γ̄ < 0, the mesoscopic
contact angle φ∞ is larger than the microscopic one φ0, in
agreement with our expectation. From the comparison of
Eqs. (6) and (8) we obtain in full equilibrium φ0 = 0.
This result is a natural consequence of the continuous
interpolation of the solid-melt interface energy 2γsl to the
grain boundary energy γgb if the two interfaces come closer.
Therefore, also the interface curvature changes continuously
at the triple junction from the wet side to the dry grain
boundary, i.e., φ0 = 0. However, as mentioned before, this
anticipates full equilibration of the triple junction, and
Eq. (8) can be understood as a generalization of Young’s
law (6).

In general, the behavior of the triple point will be controlled
by independent kinetics, which are not the focus of the
present work. This implies, that for growth situations, the
triple junction may not fully equilibrate, which can lead to
finite tip angles φ0, as discussed also in Appendix B. For
a more thorough discussion of this issue see Ref. [10]. As
a generalization, we therefore allow also for microscopic
angles φ0 > 0 in the discussion of melting in the following
section. Moreover, we mention in passing that in general
also other effects can lead to modified contact angles,
among them surface roughness and heterogeneities, see, e.g.,
Refs. [20–23].

IV. RESULTS AND DISCUSSION OF THE ENTIRE
MELTING PROCESS

We split our approach threefold when we focus on the
melting process—in the most general regime we solve the
boundary integral formulation of the problem as stated in
Eq. (5) numerically, depending on the overheating for various
disjoining potential parameters. As pointed out in detail later
in this section, we then distinguish two limiting regimes,
where we can simplify the governing equations and reduce
the problem such that we can predict both the eigenvalue
and the interface analytically. Finally, we relate the results
obtained numerically by the direct solution of Eq. (5) to the
results we obtained analytically and semianalytically in the
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limiting regimes of the parameter space accessible at small
overheatings.

We begin with the results from the direct numerical solution
of Eq. (5). In this representation, the problem demands the
solution of the interface shape ξ (x) such that it matches the
prescribed slope at the tip and the parabolic asymptotics far
behind the triple junction. The obtained eigenvalue d/ρ as
function of the overheating �, the magnitude of the disjoining
potential �w, the ratio of the length scale of the disjoining
potential and the capillary length δ/d, and the opening angle
φ0 allows us to extract the melting velocity as v = 2Dp(�)/ρ.
For the sake of clarity we show the obtained results for Eq. (5)
in terms of μ = dφ3

0/(ρ�), which effectively expresses the
growth velocity v as function of p/φ2

0 as a measure for
the overheating as the driving force for different values of
α = �w/� (strength of interaction) for fixed β = 2dφ2

0/(δ�)
(range of interaction). This is the reduced set of independent
parameters which suffices to describe the problem in the
analytic calculations below, and we can thus easily compare
the outcome of all approaches.

To estimate the range of the appearing parameters, we start
with typical interfacial energies γ̄ ∼ γsl ∼ γgb ∼ 10−1 J/m2.
The range of the disjoining forces is typically in the range of
δ ∼ 10−10–10−9 m. Using values for aluminum, TM = 660 K,
L ≈ 8.7 × 108 J/m3, and an overheating (T∞ − TM )/TM ∼
0.01–0.1 gives α ∼ 1. With d ∼ 10−9 m we have β ∼ 1.

For the example of δ iron near the melting point we can
use more explicitly the disjoining potential determined from
amplitude equations descriptions for a symmetric tilt [100]
grain boundary with a misorientation of 11.4◦. The functional
form V (W ) = γ̄ exp(−W/δ) fits well to the attractive tail
of the interaction in Ref. [3] with γ̄ = −610 mJ/m2 and
δ = 0.18 nm and solid-melt interface energy γsl = 144 mJ/m2

(see Ref. [24]). These estimates demonstrate the appli-
cability of the description to a wide class of metallic
systems.

The resulting plot is split into two regimes, see the
continuous curves in Fig. 2, for large ratios of Peclet number
and opening angle p/φ2

0 in the top part, and for small
values in the bottom part. We find that attractive interactions
α < 0 lead to a smaller eigenvalue μ and growth velocity,
in agreement with the intuitive expectation. The results for
repulsive structural forces, i.e., α > 0, for � > 0 have to be
interpreted as kinetically stabilized solutions, as discussed in
Appendix B.

Beyond the purely numerical approach for Eq. (5), we
focus on narrow melt fronts with small opening angles
φ0 � 1 and small overheating � � 1. As seen in Fig. 1,
−dξ/dx = (tan φ0)−1, and we rescale such that −dξ/dx = 1,
i.e., x → xρ/φ0, ξ → ξρ/φ2

0 , with Ivantsov asymptotics ξIv 
−x2/2. In conjunction with the exchange of the dependent
and independent variables, x ↔ ξ , this allows us to linearize
the curvature term and the integral kernel in Eq. (5). For
the exponential contribution from the disjoining potential, the
argument then reads −βξ/μ, which decays within the close
vicinity of the triple junction, such that we can approximate
−dξ/dx ≈ 1 there. We note that due to the renormalization of
the contact angle the interface is curved on the scale δ near the
origin, and therefore the assumption of a straight line behavior
for the exponential term is only approximate. This allows us
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lines in (a).

to obtain an equation which is entirely linear in dx/dξ ,

1 + α exp

(
−ξβ

μ

)
+ μ

d2x

dξ 2

= 2p1/2

π3/2φ0

∫ ∞

0
dξ ′ dx

dξ ′ exp

(
−p(ξ ′−ξ )

φ2
0

)
K0

(
p|ξ ′−ξ |

φ2
0

)
.

(9)

We solve Eq. (9) numerically for the slope of the interface
profile. The resulting eigenvalue μ as function of p/φ2

0 is
shown as isolated points in Fig. 2, exhibiting an excellent
agreement with the solution of the full problem Eq. (5).

Close to the origin p/φ2
0 � 1 we expect for the eigenvalue

μ the scaling μ ∼
√

p/φ2
0 without short-ranged interactions

(α = 0) due to the structure of Eq. (9), see Ref. [8]. This
equation suggests that the influence of the short-range forces
decays on the scale μ/β, so the relative range of the structural
forces is exponentially small in the limit of small p/φ2

0 .
Consequently, we assume that the dependence of μ on α

reduces to exponentially small corrections and preserves the
above scaling μ ∼

√
p/φ2

0 in this regime. Based on this we
can find also σ := d/(ρp) ∼ 1/φ4

0 (for φ0 � 1). This is in
general agreement with the theory of dendritic growth which
states that for finite value of σ a cusp (φ0 < π/2) appears at
the origin of the melt front for isotropic surface tension [25].
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When we consider the specific case p/φ2
0 
 1 within the

regime � � 1, φ0 � 1, the asymptotic approximation for
large arguments of the modified Bessel function holds, and
we can simplify the integral kernel in Eq. (9) and also cut the
range of integration to the point of observation. The obtained
Volterra integro-differential equation

1 + μ
d2x

dξ 2
+ α exp

(
−β

μ
ξ

)
=

√
2

π

∫ ξ

0

1

(ξ − ξ ′)1/2

dx

dξ ′

(10)

is accessible via Laplace transform techniques (for details see
Appendix C), and the eigenvalue μ is determined as

μ = π

2

⎡
⎣1 + α − β

2
+

√(
1 + α − β

2

)2

+ β

⎤
⎦

3

. (11)

The selection appears here through the necessity to suppress
exponentially growing modes in the tail of the melt front
profile, as discussed in Ref. [8].

We compare for three different ratios α = �w/� the
solution obtained from Eq. (11) to the values for μ which
we obtained via the direct numerical solution of Eq. (5)
for p/φ2

0 
 1 in Fig. 2. Here the top panel shows how the
analytically predicted eigenvalues are asymptotically reached
by the numerically calculated eigenvalues of the full problem
(5). Since μ  dφ3

0vπ/(2D�3) for low overheating [� 
(πp)1/2 there], the velocity is proportional to the eigenvalue
μ, and allows us to easily convert back the dimensionless
parameters to observable quantities, see Appendix C.

Overall we find excellent agreement of the eigenvalues
predicted by all three approaches to the problem.

Finally, we also calculate the interface contour analytically
in the regime φ2

0 � 1, �2 � 1, p/φ2
0 
 1. For this purpose

we solve the inverse Laplace transformation problem for
the slope of the interface, as described in Appendix D. The
integrated slopes yields the interface profiles shown in Fig. 1
with attractive and without short-range interactions. First, for
the given parameters we find an excellent agreement with
the unapproximated numerical solution in the entire regime.
Second, increasing the magnitude of the structural forces leads
to increasingly wider tails for attractive interactions. This is
a result of the long-range transport, which fixes the product
ρv/2D via the Ivantsov relation. Hence a slower front demands
a wider tail.

V. CONNECTION BETWEEN MICROSCOPIC
AND MESOSCOPIC DESCRIPTIONS

In contrast to Ref. [8], where a purely mesoscopic descrip-
tion of the melting along a grain boundary has been achieved,
we consider here additionally the influence of short-range
interactions, which therefore demand a treatment on a wide
range of length scales. Under certain circumstances, it is
possible to directly transfer the microscopic behavior in the
tip region to the mesoscopic description [8], and this link is
analyzed here. It is based on the contact angle renormalization,
as studied in Sec. III. Provided that the melting process is slow,
such that the interfaces can almost fully establish equilibrium
on short scales W ∼ δ, and additionally under the condition
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FIG. 3. (Color online) Upper half of the solid-melt front. The
plot shows interface contours based on the full model (5) including
the short-range interaction (continuous curves) and mesoscopic
simulations without short-range interactions (shown as symbols),
but using the contact angle renormalization (8). We use � = 0.01,
φ0 = 0.01, and d/δ = 16.7, hence β = 0.32. For large absolute
values of α the ratio ρ/(φ∞δ) is largest, and then the microscopic
model (with tip angle φ0) delivers the same interface contour as the
mesoscopic model (with φ∞) on large scales. Close to the trijunction,
the shapes differ, as shown in the inset.

that the length scale δ of the short-ranged forces is significantly
smaller than the length scale of the parabolic melting front
φ∞δ � ρ, the renormalized contact angle appears as effective
boundary condition in the mesoscopic description without
short-ranged forces (α = 0). We therefore expect, that under
these circumstances, both the mesoscopic description with the
effective boundary condition x ′(0) = − tan φ∞ (using α = 0)
and the microscopic model with x ′(0) = − tan φ0 (with α <

0), which covers all length scales, should lead to the same
results on scales larger than δ. For that purpose we have
performed two sets of simulations using the full nonlinear
model (5), and the results are shown in Fig. 3. For the values
used there, the scale separation varies between φ∞δ/ρ = 0.03
for α = −8 to φ∞δ/ρ = 0.53 for α = −1. The separation of
scales is therefore better for larger absolute values of α, and
then the interface contours obtained from the two approaches
coincide on mesoscopic scales; on short scales of the order
δ, there are always deviations, as shown in the inset of
Fig. 3, since the mesoscopic approach contains the short-range
influence only in an effective sense. We also extract the
eigenvalue d/ρ, which is proportional to the melting velocity,
as obtained from the two complementary approaches, and find
very good agreement also in cases where the interface contours
deviate significantly. We find that the obtained eigenvalue
d/ρ = 2Dvp/d scales in this regime as d/ρ ∼ α−2. This
scaling is consistent with the mesoscopic prediction d/ρ ∼
�2/φ4

∞ ∼ α−2 which is valid for �/(πφ∞) � 1, see the
discussion above following the linearized description Eq. (9).

We point out that the reduction to the mesoscopic model via
the contact angle renormalization implies a strong reduction
of the parameter space. A priori, the melting velocity is a
function of four parameters, v(�,φ0,�w,d/δ), whereas the
matching allows to reduce it to only two parameters, v(�,φ∞).
In this regime, the microscopic details are therefore fully
contained in the information of the mesoscopic contact angle
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FIG. 4. (Color online) Top: Ratio of melting velocities of the mi-
croscopic model v0 and the corresponding velocity for the mesoscopic
model v∞. The thick lines and symbols result from the solution of
the full nonlinear model (5), the thin dashed-dotted line from the
analytical expression (11), showing a good agreement for higher
overheatings. Bottom: Ratio of melting velocity as function of �w

for � = 0.1. The red points are results from the full problem (5),
the dashed dotted curve from the analytical result (11). For �w = 0
both descriptions coincide, but near the maximum the microscopic
description leads to a significantly higher melting velocity. The
remaining parameters are in both panels φ0 = 0.01, d/δ = 16.67.

φ∞ = (φ2
0 − �wδ/d)1/2. To understand better the applicability

of this mapping, we performed simulations of the full model
(5) and corresponding simulations with renormalized contact
angle and without short-range interactions. The ratio of the
obtained velocity v0/v∞ of the microscopic to the mesoscopic
model is shown as function of overheating in Fig. 4. Close to
equilibrium, both approaches indeed give the same velocity.
For higher driving forces however substantial deviations
emerge. The melting velocity of the full microscopic model
then predicts a significantly higher melting velocity than the
mesoscopic model. This demonstrates the striking influence of
the short-range forces also on the kinetics of grain boundary
melting beyond a purely mesoscopic perspective. The appear-
ance of the maximum in the velocity ratio, as shown in the
bottom panel of Fig. 4, is due to two competing effects: On the
one hand, for �w/� → 0 the short-range forces vanish, and
therefore the microscopic and the mesoscopic model become
the same (φ∞ = φ0). On the other hand, for low ratios of these
driving forces the solid-melt interfaces cannot fully establish
locally the equilibrium contact angle renormalization, and
therefore effectively a lower kinetic contact angle φ∞ emerges.

It leads to faster growth in agreement with the scaling v ∼
μ∞/φ3

∞ for fixed driving force �. In turn, for larger strength of
the attractive force, i.e., larger value −�w , hence φ∞ 
 φ0, the
microscopic and corresponding mesoscopic model therefore
lead again to similar velocities.

The numerical results are also in very good agreement
with the closed analytical expression (11). For the mesoscopic
model (α = 0) it recovers μ∞ = π/2 (see Ref. [8]), and the
velocity ratio is given by

v0

v∞
= μ

μ∞

(
φ∞
φ0

)3

. (12)

Figure 4 shows excellent agreement with the full numerical
solution and again demonstrates the strong influence of the
short-ranged forces beyond an equilibrium contact angle
renormalization for larger driving forces.

VI. SUMMARY AND CONCLUSIONS

In summary, we have developed a sharp-interface descrip-
tion for steady state melting along a grain boundary, which
takes into account the effect of interface interactions near the
triple junction. This description demands to resolve the process
on several orders of magnitude in length. The reason is that
on the one hand the behavior near the triple junction, where
the short-ranged interactions are strongest, clearly affects the
melting process and the shape of the solid-melt interfaces.
On the other hand, one still has to consider mesoscopic
(diffusive) transport on larger scales to predict the kinetics
of the process. Such a scale bridging description is difficult
to achieve with other approaches like phase field, as the
numerical cost for such simulations would be very high.
Apart from that, our investigations also allow us to reduce
the complex description to a fully analytical expression,
which predicts both the growth velocity and the interface
profiles with high accuracy on all scales. Near equilibrium,
the influence of the microscopic short-range forces reduces
to a renormalization of the mesoscopic contact angle, which
allows us to predict the melting velocity and interface profiles
quantitatively on distances beyond the scale δ. For higher
overheating, however, the present more detailed microscopic
model predicts significantly higher melting velocities than one
would expect from a purely mesoscopic consideration.

In conclusion, our findings explicitly show the significant
influence of structural nanoscale effects on length and time
scales relevant to metallurgical melting processes. Hereby, the
generic formulation which yields robust scaling laws suggests
the importance for whole classes of materials.
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APPENDIX A: LOCAL EQUILIBRIUM CONDITION

Here we derive the expression for the solid-melt interface
temperature given by Eq. (1). We focus on the disjoining
potential here and therefore consider only planar interfaces;
the Gibbs-Thomson term involving the interface curvature can
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be treated in the usual way. For a solid-melt-solid layer system
at constant temperature T the free energy per unit area is

F (T ,W ) = −L
T − TM

TM

W + V (W ) + 2γsl, (A1)

with W being the width of the sandwiched melt layer and the
disjoining potential V (W ) for the interaction between the two
solid-melt interfaces. Extremization of the free energy with
respect to W therefore gives

T = TM

[
1 + V ′(W )

L

]
, (A2)

which is the desired expression for V (W ) = γ̄ f (W/δ).

APPENDIX B: TRIJUNCTION KINETICS

Young’s law expresses full equilibration and therefore
minimization of the free energy also with respect to the triple
junction position. In general, it reads as a mesoscopic condition

γgb = 2γsl cos φ∞, (B1)

for γ̄ = γgb − 2γsl < 0. It reduces to Eq. (6) for φ∞ � 1.
For finite melting velocity v the equilibrium condition

generalizes to

γgb − 2γsl cos φ∞ = γsl

v

v0
, (B2)

with a characteristic velocity scale v0. For v � |v0| the
expression recovers Young’s law (B1). The solution of Eq. (B2)
for φ∞ � 1 becomes

φ2
∞ = − γ̄

γsl

+ v

v0
. (B3)

Hence, finite velocities affect the mesoscopic contact angle,
and can consequently also lead to finite microscopic tip angles
φ0 according to Eq. (8).

APPENDIX C: DETERMINATION OF THE EIGENVALUE

Here we give more details on the calculation of the
eigenvalue μ in the regime p � 1, φ2

0 � 1, p/φ2
0 
 1 when

β/μ 
 1. Specifically, the Laplace transformation of Eq. (10)
yields for the image space function of the slope

L
[
dx

dξ

]
(s) = μs − 1 − αs/(s + βμ−1)

μs2 −
√

2
π
s

1
2

=: f (s). (C1)

This function has singularities at s�
1 = −βμ−1,s�

2 =
(2/π )1/3μ−2/3, and s�

3 = 0. In general, the real space function
f (x) corresponding to an image space function f (s) which
exhibits a pole on the positive real axis at s = a has a leading
term f (x) ∼ exp(ax). Consequently, the pole on the real
positive axis at s�

2 is prohibited by the parabolic asymptotics
of our interface, and the selection of the eigenvalue demands
the compensation of that pole by a vanishing value of the
numerator at s = s�

2. From the resulting quadratic equation in
μ1/3, we pick the solution that has a proper behavior as α → 0.
Specifically, we demand that as α → 0, μ1/3 → (π/2)1/3,
which we know from our earlier considerations [8]. From
the obtained expression of the eigenvalue (11) the explicit

representation of the melting velocity in terms of the material
parameters reads finally

vd

D
= μ

2

π

�3

φ3
0

∼
{

� + �w − 2 d
δ
φ2

0

φ0
+

[
�2

φ2
0

+ 2�w + 4 d
δ
φ2

0

φ0
�

+
(

�w

φ0
− 2

d

δ
φ0

)2]1/2}3

.

APPENDIX D: DETERMINATION OF THE INTERFACE

First, we describe an intermediate step for the analytic
calculation of the slope of the interface. The inverse trans-
formation of the Laplace transform of dx/dξ is obtained by
the Bromwich integration, which reads

dx

dξ
= 1

2πi

∫ a+i ∞

a−i ∞
ds esξf (s). (D1)

Here the real constant a is chosen such that all singularities are
located to the left of the vertical integration path at Re(s) = a.
In our case, due to the selection mechanism, the function has
remaining poles only on the negative real axis. We evaluate the
integral via the residue theorem, applying one of the standard
Bromwich contours—specifically, we integrate the classical
half circle, but exclude the branch cut on the negative real
axis, as shown in Fig. 5. We separate the Laplace transform
f (s) into contributions from the different singularities:

f (s) =
√

π

2

[
1√
s

+ c2 − c3
√

s − c4s

s3/2 − c5

]
+ c1√

β

μ
+ i

√
s

+ c∗
1√

β

μ
− i

√
s
. (D2)

FIG. 5. (Color online) The integration contour for evaluation of
Eq. (D1). The evaluated integral is from a − ic to a + ic, and the only
contributions which contribute additionally for integration along the
closed contour are �1 and �2, parallel to the negative real axis. In the
limit c → ∞, we thus can determine the inverse Laplace transform.
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Here we define

α̃ = α
2μ

π
+ β3

, c1 = α̃

2

[√
β3μ + iμ

√
2

π

]
,

c2 = α̃β
2

π
, c3 = (α̃ − β2 − 1)

√
2

π
,

c4 = α̃μ
2

π
+ 1, c5 =

√
2
π

μ
.

For the representation in Eq. (D2) we can directly evaluate
several contributions,

1√
s

→ 1√
πξ

,

1√
β

μ
+ i

√
s

→ − i√
πξ

+
√

β

μ
e
− β

μ
ξ erfc

[
−i

√
β

μ
ξ

]
.

So from

dx

dξ
=

1 − ic1

√
2
π√

2
π

√
πξ

+
√

β

μ
c1e

− β

μ
ξ erfc

[
−i

√
β

μ
ξ

]
+ c∗

1

(
i√
πξ

+
√

β

μ
e
− β

μ
ξ erfc

[
i

√
β

μ
ξ

])
+ L−1

⎡
⎣ 1√

2
π

c2 − c3
√

s − c4s

s3/2 − c5

⎤
⎦

the only remaining integration is

L−1

⎡
⎣ 1√

2
π

c2 − c3
√

s − c4s

s3/2 − c5

⎤
⎦ = lim

ε→0, R→∞
1

i
√

8π

∫ R

ε

[
c2 + ic3

√
s + c4s

is3/2 − c5
− c2 − ic3

√
s + c4s

−is3/2 − c5
e−sξ

]
ds

= lim
ε→0, R→∞

−
√

2

π

∫ R

ε

c4q
6 + c2q

4 + c5c3q
2

q6 + c2
5

e−q2ξ dq.

After tedious algebraic manipulations we get the complete solution for dx/dξ ,

dx

dξ
= − 1

3
√

2πc2
5

×
(

c2
{
πc

5
3
5

[
exp

(
3
2c

2
3
5 ξ

) + √
3 sin

(
1
2

√
3c

2
3
5 ξ

) + cos
(

1
2

√
3c

2
3
5 ξ

)] − 6
√

πc2
5

√
ξ exp

(
1
2c

2
3
5 ξ

)
1F3

(
1; 1

2 , 5
6 , 7

6 ; c2
5ξ

3

27

)}
exp

(
1
2c

2
3
5 ξ

)

+ c5c3

[
4
√

πc2
5ξ

3
2 1F3

(
1;

5

6
,
7

6
,
3

2
;
c2

5ξ
3

27

)
− πc5 exp

(
c

2
3
5 ξ

) + 2πc5 cos
(

1
2

√
3c

2
3
5 ξ

)
exp

(
1
2c

2
3
5 ξ

)
]

− c2
5c4

{
5πc

1
3
5

[
exp

(
3
2c

2
3
5 ξ

) − √
3 sin

(
1
2

√
3c

2
3
5 ξ

) + cos
(

1
2

√
3c

2
3
5 ξ

)] − 8
√

πc2
5ξ

5
2 exp

(
1
2c

2
3
5 ξ

)
1F3

(
1; 7

6 , 3
2 , 11

6 ; c2
5ξ

3

27

)}
exp

(
1
2c

2
3
5 ξ

)
)

+ c�
1

[√
β

μ
erfc

(
i
√

ξ

√
β

μ

)
exp

(
ξ

β

μ

) + i√
π

√
ξ

]
+

c1

√
β

μ
erfc

( − i
√

ξ

√
β

μ

)
exp

(
ξ

β

μ

) +
1 − ic1

√
2
π

√
π

√
2
π

√
ξ

− c4√
2ξ

. (D3)

Here iFj denotes the generalized hypergeometric function. This expression is then integrated numerically to obtain the solid-melt
interface contours as shown in Fig. 1 and in excellent agreement with the direct numerical solution of Eq. (5).
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