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Enhancement of electronic spin susceptibility in Pauli-limited unconventional superconductors
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We calculate the wave-vector-dependent electronic spin susceptibility χαβ (q,H0) of a d-wave superconductor
in uniform magnetic field H0 with Pauli pair-breaking. We find that the transverse component of the susceptibility
tensor can be greater than its normal state value; the longitudinal component also slightly increases but in a very
limited range of q’s. We identify several wave vectors {q⊥,q‖} that correspond to the maxima of either χ⊥ or χ‖.
We compare our results with available data on the high-field phase in heavy-fermion CeCoIn5.
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The interplay of superconductivity (SC) and magnetism has
been an active field of research for many years. Ferromagnetic
order produces strong uniform internal fields that tend to
destroy spin-singlet Cooper pairs. Such competition usually
results in suppression of one of the orders [1]. The antiferro-
magnetic (AFM) order, on the other hand, interferes much less
with superconductivity, as it gives rise to field oscillations on
a short atomic scale, much smaller than the Cooper pair size
ξ0 [2]. Furthermore, in unconventional superconductors under
certain conditions the superconducting and aniferromagnetic
spin-density wave (SDW) orders are attractive [3].

Recent years have seen another cycle of interest in
understanding the details of the SC-SDW interactions due
to the discovery of iron-based superconductors [4] and the
Ce family of heavy-fermion materials [5,6]. In pnictides the
coexistence of the SDW and SC is due to the multiband
nature and unconventional order parameter structure. The
interplay of two orders is a strong function of the Fermi surface
(FS) topology [7]. In heavy-fermion Pauli-limited CeCoIn5

the normal state is nonmagnetic but the SDW magnetism
(Q phase) appears in the high-field low-temperature part of
the phase diagram, through a second-order transition, and
disappears simultaneously with superconductivity at first-
order Hc2 transition (see Fig. 1) [6,8,9]. The experiments
point towards strong AFM fluctuations in the normal state
[10], which, however, are not strong enough to produce SDW
instability. Nonetheless, these fluctuations can be enhanced
by doping [11], or possibly by magnetic field, and result in
AFM order.

Following the initial suggestion that the anomalous phase
could be a nonuniform Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [12], several theories appeared that connected the
onset of magnetic order to the density of states enhancement
by spatially nonuniform SC states, including FFLO [13,14]
and vortex cores [15].

Another recently proposed explanation of the Q phase does
not require nonuniform SC, and is based on the interaction
of the uniform superconducting state with magnetic field,
when Pauli depairing produces favorable conditions for AFM
instability inside the SC phase [16]. The mechanism behind
this effect was further revealed in [17], which connected
the emerging AFM instability with the appearance of spin-
polarized quasiparticle pockets near gap nodes, and nesting of
those pockets in momentum space.

The details of this “attraction” between SDW order and
Pauli-suppressed SC are still not fully uncovered. All theories
so far assumed only a single direction of the SDW ordering
vector q, connecting nodes, independent of temperature and
the field. The size of the SDW phase has not been explicitly
connected with the microscopic parameters such as size of
the SC gap, bandwidth or Fermi energy, and strength of the
magnetic interactions.

In this Rapid Communication we present a microscopic
picture of the SDW instability in unconventional d super-
conductors, and find several key features consistent with the
experiments on CeCoIn5. We calculate the spin susceptibility
as a function of magnetization ordering vector q, temperature,
and field, and determine onset of the magnetic instability in
the phase diagram. Susceptibility gives detailed information
about possible ordering vectors, direction of magnetization,
and their variations with field and temperature. Its magnitude
relates the size of the SDW region to magnetic interaction
strength, SC gap (low), and band (high) energy scales. We
determine how the ordering vectors at instability change
with field and temperature. We find that the mechanism
behind enhancement lies not in near-perfect nesting of new
quasiparticle pockets, but rather in a combined effect of the
quasiparticles’ dispersion, phase-space restrictions, and the
structure of the order parameter. This results in several possible
q vectors connecting the sharp ends of these pockets.

Our model H = H0 + V is a mean-field SC Hamiltonian
H0 that includes Zeeman interaction with uniform magnetic
field H0:

H0 =
∑
kμ

ξkc
†
kμckμ +

∑
k

(�kc
†
k↑c

†
−k↓ + H.c.)

+μB

∑
kμν

c
†
kμσμνH0ckν . (1)

Interaction V is a q-dependent perturbation of the magnetic
field δH(R) = δHqe

iq·R, V = μB
∑

kμν c
†
k+qμσμνδHqckν ,

where μB is the magnetic moment of electron. The electronic
dispersion in the normal state is ξk = k2

2m∗ − εf . The resulting
magnetization has a uniform part and q-dependent linear
response to perturbation:

Mα(R) = M0α(H0) + χαβ(q)δHβeiq·R (2)

1098-0121/2014/89(22)/220501(5) 220501-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.220501


RAPID COMMUNICATIONS

BENJAMIN M. ROSEMEYER AND ANTON B. VORONTSOV PHYSICAL REVIEW B 89, 220501(R) (2014)

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.00     0.20     0.40     0.60     0.80     1.00

μ B
H

/Δ
0

T/Tc

AFM + SC

SC

N

Δk
+

+ -

-
H0

δHqeiqR

M0 δM

+

+ -

-

FIG. 1. (Color online) Phase diagram of a Pauli-limited super-
conductor, with the Q phase [9] sketched. We consider a circular
Fermi surface, and d-wave order parameter �k = �0(T ,H ) sin 2φk.
The magnetic field has a large uniform component H0 and a spatially
varying perturbation δHq with wave vector q.

with M0(r,t) = μB〈S(r,t)〉0, and susceptibility [18]:

χαβ(r,t) = iμ2
B

�
〈[Sα(r,t),Sβ(0,0)]θ (t)〉0,

(3)

χαβ(q) =
∫

d3r e−iqr
∫ +∞

0
dt e−0+t χ (r,t),

where S(r,t) = ∑
μν ψ†

μ(r,t) σμν ψν(r,t), ψν(r,t) =∑
k ckν(t)ϕν(r), and ckν(t) = eiH0t ckμe−iH0t ; subscript 0

indicates the average over ensemble (1).
The temperature and magnetic field dependence of the

uniform magnetization M0 is known, e.g., [19], and here we
discuss the susceptibility χαβ(q), since it determines the mag-
netic instability into an SDW state, and the Ruderman-Kittel-
Kasuya-Yosida-type interaction between localized moments.
We diagonalize Hamiltonian (1) by the Bogoliubov transfor-
mation ckμ = ukγkμ + (iσ2)μνv

∗
kγ

†
−kν with spin-independent

coefficients,

uk =
√

1

2

(
1 + ξk

εk

)
, vk = sgn(�k)

√
1

2

(
1 − ξk

εk

)
(4)

(here εk =
√

ξ 2
k + �2

k), which results in a new quasiparticle
spectrum H0 = ∑

kμ εkμγ
†
kμγkμ , with εkμ = εk ± μBH0 .

Using these expressions in (3), the general formulas
for longitudinal (δM = χ‖δH ‖ H0) and transverse (δM =
χ⊥δH ⊥ H0) components of the susceptibility tensor are

χ‖(q) = −μ2
B

∑
kμ

{
[f (εk−μ) − f (εk+μ)](uk+uk− + vk+vk−)2

εk−μ − εk+μ

− [1 − f (εk−μ) − f (εk+μ)](uk+vk− − vk+uk−)2

εk−μ + εk+μ

}
,

(5a)

χ⊥(q) = −μ2
B

∑
kμ

{
[f (εk−μ) − f (εk+μ)](uk+uk− + vk+vk−)2

εk−μ − εk+μ

− [1 − f (εk−μ) − f (εk+μ)](uk+vk− − vk+uk−)2

εk−μ + εk+μ

}
,

(5b)

where f (ε) = [exp(ε/T ) + 1]−1 is the Fermi distribution,
and momenta are shifted by the magnetization wave vector
k± = k ± q/2. Notation μ means spin state opposite to
μ = ±1.

In the normal state (�k = 0), one obtains the familiar
Lindhard function,

χN
‖ (q) = −μ2

B

∑
kμ

f (ξkμ) − f (ξk+qμ)

ξkμ − ξk+qμ

,

(6)

χN
⊥ (q) = −μ2

B

∑
kμ

f (ξkμ) − f (ξk+qμ)

ξkμ − ξk+qμ

,

where ξkμ = k2

2m∗ − εf ± μBH0 are electron excitation ener-
gies in magnetic field. At zero temperature the Fermi functions
are step functions, and the analytic integration over momenta
gives

χN
‖ (q)

χ0
= 1−1

2
θ (1−2r↑)

√
1 − 4r2

↑ − 1

2
θ (1 − 2r↓)

√
1−4r2

↓,

χN
⊥ (q)

χ0
= 1−θ (1−r↑−r↓)

√
[1−(r↑ + r↓)2][1 − (r↑ − r↓)2].

Here χ0 = 2μ2
BNf is the Pauli susceptibility, r↑↓ = kf ↑↓/q,

and k2
f ↑↓ = k2

f (1 ∓ μBH0/εf ) are the Fermi momenta for
two spin projections. The longitudinal component shows two
kinks, at q = 2kf ↑ and 2kf ↓, when the Fermi surfaces of up
and down spins touch at a single point, whereas the transverse
component involves opposite spins which results in only one
kink at q = kf ↑ + kf ↓. Generally, the value and behavior of
χ (q) is determined by the properties of the dispersion ξk at
hot spots, where ξk+q = −ξk ≈ 0. Near those spots both the
denominator and numerator in χ are close to zero, and the
value of the susceptibility is determined by the phase space,
which is a function of k-space dimensionality and the shape
of the Fermi surface. For example, in the one-dimensional
case or for Fermi surfaces with flat parts the susceptibility is
logarithmically divergent [20].

In the superconducting d-wave state we want to find the
maximal values of susceptibility and the corresponding mag-
netization wave vectors. Nodal regions of �k in magnetic field
host spin-down quasiparticles with negative energies, which
form new Fermi surface pockets [17], and partially destroy
superconductivity. In the q → 0 limit these quasiparticles
result in finite χ‖(0)/χ0 ∼ μBH0/�0. However, the opposite
spin coupling in the first term of (5b) ensures χ⊥(0) = 0.

Analytic analysis of Eqs. (5) in general is quite difficult,
and the result will strongly depend on the topology of the
Fermi surface, field and temperature. However, the important
factors to find the vectors q that maximize the susceptibility
can be stated in T = 0 limit. These vectors are shown in
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FIG. 2. (Color online) (a), (b) Magnetic field produces pockets of
low-energy spin-down excitations near the nodes of the d-wave order
parameter. The largest enhancement of χ⊥ susceptibility occurs when
a magnetic ordering vector connects ends of quasiparticle pockets
with opposite signs of �k (a), or ends with the same sign �k for χ‖
(b). (c) The magnitude of the ordering vectors as a function of the
field at zero temperature, from (a) and (b). (d) Effects of temperature,
from T = 0 to T = 0.3Tc indicated by arrows, on q‖,⊥1 vectors, and
angle φ‖1 between q‖1 and the x axis (inset).

Figs. 2(a) and 2(b) for χ⊥ and χ‖, and they connect the sharp
ends of the spin-down quasiparticle FS pockets, given by
εk↓ =

√
ξ 2

k + �2
k − μBH = 0. This result is in accord with

the enhanced quasiparticle scattering with similar vectors
observed in [21]. In the vicinity of such common point, εk+↓ ≈
εk−↓ ≈ 0 and the denominators of the first (second) term in
the longitudinal χ‖ (transverse χ⊥) response can be expanded
as v+δk + v−δk. The contribution to χ is greatest when the
group velocities v± = ∇kεk±↓ are the smallest, i.e., near the
sharp ends of the banana-like regions, where quasiparticle
velocity is related to the opening rate of the gap v� =
∂
√

v2
f k2

⊥ + �2
0 sin2 2φ/∂(kf φ) ∼ vf (�0/εf ) � vf . The ac-

tual magnitude of χ is determined by the available phase space
given by a complicated FS overlap in a two-dimensional (2D)
k plane, the distribution functions and the superconducting
coherence factors in the numerators of Eqs. (5). The χ‖’s first
term is maximized when the magnetization vector q connects
the same �k-sign points, making (uk+uk− + vk+vk−) the most
positive and largest with vk+vk− > 0; similarly, the largest χ⊥
is reached when (uk+vk− − vk+uk−) is the most positive. This
occurs at vectors, connecting points with opposite signs of
�k± . The length of the magnetic vectors at T = 0 is shown in
Fig. 2(c) as a function of magnetic field.

We confirm this analysis numerically and further investigate
dependence on the temperature and field, on scales T ∼
μBH0 ∼ �0 � εf . In Fig. 2(d) we show the T -induced
deviations of optimal q1 vectors from their T = 0 values. At
each T and H0 we self-consistently compute the amplitude of
the gap function �k = �(T ,H ) sin 2φk [�(0,0) = �0], which
we substitute into Eq. (5). Then we scan over the 2D q vector to
locate the maximum of the susceptibility χ (qmax). We find that
the ordering vector q⊥1 in transverse susceptibility follows the

    0.40

    0.60

    0.80

    1.00

    1.20

χ⊥

χN
⊥

χsc
⊥ (Δ0/εf=0.005)

χsc
⊥ (Δ0/εf=0.1)

q⊥, 3 q⊥, 2 q⊥, 1

    0.00

    0.01

    0.00     0.50     1.00     1.50     2.00

δχ⊥

q/kf

Δ0/εf=0.005

FIG. 3. (Color online) The T = 0 normalized susceptibility in
the superconducting and normal states (flat line at small q) as a
function of q. We set μBH = 0.5�0, close to the Pauli-limiting field
μBHP/�0 = 0.56, and �0/εf = 0.005 (red) or �0/εf = 0.1 (black).
Transverse susceptibility shows enhancement over the normal state
χN (q) with two peaks at q⊥1,3 for nodal-q direction (solid), and
one peak for q||q⊥2 (dashed), in accordance with Figs. 2(a) and
2(c). The lower pane shows zoomed-in δχ⊥(q) = χSC

⊥ (q) − χN
⊥ (q)

for �0/εf = 0.005. The maximal enhancement δχ⊥(q) occurs at
wave vectors q⊥1,3 and is of the order δχ⊥/χ0 ∼ �0/εf .

zero-T expected pattern, but gets reduced with temperature,
resulting in smaller overlap of the quasiparticle pockets.
Conversely, for the longitudinal component the overlap is
increasing with temperature, as seen in the inset from the
smaller φq‖ angle.

In Fig. 3 we plot χ⊥(q) in the superconducting state at
T = 0 and magnetic field μBH = 0.5�0. The directions of
the ordering vectors q are chosen either along the nodal line
or along q⊥2 for this field [see Fig. 2(a)]. For the chosen small
value of �0/εf = 0.005, the maximal enhancement of χ⊥
occurs at the shortest vector q3, but we find that the maximum
shifts to q1 vector if �0/εf ∼ 0.1.

In Fig. 4 we present the low-T , high-H corner of the T -H
phase diagram of a Pauli-limited d-wave superconductor, and
plot the constant value contours of the χ⊥ peaks, corresponding
to different vectors q⊥i . In this part of the phase diagram
δχ = χSC

⊥ − χN
⊥ becomes positive and progressively larger,

while at higher T or lower HχSC
⊥ (q) < χN . The typical size of

the enhancement over the normal state is δχ/χ0 ∼ �0/εf . The
contours of enhanced susceptibility δχ (T ,H ) will determine

FIG. 4. (Color online) Contour lines of maximal enhancement of
transverse susceptibility χ⊥ in the T -H phase diagram for �0 =
0.005εf . Different contours correspond to relative enhancements
δχ (q)/χ0, given in percents. The three panels correspond to q vectors
in Fig. 2(a). The dotted line is the first-order Pauli-limiting phase
transition.
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the boundary of the SDW state inside the uniform SC phase, if
the magnetic interaction is strong enough to cause divergence
of χRPA(q) = χ (q)/[1 − J (q)χ (q)], which may happen in
the case of strong magnetic fluctuations in the normal state,
J (q)χ0 = 1 − O(�0/εf ).

We note that the longitudinal susceptibility does not show
similar enhancement. We find that for q‖1 ∼ 2kf the enhance-
ment δχ‖ = χSC

‖ (q,H0) − χN
‖ (q,H0) can be ∼ O(�0/εf ), but

it occurs on the background of reduced normal state χN
‖ (q,H0)

and does not lead to an increase over χ0.
These results align very well with the experimental data for

CeCoIn5. The general location in the T -H phase diagram and
the shape of the SDW instability, determined by enhancement
δχ⊥, is consistent with the Q-phase transition, and agrees
with the conclusions of [17]. The SC-induced enhancement
of χ⊥, and the absence of such in χ‖, explains why the
Q phase is observed only when the H0 field is in the ab

plane, and the SDW magnetization is orthogonal to it. We
find several possible candidates for the SDW ordering vector
q, only one of which is probably selected by the magnetic
interaction J (q). The nodal q⊥1 is the most likely candidate
from an experimental point of view [9] which sees ordering
at [0.44,0.44]π/a (our gap is 45◦-rotated) and it also agrees
with the size of the α-FS pocket of CeCoIn5[15]. The length
of this vector drops by about a percent over the 0–0.3Tc

range [Fig. 2(d)], and this reduction rate is comparable to the
change of 0.2% observed in [9] when temperature increased
from 60 mK (0.025Tc) to 150 mK (0.06Tc). The magnitude
of χ⊥’s enhancement needed to achieve SDW instability is
also consistent with observed material parameters. For the
ratio �0/εf ∼ 0.6 meV/0.5 eV ∼ 0.001 [22,23] we showed

that typical enhancement is of about the same size δχ⊥/χ0 ∼
�0/εf , i.e., a fraction of a percent. A similar-size enhancement
of normal state susceptibility χ0 can be associated with the FS
changes induced by Cd-doping CeCo(In1−xCdx)5 [11,24,25].
According to the data [25], doping of x = 0.1 induces an AFM
state, and corresponds to a 5.5% decrease in FS volume. Linear
extrapolation of Néel temperature to zero inside the SC state
gives 4% minimal doping, which would correspond to a 2%
FS decrease, that with a more realistic tight-binding dispersion
[17] corresponds to a 3% increase in χ0. Conversely, applying
pressure would increase the FS size, reduce χ0, and destroy
the SDW state [11].

In conclusion, we investigated the behavior of spin sus-
ceptibility in Pauli-limited unconventional superconductors.
We found that the field-induced nodal quasiparticles, and the
sign-changing nature of the gap, lead to the enhancement of the
transverse susceptibility inside the superconducting phase. We
find several magnetic ordering vectors, connecting sharp (high
density of states) ends of the field-induced Fermi pockets. The
enhancement is of the order δχ/χ0 ∼ �0/εf and is a strong
function of temperature and magnetic field; it may result in
an SDW order formation inside the uniform superconducting
phase at low temperatures and high fields, whose features are
semiquantitatively consistent with observations in CeCoIn5.
To get more detailed agreement with the CeCoIn5 data one
needs to take into account a more realistic band structure and
three-dimensional topology of the Fermi surface.

This research was done with NSF support through Grant
No. DMR-0954342. A.B.V. acknowledges the hospitality of
Aspen Center for Physics, and discussions with I. Vekhter.
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