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We study the zero-temperature (T = 0) ground-state (GS) properties of a frustrated spin-half J XXZ
1 –J XXZ

2

model on the honeycomb lattice with nearest-neighbor and next-nearest-neighbor interactions with exchange
couplings J1 > 0 and J2 ≡ κJ1 > 0, respectively, using the coupled cluster method. Both interactions are of the
anisotropic XXZ type. We present the T = 0 GS phase diagram of the model in the ranges 0 � � � 1 of the
spin-space anisotropy parameter and 0 � κ � 1 of the frustration parameter. A possible quantum spin-liquid
region is identified.
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Frustrated spin-half (s = 1
2 ) antiferromagnets with nearest-

neighbor (NN) J1 > 0 and competing next-nearest-neighbor
(NNN) J2 > 0 exchange couplings on the honeycomb lattice
have attracted a great deal of interest in recent years.
These have included the two specific cases where both
couplings have either an isotropic Heisenberg (XXX) form
(see, e.g., Refs. [1–16], and references cited therein) or an
isotropic XY (XX) form (see, e.g., Refs. [17–23]). Although
the classical (s → ∞) versions of these two models have
identical zero-temperature (T = 0) ground-state (GS) phase
diagrams [1,2], their s = 1

2 counterparts differ in significant
ways. Furthermore, there is not yet a complete consensus on
the GS phase orderings for either model in the range 0 � κ � 1
of the frustration parameter κ ≡ J2/J1.

Whereas both classical (s → ∞) models have Néel order-
ing for κ < κcl = 1

6 , the spin- 1
2 models both seem to retain

Néel order out to larger values κc1 ≈ 0.2, consistent with
the fact that quantum fluctuations generally favor collinear
over noncollinear ordering. The degenerate family of spiral
states that form the classical GS phase for all values κ > κcl

is very fragile against quantum fluctuations, and there is broad
agreement that neither s = 1

2 model has a stable GS phase with
spiral ordering for any value of κ in the range 0 � κ � 1.

The most interesting, and also most uncertain, regime for
both s = 1

2 models is when 0.2 � κ � 0.4. For the XXX model
the Néel order that exists for κ < κc1 ≈ 0.2 is predicted by
different methods to give way either to a GS phase with
plaquette valence-bond crystalline (PVBC) order [6,7,10–14]
or to a quantum spin-liquid (QSL) state [5,9,15,16] in the
range κc1 < κ < κc2 ≈ 0.4. By contrast, for the XX model
the Néel xy planar [N(p)] ordering that exists for κ < κc1

is predicted by different methods to yield either to a GS phase
with Néel z-aligned [N(z)] order [19,23] or to a QSL state
[17,20] in a corresponding range κc1 < κ < κc2 . There is broad
agreement for both models that for (1 >) κ > κc2 there is
a strong competition to form the GS phase between states
with collinear Néel-II xy planar [N-II(p)] and staggered dimer
valence-bond crystalline (SDVBC) forms of order, which lie
very close in energy. The (threefold-degenerate) Néel-II states,
which break the lattice rotational symmetry, are ones in which
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NN pairs of spins are parallel along one of the three equivalent
honeycomb directions and antiparallel along the other two.
Some methods favor a further quantum critical point (QCP)
at κc3 > κc2 , at which a transition occurs between GS phases
with SDVBC ordering for κc2 < κ < κc3 , possibly mixed with
N-II(p) ordering over all or part of the region, and N-II(p)
ordering alone for κ > κc3 .

The intriguing differences between the two models motivate
us to consider the so-called J XXZ

1 –J XXZ
2 model that interpo-

lates between them. It is shown schematically in Fig. 1(a) and
is described by the Hamiltonian

H = J1

∑

〈i,j〉

(
sx
i sx

j + s
y

i s
y

j + �sz
i s

z
j

)

+ J2

∑

〈〈i,k〉〉

(
sx
i sx

k + s
y

i s
y

k + �sz
i s

z
k

)
, (1)

where 〈i,j 〉 and 〈〈i,k〉〉 indicate NN and NNN pairs of spins,
respectively, and si = (sx

i ,s
y

i ,sz
i ) is the spin operator on lattice

site i. We shall study the T = 0 GS phase diagram for the
spin- 1

2 Hamiltonian of Eq. (1) on the honeycomb lattice in the
range 0 � � � 1 of the spin anisotropy parameter that spans
from the XX model (with � = 0) to the XXX model (with � =
1), and in the range 0 � κ � 1 of the frustration parameter.
Henceforth we put J1 ≡ 1 to set the overall energy scale.
We note that both exact diagonalization (ED) of small finite
lattices and density-matrix renormalization group (DMRG)
studies of the XX model in particular find it especially difficult
to distinguish the N-II(p) and SDVBC phases in the regime
κ > κc2 in the thermodynamic limit, N → ∞, where N is the
number of lattice sites. For this reason it is particularly suitable
to use a size-extensive method such as the coupled cluster
method (CCM) that works from the outset in the N → ∞ limit.

We first describe some key features of the CCM and refer
the reader to Refs. [11,12,23–31] for more details. Any CCM
calculation starts with the choice of a suitable model (or refer-
ence) state |�〉. Here we use each of the N(p), N(z), and N-II(p)
states shown schematically in Figs. 1(b)–1(d). In order to treat
each lattice site on an equal footing we passively rotate each
spin in each model state, so that in its own local spin-coordinate
frame it points downwards (i.e., along the local negative z axis).
In these local spin coordinates every model state thus takes the
universal form |�〉 = |↓↓↓ · · · ↓〉 and the Hamiltonian has to
be rewritten accordingly. The exact GS energy eigenket, |�〉,
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FIG. 1. (Color online) The J XXZ
1 –J XXZ

2 model on the honeycomb lattice, showing (a) the bonds (J1 ≡ —– ; J2 ≡ ) and the two sites
( ) A and B of the unit cell; (b) the Néel planar, N(p), state; (c) the Néel z-aligned, N(z), state; and (d) the Néel-II planar, N-II(p), state. The
arrows represent the directions of the spins located on lattice sites •.

with H |�〉 = E|�〉, is now expressed in the exponentiated
form, |�〉 = eS |�〉, where the creation correlation operator
S is written as S = ∑

I 	=0 SIC
+
I , with C+

0 ≡ 1, the iden-
tity operator. The corresponding GS energy eigenbra, 〈�̃|,
where 〈�̃|H = E〈�̃|, is written as 〈�̃| = 〈�|S̃e−S , where
S̃ = 1 + ∑

I 	=0 S̃IC
−
I , and C−

I ≡ (C+
I )†. The states obey the

normalization conditions 〈�̃|�〉 = 〈�|�〉 = 〈�|�〉 = 1 and
the relations 〈�|C+

I = 0 = C−
I |�〉,∀I 	= 0, which ensure that

|�〉 is a fiducial vector with respect to the complete set of
multispin creation operators {C+

I }. In the local spin-coordinate
frames, C+

I also takes a universal form, C+
I → s+

l1
s+
l2

· · · s+
ln

, a
product of single-spin raising operators, s+

l ≡ sx
l + is

y

l , where
the set-index I → {l1,l2, · · · ,ln; n = 1,2, · · · ,2sN}. The set
of multispin correlation coefficients {SI ,S̃I } is determined by
requiring that the energy expectation value H̄ = H̄ {SI ,S̃I } ≡
〈�|S̃e−SHeS |�〉 is a minimum. The GS magnetic order
parameter is defined as M ≡ − 1

N
〈�̃| ∑N

k=1 sz
k |�〉, the average

local on-site magnetization, with respect to the local (rotated)
spin coordinates.

The only approximation now made in the CCM is to truncate
the set of indices {I } in the expansions of the correlation
operators S and S̃. We use here the well-studied (lattice-
animal-based subsystem) LSUBm scheme [11,12,23,28–31]
in which, at the mth level of approximation, one retains all
multispin-flip configurations {I } defined over no more than
m contiguous lattice sites. Such cluster configurations are
defined to be contiguous if every site is NN to at least one
other. The number, Nf , of such fundamental configurations is
reduced by exploiting the space- and point-group symmetries
and any conservation laws that pertain to the Hamiltonian
and the model state being used. Even so, Nf increases
rapidly with increasing LSUBm truncation index m, and it
becomes necessary to use massive parallelization together
with supercomputing resources [29,32]. For example, we have
finally Nf = 818 300 for the N-II(p) reference state at the
LSUB12 level.

Finally, we extrapolate the “raw” LSUBm results to the limit
m → ∞ where the CCM becomes exact. For the GS energy
per spin, e ≡ E/N , we employ the well-tested extrapolation
scheme [11,12,23,30,31] e(m) = e0 + e1m

−2 + e2m
−4, in

which we use results with m = {6,8,10,12} for the N(p) and
N-II(p) states taken as model state, and with m = {4,6,8,10}
for the N(z) state. For the magnetic order parameter of systems
near a QCP an appropriate extrapolation rule is the “leading
power-law” scheme [12,23], M(m) = c0 + c1(1/m)c2 ,

which we use here for the LSUBm results based on the
N(z) state with m = {4,6,8,10}. An alternative well-tested
scheme for systems with strong frustration or where the
order in question is zero or close to zero [11,12,23]
is M(m) = d0 + d1m

−1/2 + d2m
−3/2, when the leading

exponent c2 above has been empirically found to be close to
0.5, as is the case here for results based on both the N(p) and
N-II(p) model states with m = {6,8,10,12}.

Our corresponding extrapolated (LSUB∞) results for the
GS energy per spin and the order parameter are shown in Figs. 2
and 3. In each case we present three curves for each value of the
anisotropy parameter � shown, based in turn on the N(p), N(z),
and N-II(p) model states. All of the curves in Fig. 2 display
termination points, viz., an upper one for the N(p) curves, a
lower one for the N-II(p) curves, and one of each type for the
N(z) curves. In each case they correspond to the points of the
respective LSUBm approximations with the highest value of
m, beyond which real solutions for {SI } cease to exist. Such
termination points of LSUBm solutions are manifestations of a

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

E
/N

κ

Néel planar Néel z−aligned Néel−II planar

Δ=0.0

0.2

0.5

0.7

Δ=0.8
0.9

1.0

FIG. 2. (Color online) The GS energy per spin E/N versus the
frustration parameter κ ≡ J2/J1 for the spin- 1

2 J XXZ
1 –J XXZ

2 model
on the honeycomb lattice (with J1 = 1), for various values of the
anisotropy parameter � = 0.0,0.2,0.5,0.7,0.8,0.9,1.0 (from top to
bottom, respectively). We show extrapolated CCM LSUB∞ results
(see text for details) based on the Néel planar, Néel z-aligned, and
Néel-II planar model states, respectively. The times (×) symbols mark
the points where the respective extrapolations for the order parameter
have M → 0, and the unphysical portions of the solutions are shown
by thinner lines (see text for details).
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FIG. 3. (Color online) The GS magnetic order parameter M

versus the frustration parameter κ ≡ J2/J1 for the spin- 1
2 J XXZ

1 –J XXZ
2

model on the honeycomb lattice (with J1 > 0) for various values of
the anisotropy parameter � = 0.0,0.2,0.5,0.7,0.8,0.9,1.0 (from top
to bottom, respectively). We show extrapolated CCM LSUB∞ results
(see text for details) based on the Néel planar, Néel z-aligned, and
Néel-II planar states as CCM model states, respectively.

corresponding QCP in the system, beyond which the order as-
sociated with the model state under study melts (see, e.g., Refs.
[11,12,23,30]). We find that as the index m is increased the
range of values of κ for which the respective LSUBm equations
have real solutions becomes narrower, such that as m → ∞
each termination point becomes the corresponding exact QCP.
Real LSUBm solutions with a finite value of m can thus also ex-
ist in regions where the corresponding order is destroyed (viz.,
where M < 0). We show in Fig. 2 by times (×) symbols those
points on the respective curves where M = 0 (as determined
from the corresponding extrapolated LSUB∞ values shown
in Fig. 3). We also denote in Fig. 2 by thinner lines those
portions of the curves which are “unphysical” in the sense that
M < 0, as opposed to the corresponding “physical” regions
where M > 0, which are denoted by the thicker portions.

Figures 2 and 3 show that (a) N(p) order is present below a
lower critical value 0 < κ < κcl

(�), for all values of �, where
κcl

(�) ≈ 0.21; (b) N(z) order is present within a relatively
narrow range of values around κ ≈ 0.3 for all values � � 0.66
and is absent for � � 0.66; (c) N-II(p) order is present above
some upper critical value, (1 >) κ > κcu

(�), where κcu
(�)

increases monotonically with �, (d) whereas the GS phases
with N(p) and N(z) order present seem to meet at κcl

(0) for
� = 0, a very narrow region of a GS phase with neither of
these orderings opens up between them as � is increased; and
(e) similarly, whereas the GS phases with N(z) and N-II(p)
order seem to meet at κcu

(0) for � = 0, a phase with neither
order opens between them as � is increased.

From our previous results at � = 0 [23] and � = 1 [11,12]
and those of others, a possible phase for that mentioned under
item (e) above is one with SDVBC ordering. A convenient
way to test for the susceptibility of a candidate GS phase built
on a specific CCM model state is to consider its response to an
imposed field operator, F = δ Ô, added to our Hamiltonian
of Eq. (1), where δ is a (positive) infinitesimal and the
operator Ô now promotes SDVBC order (Ôd ), as illustrated in
Fig. 4. The corresponding perturbed energy per spin,
e(δ) ≡ E(δ)/N , is calculated at various CCM LSUBm

orders of approximation and used to calculate the re-
spective susceptibility, χ ≡ −∂2e(δ)/∂δ2|δ=0 (and see Refs.
[11,12,23] for more details). The GS phase becomes
unstable against the imposed form of order whenever
1/χ → 0. The results are extrapolated to the LSUB∞
limit using the “leading power-law” scheme, χ−1 → x0 +
x1m

−ν . We show LSUB∞ extrapolations based on the
N-II(p) model state in Fig. 4, using this scheme with LSUBm

results m = {4,6,8}, for various values of �.
Figure 4 shows that the locus of the lower critical values

of κ at which SDVBC order appears is very insensitive to the
value of � for all � � 0.1, taking the almost constant value
κ ≈ 0.38. Very interestingly, the locus of such SDVBC critical
points meets the corresponding locus of critical values above
which N-II(p) order appears [defined as the corresponding
points κ(�) at which M = 0 for the N-II(p) state, as taken
from Fig. 3] at just the value � ≈ 0.1. For values � � 0.1,
Fig. 4 shows that a region opens up in which both SDVBC and
N-II(p) forms of order seem to coexist over a narrow range of
values of κ , before N-II(p) order dominates for higher values
of κ . This “mixed” region is denoted as M in the phase diagram
shown in Fig. 5.

We also show in Fig. 5 the regions of stability of the N(z) and
N(p) phases, taken from Fig. 3 as the corresponding regions
in which the respective magnetic order parameters M take
positive values.

A particularly interesting region in the phase diagram is the
remaining one outside the region of N(z) stability and between
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FIG. 4. (Color online) Left: The inverse stag-
gered dimer susceptibility, 1/χd , versus the frus-
tration parameter, κ ≡ J2/J1, for the spin- 1

2 J XXZ
1 –

J XXZ
2 model on the honeycomb lattice (with J1 = 1)

for various values of the anisotropy parameter �.
We show extrapolated CCM LSUB∞ results (see
text for details) based on the Néel-II planar state as
CCM model state. Right: The field F → δ Ôd for
the staggered dimer susceptibility, χd . Thick (red)
and thin (black) lines correspond respectively to
strengthened and unaltered NN exchange couplings,
where Ôd = ∑

〈i,j 〉 aij (sx
i sx

j + s
y

i s
y

j + �sz
i s

z
j ), and

the sum runs over all NN bonds, with aij = +1
and 0 for thick (red) lines and thin (black) lines,
respectively.
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FIG. 5. (Color online) Phase diagram for the spin- 1
2 J XXZ
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model on the honeycomb lattice (with J1 > 0 and κ ≡ J2/J1 > 0)
in the window 0 � κ � 1 and 0 � � � 1, as obtained by a CCM
analysis. The phase in the region marked “M” has both SDVBC and
Néel-II planar order. See text for details.

the two curves κ ≈ 0.21 [below which N(p) order is stable]
and κ ≈ 0.38 [above which SDVBC and/or N-II(p) order is
stable], both curves being almost independent of �.

For the XXX model (viz., � = 1) it remains open as
to whether the GS phase in this region has PVBC order
[6,7,10–14] or is a QSL state [5,9,16]. Of particular interest
in this context is a recent DMRG study [15] of the XXX
model that claimed to find solid evidence of (weak) PVBC
order, in the thermodynamic (N → ∞) limit, in the range
0.26 � κ � 0.35, but which excluded (in the same limit) in the
range 0.22 � κ � 0.26 immediately above the Néel-ordered
regime both magnetic (spin) and valence-bond orderings,
consistent with a possible QSL phase. This result is also in
broad agreement with our own earlier CCM findings [11], as
we discuss below.

We have now also tested the stability of the N(p) phase
against PVBC ordering by calculating the corresponding
extrapolated inverse plaquette susceptibility, χ−1

p (see, e.g.,
Ref. [11]), based on the N(p) model state and LSUBm results
with m = {4,6,8}. The corresponding LSUB∞ points at which
χ−1

p → 0 are shown in Fig. 5 by the plus (+) symbols. Based
on such results we tentatively identify the PVBC and QSL
regions indicated in Fig. 5. The fact that the + symbols for � �
0.66 do not fall precisely on the lower stability boundary of the
N(z) regime may be an indication of the error bars associated
with the PVBC boundary points. These would be reduced by
including higher-order LSUBm results in the extrapolations.
The entire PVBC and SDVBC regimes would more definitively
be confirmed by performing calculations of χ−1

p and χ−1
d

based on the N-II(p) state, to confirm their respective upper
boundaries. Such LSUB∞ extrapolations based on the N-II(p)
state are technically more difficult to make, however, and more
definitive evidence awaits higher-order LSUBm calculations.
In their absence we cannot exclude QSL behavior also in the
regime between the N(z) and SDVBC phases for � � 0.66.

In our earlier CCM analysis of the XXX model [11] we
noted the possibility that the transition from the N(p) phase to

the PVBC phase in that model might be via an intermediate
phase, now identified here as a tentative QSL phase. Our best
estimate then was that such an intermediate phase should be
restricted to a region κc1 < κ < κ ′

c1
. The value of κc1 was very

accurately obtained, as κc1 = 0.207(3), from the point where
Néel order vanishes, and is identical to that shown in Fig. 5
for the boundary between the N(p) and potential QSL phases.
The accuracy in κc1 stems from the shape of the N(p) order
curve shown in Fig. 3, which has an infinite (or very steep)
slope at the point κ = κc1 where M → 0. By contrast κ ′

c1
was

determined from the point where χ−1
p → 0. Since the slope

of the χ−1
p (κ) curve becomes zero (or very small) at the point

where it vanishes, the value of κ ′
c1

had a much larger error,
and in Ref. [11] we quoted a value κ ′

c1
≈ 0.24, with no error

estimate. The present analysis has enabled us to examine the
lower phase boundary of the PVBC phase in more detail, and
our best estimate for the XXX model is now κ ′

c1
≈ 0.28(2),

as indicated in Fig. 5. The fact remains that the position of
this phase boundary (i.e., the upper one for the tentative QSL
phase) has the largest uncertainty of all those shown in Fig. 5,
with a similar error along its length to that quoted above for
the case � = 1.

It is interesting to speculate whether the N(z) phase survives
to higher values of the spin quantum number s than the s = 1

2
case considered here. In this context we have performed some
very preliminary low-order CCM SUBm–m calculations with
m � 8 for the spin-1 version of the present XX model (i.e., with
� = 0). In the SUBm–m scheme one retains all multispin-flip
configurations {I } in the expansions of the CCM correlation
operators S and S̃ involving no more than m single-spin
flips spanning a range of m or fewer contiguous lattice
sites. These preliminary SUBm–m calculations, based on both
the N(p) and N-II(p) model states, exhibit three features:
(a) the convergence of both E/N and M with increasing
values of the truncation index m is more rapid than for the
spin- 1

2 model; (b) the energy curves for the N(p) and N-II(p)
phases meet (or almost meet) near their respective termination
points (so far only obtained rather approximately), and without
any perceivable discontinuity in slope, at a value κ ≈ 0.25; and
(c) the corresponding extrapolated order parameters M of both
the N(p) and N-II(p) phases appear to go to zero at values of
κ very close to the same value κ ≈ 0.25. These results alone
show rather clearly that if, for the spin-1 model, there is a phase
intermediate between the N(p) and N-II(p) phases, it can exist
in only a very narrow region indeed around κ ≈ 0.25. Finally,
similar calculations based on the N(z) state for the spin-1
model show no signs of it providing a stable GS phase for
any values of κ . Thus, our preliminary conclusion is that the
stability of the N(z) phase is restricted to the spin- 1

2 system,
although more work would be needed to confirm this.

In conclusion, our CCM analysis gives a coherent picture
of the full T = 0 GS phase diagram of the model under study.
In particular, we have identified a candidate QSL regime, in
which we have excluded magnetic or valence-bond forms of
order. It would be of great interest to use other techniques in
order to verify our findings.

We thank the University of Minnesota Supercomputing
Institute for the grant of supercomputing facilities.
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