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Low anisotropy of the upper critical field in a strongly anisotropic layered cuprate
Bi2.15Sr1.9CuO6+δ: Evidence for a paramagnetically limited superconductivity
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We study angular-dependent magnetoresistance in a low-Tc layered cuprate Bi2.15Sr1.9CuO6+δ . The low Tc ∼
4 K allows complete suppression of superconductivity by modest magnetic fields and facilitates accurate analysis
of the upper critical field Hc2. We observe a universal exponential decay of fluctuation conductivity in a broad
range of temperatures above Tc and propose a method for extraction of Hc2(T ) from the scaling analysis of
the fluctuation conductivity at T > Tc. Our main result is observation of a surprisingly low Hc2 anisotropy ∼2,
which is much smaller than the effective mass anisotropy of the material ∼300. We show that the anisotropy is
decreasing with increasing field and saturates at a small value when the field reaches the paramagnetic limit. We
argue that the dramatic discrepancy of high-field and low-field anisotropies is clear evidence for paramagnetically
limited superconductivity.
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I. INTRODUCTION

The upper critical field Hc2 is one of the key parameters
of type-II superconductors [1]. It is particularly important for
understanding unconventional superconductivity [2,3]. How-
ever, estimation of Hc2 for high-temperature superconductors
is a notoriously difficult task. The high Tc leads to an extended
region of thermally activated flux flow. The complex physics
of anisotropic pinning and melting of the vortex lattice [4]
makes it hard, if at all possible [5], to confidently obtain Hc2

from flux-flow characteristics at T < Tc(H ).
The high Tc in combination with a strong coupling leads to

a large superconducting energy gap � ∼ 20–50 meV [6–11]
and Hc2(0) ∼ 102 T [12–19]. Such strong fields may alter the
ground state of the material. For cuprates and pnictides the
parent state is antiferromagnetic. It has been demonstrated
that relatively weak fields can induce a canted ferromagnetic
order in strongly underdoped cuprates [20]. Furthermore, the
normal state of underdoped cuprates is characterized by the
presence of the pseudogap (PG), which probably represents
a charge/spin or orbital density wave order coexisting and
competing with superconductivity [8,10,21–28]. Suppression
of superconductivity by magnetic field may enhance the
competing PG, as follows from observation of a charge density
wave in a vortex core [9]. But even stronger magnetic fields
of several hundred teslas suppress the PG [29,30]. Thus, both
superconducting and normal state properties are affected by
strong magnetic fields and separation of the two contribu-
tions is highly nontrivial and controversial. Disentanglement
of superconducting and PG characteristics is difficult even
above Tc due to the presence of profound superconducting
fluctuations [31–33]. Therefore, principal new questions,
which do not appear for low-Tc superconductors, are to what
extent H ∼ Hc2 alters the abnormal normal state of high-Tc
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superconductors and how to define the nonsuperconducting
background in measured characteristics.

For many unconventional superconductors the measured
Hc2 exceeds the paramagnetic limit of the BCS theory [1,34].
This has been reported for organic [35–37], cuprate [14,15],
pnictide [38–40], and heavy fermion [41–43] superconduc-
tors. Such an overshooting is an important hint in a long-
standing search for exotic spin-triplet and Fulde-Ferrell-
Larkin-Ovchinnikov states (for review see, e.g., Ref. [43]).
Yet, the overshooting is not a proof of unconventional
pairing because the paramagnetic limit is rather flexible. It
is increasing in the presence of spin-orbit interaction [1]
and in the two-dimensional (2D) case and is lifted in the
one-dimensional (1D) case [43,44]. Unconventional supercon-
ductors are usually anisotropic. Some of them have quasi-2D or
possibly even quasi-1D structure. Many have a significant spin-
orbit interaction between localized spins and itinerant charge
carriers. Consequently, one needs a more robust criterion for
the paramagnetically (un)limited superconductivity in search
for exotic states of matter.

Here we investigate the anisotropy of Hc2 in a strongly
anisotropic layered Bi2.15Sr1.9CuO6+δ (Bi-2201) cuprate with
a low Tc ∼ 4 K. The low Tc and the associated large disparity
of superconducting and pseudogap scales [30] allow simple
and accurate estimation of Hc2 without complications typical
for high-Tc cuprates. We present a detailed analysis of angular
dependence of in-plane and out-of-plane magnetoresistances
(MR) and demonstrate that they exhibit very different behavior.
We observe a universal approximately exponential decay of the
in-plane fluctuation paraconductivity above Tc and propose
a method for extraction of Hc2(T ) from a scaling analysis
of fluctuations at T > Tc. This obviates the complexity of
the flux-flow phenomena and allows unambiguous extraction
of Hc2(T ). Remarkably, we obtained that the anisotropy of
the upper critical field H

‖
c2/H

⊥
c2(T → 0) � 2 is much smaller

than the anisotropy of the effective mass γm � 300 [45]. This
discrepancy clearly indicates that H

‖
c2 parallel to the CuO

planes is cut off by the paramagnetic limit.
Cuprates have homologous families with different num-

ber of CuO planes per unit cell. Cuprates within the
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homologous family have similar carrier concentrations, re-
sistivities, anisotropies, and layeredness, but largely differ-
ent Tc. For Bi-based cuprates the three-layer compound
Bi2Sr2Ca2Cu3O10+δ (Bi-2223) has a maximum Tc of ∼110
K, the two-layer compound Bi2Sr2CaCu2O8+δ (Bi-2212) has
a Tc ∼ 95 K, and a single-layer compound Bi2Sr2CuO6+δ

(Bi-2201) has an optimal (with respect to oxygen doping)
Tc that ranges from ∼30 K for Bi/Pb and Sr/La substituted
crystals [46] to just a few K in the pure Bi-2201 com-
pound [5,47–49]. According to Ref. [48] the stoichiometric Bi-
2201 compound is nonsuperconducting and a finite Tc appears
only in off-stoichiometric Bi2+xSr2−yCuO6+δ compounds with
x,y �= 0. Thus, the Bi/Sr off-stoichiometry allows fine tuning
of the maximum Tc [48,49].

Development of high magnetic field techniques in recent
years has lead to significant progress in studies of Hc2 in
high-Tc superconductors [13,14,18,19]. But the problem of
disentanglement of superconducting and PG magnetic re-
sponses remains. It leads to a lack of clear criteria for extraction
of Hc2 from measurement at H ∼ 100 T. This problem is
avoided in low-Tc cuprates because the relative disparity
between superconducting and pseudogap scales is increasing
with decreasing Tc [30]. Therefore, analysis of Hc2 in low-Tc

cuprates should provide unambiguous information about the
superconducting state, not affected by interference with the co-
existing PG. This is the main motivation of the present work.

II. EXPERIMENTAL

Studied crystals are parts of one pristine Bi2.15Sr1.9CuO6+δ

single crystal with Tc � 3.5 K. Growth and characterization
of crystals is described in Ref. [48]. Oxygen doping was
consecutively decreased by soft annealing in vacuum, which
does not affect the crystal quality [47]. We present data for a
slightly overdoped (with respect to oxygen content) Tc � 4.0 K
[OD(4.0)] and a nearly optimally doped Tc � 4.3 K [OP(4.3)]
crystal.

Figure 1(a) shows an image of the studied sample OP(4.3).
The sample consists of ten micron-size mesa structures (two
big and eight small) with attached gold electrodes. In-plane
resistance is measured with a lock-in technique in a four-
probe configuration by sending an ac current through the
left and right current contacts (big mesas), and measuring
the longitudinal voltage between a pair of small mesas. The
c-axis transport is measured in a three-probe configuration by

sending a probe current through one of the small mesas to one
of the current contacts. The voltage is measured with respect
to unbiased contact pads. Details of sample fabrication and
measurement setup can be found in Ref. [30].

Figure 1(b) shows the c-axis resistance versus temperature
at H = 0 and 14 T along the c axis. It is seen that Rc(T )
exhibits an upturn at T < T ∗ ∼ 110 K, indicating opening of
the c-axis PG. According to previous studies [30,46,50] such
a T ∗ corresponds to a near optimally doped (OP) (slightly
underdoped) Bi-2201. A superconducting transition occurs at
a much lower Tc � 4 K. The c-axis field of 14 T completely
suppresses the superconducting transition but does not change
significantly the PG characteristics due to a large disparity of
superconducting and PG scales in this low-Tc compound [30].

The large c-axis resistance Rc ∼ k� corresponds to a non-
metallic resistivity ρc � 20 � cm [30], which is much larger
than the in-plane resistivity ρab � (1–4) × 10−4 � cm [51].
The anisotropy of resistivity γR = ρc/ρab ∼ 105 and the corre-
sponding effective mass anisotropy γm = √

γR ∼ 300 is very
large [45], similar to Bi-2212 [52] and Bi-2223 [53] cuprates.
This reflects a layered 2D structure of Bi-based cuprates
with mobile electrons localized on atomic CuO planes. The
c-axis transport is caused by interlayer tunneling. Below Tc

this leads to appearance of an intrinsic Josephson effect [54],
observed in all Bi-based cuprates [6,8,16,53,55], including
Bi-2201 [30,50,56]. Interlayer tunneling creates the basis for
the intrinsic tunneling spectroscopy technique [6,8,16,30,53]
and facilitates simultaneous magnetotransport and spectro-
scopic measurements, beneficial for analysis of Hc2 [16].
Figure 1(c) shows the current-voltage I -V characteristics of
a small mesa at T = 1.8 K. A detailed analysis of intrinsic
tunneling characteristics of our Bi-2201 crystals can be found
in Ref. [30]. The small area of our mesas allows investigation
of intrinsic tunneling characteristics [6,8,16,30,53] without
significant distortion by self-heating [8].

III. IN-PLANE AND OUT-OF-PLANE
MAGNETORESISTANCE

A. In-plane magnetoresistance

Figures 2(a) and 2(b) show temperature dependencies of
the in-plane resistance Rab at different magnetic fields (a)
perpendicular and (b) parallel to the ab planes for the OP(4.3)
sample. For H ⊥ ab, Rab reaches the normal state value Rn

already at H � 10 T. For H ‖ ab the field of 17 T still does not

μ
T*

FIG. 1. (Color online) (a) Scanning electron microscopy image of the sample OP(4.3). (b) Temperature dependence of the c-axis resistance
at H = 0 and 14 T. The compound has a low Tc � 4 K and the pseudogap onset temperature T ∗ � 110 K. (c) Current-voltage characteristic of
a small mesa at T = 1.8 K and H = 0.
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FIG. 2. (Color online) T dependencies of the in-plane resistance at magnetic fields (a) perpendicular and (b) parallel to the ab planes.
(c) Comparison of the data from (a) and (b) for zero and 17 T. For H ‖ ab the Rab(T ) is shifted to lower temperatures. For H ⊥ ab the
superconducting transition is completely suppressed and Rab is shifted upwards, indicating presence of a positive orbital magnetoresistance in
the normal state. (d) MR in a perpendicular field below and just above Tc. Note that the saturation field ∼Hc2(T ) is decreasing with T → Tc.
Panels (e) and (f) show MR for both field orientations (e) below and (f) above Tc. The positive MR at T > Tc is caused both by suppression of
superconducting fluctuations and an additional orbital normal state MR.

completely suppress superconductivity. The difference is both
due to the anisotropy and due to different contributions from
flux-flow and orbital effects. The Lorentz force density fL =
(1/c)[J × B], where J is the transport current density and B

is the magnetic induction, acts both on vortices and mobile
charge carriers. In Fig. 2(a) H ⊥ I ‖ ab the Lorentz force is
at maximum and effectively drives pancake vortices [4] along
CuO planes. Therefore, Rab(H ⊥ ab) is dominated by the flux-
flow contribution at T < Tc(H ). In the case of Fig. 2(b) H ‖
ab ‖ I there is no Lorentz force and the flux-flow contribution
should be minimal.

Figure 2(c) represents a detailed comparison of Rab(T ) at
H = 0 and 17 T for the two field orientations. We notice that
the resistive transition at H ‖ ab ‖ I is simply shifted towards
a lower T due to suppression of Tc(H ). On the other hand
Rab at H ⊥ ab is also shifted upwards, even at T 
 Tc. This
indicates that there is an additional positive MR in the normal
state (∼1% at H ⊥ ab = 17 T). Thus, there are two different
mechanisms of positive in-plane MR. At T � Tc it is mostly
due to suppression of superconductivity. Such MR saturates
at H ∼ Hc2. Figure 2(d) shows field dependence of Rab(H⊥)
at T = 1.8 K and at T = 4.2 K ∼ Tc. It is seen that saturation
of Rab(H⊥) occurs at significantly lower field for T = 4.2 K,
consistent with reduction of Hc2 at T → Tc. In the normal
state T > Tc the tendency is reversed. With increasing T the
saturation field is increasing. This can be seen from Figs. 2(e)
and 2(f), which show field dependence of Rab in perpendicular
(circles) and parallel (squares) magnetic fields at T = 2 K and
7.7 K, respectively. Such behavior can be partly attributed to
superconducting fluctuations, for which the characteristic field

is increasing with | Tc − T | [33]. However, fluctuations do
not explain the increment of the saturation value of Rn, which
is visible at T 
 Tc and is significant only for H ⊥ ab; see
Fig. 2(c). Consequently, there is an additional normal state MR,
caused by orbiting of mobile electrons in magnetic field [57].
This leads to a positive MR with saturation at ωcτ > 1, where
ωc = eB/mc is the cyclotron frequency and τ is the scattering
time. Since τ becomes shorter with increasing T , the saturation
field is increasing with increasing T . Due to the quasi-2D
electronic structure of Bi-2201, the orbital MR should appear
only at H ⊥ ab, consistent with our observation.

B. Out-of-plane magnetoresistance

Figures 3(a) and 3(b) show temperature dependencies
of the c-axis resistance Rc at different magnetic fields (a)
perpendicular and (b) parallel to the ab planes. Irrespective
of field orientation, there are both positive and negative
contributions to c-axis MR. Figure 3(c) represents a detailed
comparison of Rc(T ) at H = 0 and at H = 17 T for the two
field orientations. It is seen that in the normal state there is a
significant negative c-axis MR for both field orientations. It is
largest for H ⊥ ab and reaches almost 10% in the 17 T field.

A positive MR appears only in the superconducting state
T < Tc(H ). It is due to suppression of the interlayer Josephson
current with respect to the bias current [58,59]. At H ‖ ab

there is a profound Josephson flux-flow phenomenon due to
easy sliding of Josephson vortices along the ab planes [55,60].
This also leads to a positive MR with a peak at H strictly
parallel to the ab planes [61]. The negative c-axis MR persists
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FIG. 3. (Color online) Temperature dependencies of the c-axis resistance for (a) H ⊥ ab and (b) H ‖ ab. (c) Comparison of the data from
(a) and (b) for H = 0 and 17 T. Panels (d) and (e) show c-axis MR for the two field orientations (d) below and (e) above Tc. It is seen that the
normal state negative MR is present for both field orientations. (f) Rc(H⊥) measured up to 65 T (data from Ref. [30]). It is seen that there is
both a positive MR at low fields due to suppression of the supercurrent and a negative MR at high fields due to suppression of the PG.

both in the superconducting [16] and the normal states and
is attributed to field suppression of either the superconduct-
ing gap � [16] or the pseudogap �PG [29]. For high-Tc

Bi-2212 [6,8] and Bi-2223 [53] cuprates the corresponding
energies (� ∼ 30–50 meV, �PG ∼ 30–70 meV) and fields
(Hc2 ∼ 100–200 T, H ∗ ∼ 200–300 T) are similar [16,29] and
separation of the two contributions is difficult. However, in
the studied low-Tc superconductor the separation becomes
trivial because, as shown in Ref. [30], all PG characteristics
remain similar to high-Tc materials, but all superconducting
characteristics scale down with Tc [11], leading to a large
disparity of superconducting and PG characteristics.

Figures 3(d) and 3(e) show c-axis MR for different field
orientations and temperatures (d) below and (e) above Tc. It
is seen that the negative MR persists at H > H⊥

c2 ∼ 10 T and
at T > Tc and is due to field suppression of the PG [29,30].
Figure 3(f) shows pulsed field measurements of Rc(H⊥) at
T = 1.6 K up to 65 T for a slightly underdoped crystal from
the same batch (data from Ref. [30]). It is seen that at high
fields Rc(H⊥) is approximately linear in the semilogarithmic
scale. An extrapolation to the normal resistance Rn ∼ 160 �

yields the PG closing field H ∗ ∼ 300 T. It corresponds to the
Zeeman energy gμBH ∗ ∼ 35 meV � �PG [30].

C. Angular magnetoresistance at T < Tc

Angular dependence of the upper critical field Hc2(	) is
given by the following equations:

(
Hc2(	) sin 	

H⊥
c2

)2

+
(

Hc2(	) cos 	

H
‖
c2

)2

= 1 (1)

for a three-dimensional (3D) superconductor and
∣∣∣∣Hc2(	) sin 	

H⊥
c2

∣∣∣∣ +
(

Hc2(	) cos 	

H
‖
c2

)2

= 1 (2)

for the 2D case. In the simplest case of an isotropic supercon-
ductor the flux-flow resistivity can be approximately estimated
from the Bardeen-Stephen model [62],

R(	) = Rn

H

Hc2(	)
. (3)

It connects the angular MR R(	) with Hc2(	). The main
qualitative difference between 3D and 2D cases is that R(	 =
0◦) has a smooth minimum in the 3D case and a sharp cusplike
dip in the 2D case [63].

Figures 4(a) and 4(b) show angular dependencies of the
in-plane resistance Rab(	) at T = 2 K measured upon rotation
around two orthogonal axes in the ab plane (a) perpendicular
and (b) parallel to the current. In both cases 	 = 90◦
corresponds to H ⊥ ab, H ⊥ I . But 	 = 0◦ corresponds to
either (a) the Lorentz force-free configuration H ‖ I , or (b) to
the case H ⊥ I when the Lorentz force is acting on Josephson
vortices in the direction perpendicular to layers. Dashed lines
in (b) represent properly scaled data from panel (a) [64]. It is
seen that the behavior in both cases is very similar. Therefore,
at H ‖ ab the flux-flow contribution to Rab is small either due
to zero Lorentz force or a strong intrinsic pinning in the layered
superconductor [65–67], which prevents motion of Josephson
vortices across the planes.

Figure 4(c) shows angular dependencies of the c-axis
resistance. Apart from the dip at 	 ∼ 0◦ due to the anisotropy
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FIG. 4. (Color online) (a) and (b) Angular dependencies of in-plane resistances for rotation around two orthogonal axes in the ab plane.
Dashed lines in (b) represent scaled data from (a) [64]. (c) Angular dependence of the c-axis resistance. The peak at 	 = 0◦ is due to onset
of Josephson flux flow. (d) Theoretical angular dependencies of flux-flow resistances for a 2D model with an anisotropy γ = 5. Note that the
cusp at 	 = 0◦ becomes sharper at H > H⊥

c2 because superconductivity survives only in a narrow range of angles around 	 = 0◦. A similar
narrowing is seen in panels (a)–(c). Panels (e) and (f) represent comparison of (e) in-plane and (f) out-of-plane angular MR (symbols) with
resistances at the corresponding perpendicular H⊥ = H sin(	) (solid lines) and parallel H ‖ = H cos(	) field components at T = 2 K and
H = 17 T.

of Hc2, the Rc(	) has an additional sharp maximum at 	 = 0◦
due to onset of the Josephson flux-flow phenomenon [61]. In
this case the Lorentz force is directed along the ab planes
and easily drags Josephson vortices with low pinning and
viscosity [60]. The shape of Rc(	) at large angles is visibly
affected by the negative normal state MR, which causes a
shallow minimum of Rc(	) at 	 = 90◦ at large fields.

From Figs. 4(a)–4(c) it is seen that R(	) exhibits a cusp
at 	 = 0◦, indicating the 2D nature of superconductivity
in CuO planes. The cusp becomes narrower and sharper
with increasing field. This is in a qualitative agreement with
calculations for the 2D model using Eqs. (2) and (3), shown in
Fig. 4(d). The sharpening of the cusp at 	 = 0◦ occurs when
the field becomes larger than H⊥

c2. In this case the sample
is in the normal state with a flat Rab(	) = Rn for angles
	 ∼ 90◦ at which Hc2(	) < H . As the field approaches H

‖
c2,

superconductivity survives only in a narrow range of angles
	 ∼ 0◦. Therefore, a significant narrowing of the cusp at
H = 17 T in Figs. 4(a)–4(c) indicates that H

‖
c2 is close to 17 T.

The anisotropy of Hc2 can be analyzed from comparison of
angular-dependent R(	) with MR at the corresponding paral-
lel R(H ‖ = H cos(	)) and perpendicular R(H⊥ = H sin(	))
field orientations. If one of the field components is smaller
than the corresponding Hc2, adding an orthogonal component
will contribute to suppression of superconductivity. But if
the field component is larger than Hc2, then an extra field
component will not give a significant contribution to MR. In
Figs. 4(e) and 4(f) we perform such the comparison at T = 2 K.

Black symbols in Fig. 4(e) represent Rab(	) at H = 17 T
from Fig. 4(a) as a function of sin2(	). The solid red line
represents the MR in solely the perpendicular field component
Rab(H⊥ = H sin(	)). The dashed blue line represents a
sum of resistances in the corresponding perpendicular and
parallel field components Rab(H⊥ = H sin(	)) + Rab(H ‖ =
H cos(	)), shown in Fig. 2(e). It is seen that at sin2(	) � 0.35
the angular MR is determined almost entirely by H⊥ and
an additional H ‖ does not contribute significantly to MR.
This angle corresponds to H⊥ = H sin(	) > H⊥

c2 � 10 T, as
indicated by a vertical arrow in Fig. 4(e). At larger angles
superconductivity is already suppressed because H⊥ > H⊥

c2
and MR becomes insensitive to an additional parallel field
component. Such the analysis confirms that H⊥

c2 � 10 T. At
smaller angles H⊥ < H⊥

c2 and H ‖ does contribute to MR,
although not additively.

Figure 4(f) represents a similar comparison for the out-of-
plane resistance. Solid and dashed lines represent the MR
solely in perpendicular and parallel fields from Fig. 3(d).
Apparently, Rc(	) is not determined by a single field com-
ponent. The most pronounced feature of Rc( sin2(	)) is a
rapid drop at sin(	) → 0, which reflects the corresponding
behavior of Rc(H⊥). Therefore, the crystal still maintains some
superconductivity at H ‖ = 17 T, but it is rapidly suppressed
by a small additional H⊥ component upon a slight rotation
of the crystal. Consequently, H

‖
c2(2 K) is slightly larger than

17 T. On the other hand, since H⊥
c2 < 17 T, there is no similar

drop at sin(	) = 1.
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IV. FLUCTUATION MAGNETORESISTANCE

From comparison of Figs. 4(a), 4(b), and 4(d) it is clear that
Eqs. (2) and (3) only explain the narrowing of the cusp, but do
not fit the R(	) data. This demonstrates the inappropriateness
of Eq. (3) for layered superconductors because it does not
take into consideration transformation of the vortex structure,
the pinning strength, and the Lorentz force upon rotation of
the crystal. Furthermore, Eq. (3) assumes that the resistance
always reaches the normal state value Rn at H = Hc2 and
thus neglects the remaining fluctuation paraconductivity at
H > Hc2 [33]. As discussed above, Rab(	 = 0◦) should have
minimal flux-flow contribution due to either zero Lorentz force
or presence of a strong intrinsic pinning. Consequently, the dip
in resistance at 	 = 0◦ in Fig. 4(a) and the major part of the
resistive transition 0 < R < Rn at H ‖ ab ‖ I in Fig. 2(b) are
due to fluctuation conductivity, rather than flux flow. Without
flux flow, Hc2 would correspond to the onset of resistivity
R ∼ 0, rather than R = Rn. This has been demonstrated
by simultaneous tunneling and transport measurements for
conventional superconductors [16]. Without exact knowledge
of the flux-flow contribution it is impossible to confidently
extract Hc2 from R(T ,H ) data at T < Tc. The lack of criteria
for R(H = Hc2) obscures estimation of Hc2 [5]. Therefore, in
the remaining part of the paper we will focus on the analysis of
the fluctuation part of MR at T > Tc. As we will demonstrate,
such data do not suffer from ambiguity associated with the
flux-flow phenomenon and facilitate confident extraction
of Hc2.

A. Angular magnetoresistance at T > Tc

Figure 5 (a) shows angular dependencies of the in-plane
resistance at H = 10 T and at different T close and above
Tc � 4.3 K. Here 	 = 0◦ corresponds to zero Lorentz force
configuration H ‖ ab ‖ I . It is seen that the cusp at 	 = 0◦,
characteristic for the 2D superconducting state, is rapidly
diminishing with increasing T > Tc. It disappears at ∼2Tc.
At T � 10 K it turns into a shallow minimum, which persists
to T 
 Tc and represents the anisotropy of the positive orbital
MR in the normal state.

Figure 5(b) shows angular dependencies of the c-axis
resistance below and above Tc. Here, measurements were
performed at bias above the Josephson flux-flow branch in the
I -V so that the Josephson flux-flow peak in Rc(	 = 0◦) does
not occur [61]. Above Tc the cusp in Rc(	) = 0◦ completely
disappears and only a shallow maximum at 	 = 0◦ remains,
which indicates a small angular anisotropy of the normal state
MR, as seen from Fig. 3(e). In Fig. 5(c) we show angular
dependencies of in-plane and c-axis resistances, normalized
by the corresponding values at 	 = 90◦. One can see a shallow
3D behavior in the normal state.

In Fig. 5(d) we show absolute values of the angular
MR amplitude | �MR(	 = 0◦) = R(0◦)/R(90◦) − 1 |, nor-
malized by the magnetic field, for the in-plane and the c-axis
resistances. The in-plane �MRab (circles) is large in the
superconducting state and remains significant in the fluctuation
region at Tc < T � 2Tc when the cusp in Rab(	 = 0◦) is
observed; see Fig. 5(a). With increasing T , | �MRab | rapidly
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decreases. At T > 20 K it flattens off. The remaining weakly
T -dependent value represents the anisotropy of the positive
in-plane MR in the normal state, presumably of the orbital
origin. The out-of-plane | �MRc | (squares) decreases almost
exponentially with increasing temperature in a wide T range
above Tc. It becomes hardly detectable above the pseudogap
opening temperature T ∗ � 110 K, while the in-plane �MRab

still remains recognizable.
A different behavior of in-plane and out-of-plane MR can be

also seen from comparison of individual and combined contri-
butions of the two field components. Symbols in Figs. 5(e) and
5(f) show angular-dependent (e) in-plane and (f) c-axis MR at
T = 7.7 K > Tc as a function of sin2(	). Dashed blue lines
represent additive contributions from the two field compo-
nents, R = R0 + �R(H⊥) + �R(H ‖), where R0 = R(H =
0), and �R(H⊥) and �R(H ‖) are the corresponding MR
solely in perpendicular and parallel fields, shown in Figs. 2(f)
and 3(e). It is seen that the c-axis MR is well described by
the simple additive contribution of the two field components,
while the in-plane does not. This reflects different mechanisms
of in-plane and out-of-plane magnetoresistances. The negative
c-axis MR is due to field suppression of the pseudogap. The ap-
plied field is much smaller than the PG closing field H ∗ ∼ 300
T [30]. Therefore, the c-axis MR is far from saturation and is
approximately linear in field, leading to additive, independent
from each other, contribution from the two field components.

The positive in-plane MR at Tc < T � 2Tc is mostly
due to suppression of superconducting fluctuations with the
characteristic field H⊥

c2 ∼ 10 T, which is in the range of applied

fields. This leads to saturation of MR and to nonadditive con-
tribution of the two field components. Unlike the normal state
angular MR, which has a 3D character, as shown in Fig. 5(c),
superconducting fluctuations at Tc < T � 2Tc remain quasi-
2D, as seen from the cusp in Rab(	 = 0) in Fig. 5(b). The
solid line in Fig. 5(e) indicates that at not too small angles the
in-plane MR is determined by the c-axis field component.

B. Fluctuation conductivity

Fluctuation paraconductivity is seen as a tail of the in-plane
resistive transitions from Figs. 2(a) and 2(b) at Tc < T � 10 K,
in the same range where the cusp is seen in the angular
MR, Fig. 5(a). Figures 6(a)–6(c) represent normalized excess
conductivities �σab(T ) = 1/Rab(T ) − 1/Rn(T ), in perpen-
dicular and parallel magnetic fields. Here we used different
approximations for Rn: (a) R⊥

n (T ) = Rab(T ,H⊥ = 14 T), (b)
R

‖
n(T ) = Rab(T ,H ‖ = 17 T), and (c) a linear extrapolation

from high T , shown by the dashed line in Fig. 2(b).
It is seen that for both field orientations the fluctuation

conductivity at T > Tc decreases approximately linearly in the
semilogarithmic scale with almost field-independent slopes.
This implies

�σab(T ,H ) ∝ exp{−a[T − Tc(H )]}, (4)

where a is some constant. A similar exponential decay has been
reported for other cuprates [16,49,68]. Even though such an
exponential decay does not follow explicitly from theoretical
analysis of fluctuation conductivity [33,69], it allows an
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unambiguous determination of the characteristic temperature
scale Tc(H ) from the relative shift of the curves along the T

axis with respect to the known Tc(H = 0). Since the �σab(T )
curves in Figs. 6(a)–6(c) remain almost parallel at different H ,
such determination of Tc(H ) does not suffer from widening of
the resistive transition, as in the flux-flow case at T < Tc in
Fig. 2(a). Therefore, thus obtained Tc(H ) has the same degree
of certainty as Tc(H = 0).

Equation (4) suggests that �σ (T ,H ) curves could be
collapsed in one by shifting them along the T axis by Tc(H ).
In Figs. 6(d) and 6(e) we show such an attempt for the data
from Figs. 6(a) and 6(c), respectively. Even though the scaling
is not always perfect, the shift parameter Tc(H ) is determined
unambiguously because (i) the shift for the curve at H = 0 is
fixed by Tc(0); (ii) the curves from low to intermediate fields
do collapse at high enough T ; (iii) when the curves do not
collapse, we required that fluctuation conductivity for a given
T − Tc(H ) should be decreasing with increasing H because
superconductivity is suppressed by magnetic field. This means
that the �σ (T − Tc(H )) curves at higher H should always lie
lower and should not cross the curves at smaller H . In Fig. 6(d)
the curve �σ (T ,H = 10 T) was not shifted at all, implying
that Tc(H = 10 T) = 0, which is consistent with our previous
estimation of H⊥

c2(T = 0) � 10 T.
Figure 6(f) represents a semilogarithmic plot of �σabRn

vs H ⊥ ab for the OD(4.0) sample at T = 1.8 K and slightly
above Tc at T = 4.2 K. It is seen that �σab(H ) decays almost
exponentially also as a function of field at constant T . In this
case the relative shift along the horizontal axis provides the
characteristic magnetic field scale for suppression of supercon-
ductivity ∼Hc2. Assuming that Hc2 = 0 at T = 4.2 K ∼ Tc,
we estimate from the relative shift of the two curves that
H⊥

c2(T = 2 K) � 6 T. This is consistent with Tc(H⊥ = 6 T) �
2 K, estimated from �σab(T ) scaling in Fig. 6(d). Thus, from
the analysis of fluctuation conductivity we obtain a confident
estimation of Tc(H ) or equivalently Hc2(T ).

C. The upper critical field

Figure 7(a) contains the main result of this work: T

dependencies of Hc2 obtained from the analysis of fluc-
tuation conductivity, Eq. (4), at T > Tc(H ) (filled sym-
bols). Filled blue and red squares represent H⊥

c2(T ) for
OD(4.0) and OP(4.3) crystals, respectively. Horizontal and
vertical error bars correspond to the accuracy of scaling of
�σ (T ,H ) curves according to Eq. (4), as seen in Figs. 6(d)
and 6(f).

Estimation of H
‖
c2 at low T is complicated by the lack of

confident knowledge of Rn(T ). In Figs. 6(b) and 6(c) we used
two different approximations of Rn(H ‖). Filled circles and
rhombuses represent H

‖
c2(T ) for the OP(4.3) crystal, obtained

from the scaling of data in Fig. 6(b) and Figs. 6(c) and 6(f),
respectively. Up to H ‖ = 10 T both approximations of Rn

give the same H
‖
c2(T ). Therefore, those values are confident.

However, at H > 12 T results start to depend on the choice of
Rn(T ). Unfortunately, none of the two approximations is good
enough at T → 0. Qualitatively, Rn = Rab(H ‖ = 17 T) tends
to underestimate H

‖
c2 because it assumes H

‖
c2(T = 0) = 17 T.

The linear extrapolation of Rn(T > Tc) tends to overesti-
mate H

‖
c2(T = 0) because it assumes that R(H = Hc2) = Rn.

However, without the flux-flow phenomenon R(H = Hc2) �
0 [16]. This is what we expect for our Lorentz force free
data at H ‖ ab. In the absence of a better way to define
H

‖
c2 at low T , in Fig. 7(a) we also show fields H50%(T ) at

which middle points of resistive transitions occur for in-plane
(open circles) and c-axis (open squares) resistances. Those
points fall in between the underestimating (solid circles) and
overestimating (rhombuses) analysis of fluctuation conduc-
tivity. Therefore, they provide a reasonable estimate of H

‖
c2

at lower T .
From Fig. 7(a) it is seen that H⊥

c2(T ) and H
‖
c2(T ) are

qualitatively different. The H⊥
c2(T ) is almost linear in the whole

T range H⊥
c2(T ) ∝ Tc − T . Such a behavior is consistent with
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a conventional orbital upper critical field,

H⊥
c2 = �0

2πξ 2
ab

, (5)

where �0 is the flux quantum and ξab is the in-plane coherence
length, ξab(0) = 5.5 ± 0.2 nm.

The H
‖
c2(T ) is clearly nonlinear. The dashed line in

Fig. 7(a) demonstrates that H
‖
c2(T ) ∝ √

Tc − T . At first
glance, it resembles the behavior of H

‖
c2(T ) in thin film

multilayers [65,67],

H
‖
c2 =

√
3�0

πξabd
, (6)

where d is the thickness of superconducting layers. However,
the corresponding d = 9.3 ± 0.5 nm is much larger than the
thickness of CuO layers ∼0.2 nm, as noted previously in
Ref. [14], and is not connected to any geometrical length
scale of the sample. Consequently, there is no agreement with
Eq. (6).

D. The paramagnetic limit

The upper limit of Hc2 is determined by Pauli paramag-
netism. The spin-singlet pairing is destroyed when the Zeeman
spin-split energy becomes comparable to the superconducting
energy gap �. This gives [1,34]

Hp =
√

2�

gμB

, (7)

where g is the gyromagnetic ratio and μB is the Bohr
magneton. In the case of negligible spin-orbit coupling
g � 2 this yields dHc2/dT (T = Tc) = −2.25 T/K for d-
wave superconductors [70]. Our values H⊥

c2/Tc � 2.5 T/K
and | dH⊥

c2/dT | (T = Tc) � 5 T/K and especially H
‖
c2/Tc �

5 T/K and | dH
‖
c2/dT | (T = Tc) > 40 T/K clearly exceed

this limit. Most importantly, Hp does not depend on orientation
of the field. Therefore, paramagnetically limited Hc2 should
be approximately isotropic, irrespective of the underlying
effective mass anisotropy.

According to Eq. (7), Hp is determined solely by �. Open
triangles in Fig. 7(a) show �(T ) dependence measured by
intrinsic tunneling spectroscopy on a slightly underdoped
crystal from the same batch [30]. It matches nicely H

‖
c2(T ).

Therefore, we conclude that the observed H
‖
c2(T ) ∝ √

Tc − T

dependence is not originating from the geometrical confine-
ment, Eq. (6), but follows the corresponding �(T ) dependence
of Hp in Eq. (7).

Figure 7(b) shows the anisotropy of the upper critical
field γH = H

‖
c2/H

⊥
c2. Close to Tc it diverges due to different

T dependencies of the two fields. However, at T  Tc it
shows a tendency for saturation at γH (T → 0) ∼ 2. Such a
low anisotropy of Hc2 is remarkable for the layered Bi-2201
compound with γm ∼ 300 [45].

In Fig. 7(c) we show magnetic field dependence of the an-
gular anisotropy [Rab(90◦)/Rab(0◦)]1/2 obtained from the data
in Fig. 4(a). The anisotropy is large at low fields, but rapidly
decreases at H > 7 T when the paramagnetic limitation starts
to play a role. At high fields it tends to saturate at ∼2, consistent

with γH in Fig. 7(b). As mentioned above, paramagnetically
limited Hc2 should be isotropic. Therefore, a finite residual
anisotropy γH (T → 0) ∼ 2 indicates that only H

‖
c2 is para-

magnetically limited, while H⊥
c2 is still governed by orbital

effects. Finally we note that γH < γm was reported for several
unconventional superconductors [13,14,35,36]. In particular,
a nearly isotropic Hc2 was reported for the (Ba,K)Fe2As2

pnictide [71] despite a quasi-2D electronic structure. It is likely
that all those observations have the same origin.

V. CONCLUSIONS

To conclude, we presented a comprehensive analysis of
both in-plane and out-of-plane magnetoresistance in a layered
cuprate Bi2.15Sr1.9CuO6+δ with a low Tc � 4 K. We have
shown that the in-plane and the out-of-plane resistances behave
differently almost in all respects. The in-plane magnetoresis-
tance has two positive contributions. The positive in-plane
MR due to suppression of superconductivity (or supercon-
ducting fluctuations) is dominant at T � 2Tc and magnetic
fields Hc2 � 10 T. It is clearly distinguishable by its 2D
cusplike angular dependence. At T � 2Tc the superconducting
contribution vanishes and only a weakly T -dependent positive
MR, presumably of orbital origin, remains. Such normal state
in-plane MR has a smooth 3D-type angular dependence. The
c-axis MR at T > Tc is dominated by a negative MR caused
by suppression of the pseudogap. It decays rapidly upon
approaching the PG opening temperature T ∗ � 110 K 
 Tc

and at the PG closing field H ∗ ∼ 300 T 
 Hc2, and exhibits a
smooth 3D-type angular dependence. Different behavior of the
in-plane and the out-of-plane MR underlines different origins
of superconductivity and the c-axis pseudogap, which becomes
particularly obvious from analysis of low-Tc cuprates [30].

The main focus of our work was on analysis of fluctuation
conductivity at T > Tc. We observed a universal, nearly
exponential, decay of in-plane paraconductivity as a function
of temperature and magnetic field and proposed a method
for extraction of Hc2 based on a scaling analysis of the
fluctuation paraconductivity. This way we obtained confident
values of Hc2, avoiding the complexity of flux-flow phenomena
at T < Tc. We observed that H⊥

c2 is following a linear T

dependence H⊥
c2 ∝ 1 − T/Tc, typical for Hc2 limited by orbital

effects. On the other hand, H
‖
c2 follows the T dependence of

the superconducting gap with a characteristic ∝√
1 − T/Tc

dependence close to Tc. Our main result is observation of a
remarkably low anisotropy of the upper critical field γH (T →
0) � 2, which is much smaller than the effective mass
anisotropy γm ∼ 300. This demonstrates that the anisotropy
of Hc2 in unconventional superconductors may have nothing
to do with the anisotropy of the electronic structure and the
actual anisotropy of superconductivity at zero field. The large
discrepancy in anisotropies serves instead as robust evidence
for paramagnetically limited superconductivity.
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