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Topological defects in mixtures of superconducting condensates with different charges
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We investigate the topological defects in phenomenological models describing mixtures of charged condensates
with commensurate electric charges. Such situations are expected to appear for example in liquid metallic
deuterium. This is modeled by a multicomponent Ginzburg-Landau theory where the condensates are coupled to
the same gauge field by different coupling constants whose ratio is a rational number. We also briefly discuss the
case where electric charges are incommensurate. Flux quantization and finiteness of the energy per unit length
dictate that the different condensates have different winding and thus different number of (fractional) vortices.
Competing attractive and repulsive interactions lead to molecule-like bound states between fractional vortices.
Such bound states have finite energy and carry integer flux quanta. These can be characterized by the CP 1

topological invariant that motivates their denomination as skyrmions.
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I. INTRODUCTION

Although recently there has been substantial interest in
multicomponent superconductors, typically the research is
restricted to fields which have the same value of electric
charge modulus. See, e.g., Ref. [1] for recent work with a field
overview. In the typical condensed matter systems the charge is
set by a Cooper pair charge of 2e for electronic systems or −2e

for protonic superconductors [2,3]. By contrast, multicompo-
nent systems with different values of electric charge attracted
much less attention, yet some were discussed in the literature.
One example is liquid metallic deuterium where the deuteron
is a charge-1 boson which can Bose condense and coexist with
the Cooper pairs of electrons and/or protons [2,4–6]. Cooper
pairs carry twice the charge of their constituent fermion, while
a Bose-Einstein condensate of deuterons carries only once the
charge of its (boson) constituent. This system is currently the
subject of vigorous experimental pursuit [7].

Mixtures of condensates carrying different electric charges
may also apply to ultracold-atomic gases with synthetic
gauge field. Recent progress both in theoretical understanding
and experimental techniques to control such systems makes
it promising that artificial dynamical gauge fields may be
realized there [8,9]. In that case, effectively a system could
be described by multicomponent charged condensate models.
Our present discussion may, in the future, find applications to
these systems.

In superconductors with more than two components and
U (1)N broken symmetry there can be pairing transitions to
U (1)N−M paired states driven by proliferation of composite
vortices [10–12]. Such pairing mechanisms can lead to charge-
4e electronic superconducting systems as hypothesized re-
cently in various contexts [1,13,14], along with other recently
discussed mechanisms for charge-4e superconductivity [15].

The above examples from superconductivity and superflu-
idity, along with the multicomponent gauge theories which
appear as effective field theories in other condensed matter
systems [16,17], calls for investigation of mixtures of charged
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condensates with arbitrary ratio of condensate charges. To this
end we study a phenomenological Ginzburg-Landau model
that accounts for such mixtures, regardless of their underlying
microscopic origin. We discuss below that if the mixtures of
charged condensates carrying different electric charges are
realized, either in natural or artificial systems, their response
to external applied magnetic field or rotation would be very
different from those of mixtures with equal charges. This
is because of the substantial difference in the topological
excitations as compared to systems where condensates carry
the same electric charge.

In Sec. II we introduce a mean-field model that accounts for
mixtures of charged condensates, when the condensates carry
different electric charges. Section III is devoted to elementary
topological excitations, that is fractional vortices, and flux
quantization in our Ginzburg-Landau model. In Sec. IV, we
investigate the physics of flux carrying topological excitations
within the London limit where condensates are assumed to
have constant densities.

II. MIXTURES OF CHARGED CONDENSATES

A charged condensate can, under certain conditions, be
described by mean-field Ginzburg-Landau free energy that
couples it to the vector potential of the magnetic field through
the kinetic term
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Here e∗ is the electric charge of the condensate and m its rest
mass. � and c are respectively the reduced Planck constant
and the speed of light in the vacuum. V is the interacting
potential. For example, for an ordinary superconductor, a
Cooper pair has a charge twice that of an electron. Thus,
there e∗ = 2e. On the other hand, a Bose-Einstein condensate
of singly charged bosons will have electric charge e∗ = e.
Thus mixtures of charged condensates should generically
have different couplings to the vector potential. A mixture
of condensates with different masses and charges is thus
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described by
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Note that since the theory is invariant under complex con-
jugation, it is sufficient to consider positive charge only,
without losing generality, condensates with negative charge
being obtained by complex conjugation of the one with the
positive charge. Now, to get rid of superfluous parameters, we
express the energy in units of �

2c2

4π
and rescale the fields as

Ã = A
�c

and ψ̃a =
√

4π

mac2
ψa. (3)

Dropping the ˜ symbol further on, a mixture of charged
condensates is thus described by the free energy density

F = 1

2
(∇ × A)2 +

∑
a=1,2

1

2
|(∇ + ieaA)ψa|2 + V (ψa). (4)

Here ψa = |ψa|eiϕa are complex fields that stand for the
charged condensates (with different indices a = 1,2). The
condensates are coupled together through the electromagnetic
interactions mediated by the vector potential A in the ki-
netic terms Dψa = (∇ + ieaA)ψa . Since ψa are condensates
that are essentially different, they should be independently
conserved. It results that the potential has global U (1) ×
U (1)invariance ensuring independent conservation of both
particle numbers

V (ψa) =
∑

a

αa|ψa|2 + 1

2
βa|ψa|4. (5)

In the condensed phase, αa are negative parameters while
βa > 0. The model exhibits gauge invariance under local U (1)
transformations. That is, for arbitrary χ (x), the energy (4) is
unchanged under the transformations

A → A − ∇χ, ψa → eieaχψa. (6)

As will be explained later on, a necessary condition for
finite energy flux carrying configurations is that the charge of
the condensates should be commensurate. That is, the ratio
of the coupling constants ea is a rational number: e1/e2 ∈ Q.
To capture this constraint, it is convenient to parametrize the
gauge couplings as ea = ega , where ga are integer numbers
(ga ∈ Z). Moreover, the two integers g1 and g2 should be
relatively prime (their greatest common divisor must be 1).
Within our parametrization, e is an arbitrary number that
uniquely parametrizes the London penetration length defined
below. If we apply this model to liquid metallic deuterium,
the couplings are (g1,g2) = (1,2) and ψ1 denotes the deuteron
condensate while ψ2 (carrying twice the electric charge of ψ1)
denotes electronic Cooper pairs.

Functional variation of the free energy (4) determines
the Euler-Lagrange equations of motion. That is, variation
with respect to complex fields ψ∗

a gives the Ginzburg-Landau
equation for the charged condensates, while variation with
respect to the vector potential defines Ampère’s law

DDψa = 2
∂V (	)

∂ψ∗
a

and ∇ × ∇ × B = J, (7)

with the supercurrent

J ≡
∑

a

J(a) =
∑

a

eaIm(ψ∗
a Dψa). (8)

In the ground state, the condensates have constant densities
|ψa| = √−αa/βa and A is a pure gauge. The length scales at
which the condensates recover their ground-state value after
infinitesimal perturbations, the coherence lengths, are ξa =
1/

√−2αa . The penetration depth of the magnetic field λ =
1/e

√∑
a g2

a |ψa|2 is consistently derived in Sec. IV.
When considering vortex matter, we restrict ourselves to

field configurations varying in the xy plane only and with
normal magnetic field, that is, field configurations describing
both two-dimensional systems and three-dimensional system
invariant under translations along the normal direction. To
investigate the physical properties of topological excitations
in our model for mixtures of charged condensates, we numer-
ically minimize the free energy (4) within a finite-element
framework provided by the FREEFEM++ library [18]. For
technical details, see the discussion in Appendix B.

III. TOPOLOGICAL DEFECTS

Because we consider several condensates, the elementary
topological excitations are fractional vortices, that is, field
configurations with 2π phase winding of a single condensate
(e.g., ϕ1 has

∮ ∇ϕ1 = 2π winding while
∮ ∇ϕ2 = 0). A

fractional vortex carries a fraction of the flux quantum. This
can be seen by deriving the quantization condition for the
magnetic flux. The supercurrent (8), defined from Ampère’s
equation ∇ × B + J = 0, reads as

J := δF
δA

= e2
2A + e
∑

a

ga|ψa|2∇ϕa. (9)

Here we defined the weighted density 
2 = ∑
a g2

a |ψa|2. Since
the supercurrent J is screened, it decays exponentially and the
magnetic flux thus reads as
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Since the condensates ψa are complex fields, their phases wind
integer number of time. The couple (k1,k2) denotes the field
configurations with winding ka of the condensate ψa . The
elementary excitations are fractional vortices (1,0) and (0,1)
with unit winding in each component. A given fractional vortex
in the condensate a thus carries a fraction of the magnetic flux
�a/�0 = ga|ψa|2/
2. Here �0 = 2π/e is the flux quantum.
For the magnetic flux to be quantized, as long as g1 �= g2, it
is necessary that different condensates have different winding
number ka . This follows from

∑
a

ga

�a

�0
=

∑
a g2

a |ψa|2∑
b g2

b |ψb|2
= 1. (11)
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When both condensates carry the same electric charge,
g1 = g2 = 1, the quantization condition (11) reduces to the
quantization conditions for multiband/multicomponent super-
conductors [19].

Thus, each condensate a has to wind ka = ga times, so
that the resulting composite vortex carries one flux quantum
�0 = 2π/e. Fractional vortices have logarithmically divergent
energy per unit length and thus cannot form in bulk systems
[19]. This can be seen by rewriting the free energy into charged
and neutral modes. For this, and using (9), the kinetic term can
be rewritten

1
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2
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with again the weighted density 
2 = ∑
a g2

a |ψa|2. Defining
the weighted phase difference ϕ12 ≡ g1ϕ2 − g2ϕ1, the free
energy (4) reads as

F = 1

2
(∇ × A)2 + J2

2e2
2
(13a)

+
∑
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1

2
(∇|ψa|)2 + αa|ψa|2 + βa

2
|ψa|4 (13b)

+ |ψ1|2|ψ2|2
2
2

(∇ϕ12)2. (13c)

Since it decouples from the gauge field, the term (13c)
is called neutral mode. This is the kinetic energy of the
relative motion of the two condensates. That is, the codirected
(counterdirected) motion of particles with opposite (alike)
charges ea . When ϕ12 has a winding, this neutral mode has
logarithmically divergent energy. Indeed, asymptotically each
phase is well approximated by ϕa = kaθ , where ka are the
(integer) vorticities and θ the polar angle. The condition for
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B/Φ0 |ψ1|2 |ψ2|2 n

FIG. 1. (Color online) Molecule-like topological excitations carrying a unit flux quantum. The parameters of the Ginzburg-Landau
functional (4) are (αa,βa) = (−3,1), for both condensates (a = 1,2) and e = 0.2. Each row displays solutions for different winding parameters
(g1,g2) (indicated on left). Displayed quantities in each row are respectively the magnetic field B (divided by the flux quantum �0) and the
densities of both condensates |ψ1|2 and |ψ2|2 (in units of their ground-state value). The rightmost panel shows the normalized projection of the
pseudospin n (15) onto the plane, while the color scheme indicates the magnitude of nz. Blue corresponds to the south pole (−1) while red is
the north pole (+1) of the target sphere S2.
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the logarithmic divergence to be absent and thus for the energy
to be finite thus reads as

0 =
∮

∇ϕ12 · d� =
∮

∇(g1ϕ2 − g2ϕ1) · d�

= (g1k2 − g2k1). (14)

For a configuration carrying a single flux quantum (and since
ga and ka are integers), the absence of winding in the weighted
phase difference dictates that ka = ga . Thus the configurations
which have no logarithmic divergence winds g1 times in ψ1

and g2 times in ψ2. Note that this condition also implies that the
total flux is integer (11). On the other hand, fractional vortices
have logarithmically divergent energy. This is because they
have winding in the weighted phase difference. That is, when
g2k1 �= g1k2, since the screening is incomplete, the energy
of the vortex grows with the system size. Such vortices are
typically thermodynamically unstable in bulk systems. When
both condensates carry the same electric charge g1 = g2 = 1,
the condition (14) is automatically satisfied, provided both
condensates have the same winding k1 = k2. That is, only
co-centered composite vortices with same winding in both
condensates have finite energy. Since fractional vortices have
logarithmically divergent energy per unit length, they cannot
form in bulk systems [20].

Consider now the simplest case where the condensate ψ1

carries single charge while ψ2 carries double: (g1,g2) = (1,2).
The resulting composite vortex carrying one flux quantum is
the bound state of one (fractional) vortex in ψ1 and two vortices
in ψ2. To reduce the cost of kinetic energy in the neutral
sector, the interaction through the neutral sector binds vortices
together. It is minimal when cores in different condensates
coincide (see discussion below in Sec. IV). However the two
vortices in ψ2 quite naturally repel each other, as would
two Abrikosov vortices do in single-band systems. As a
result we can expect that if the magnetic repulsion is strong
enough, despite the attractive channel through the neutral
sector, fractional vortices will not overlap. This is indeed
the case, as shown in Fig. 1. The regime shown on the first
line has (g1,g2) = (1,2), so the condensates have single and
double winding, respectively. The resulting topological defect,
carrying a single flux quantum, is a bound state of fractional
vortices that are not co-centred and the configuration looks
like an elongated rod. We refer to such bound state as a vortex
molecule [21].

Bound states of nonoverlapping fractional vortices feature
special topological properties that motivate their denomination
as skyrmions. The terminology follows from the fact that
two-component models can be mapped to easy-plane nonlinear
σ models that are associated with a CP 1topological invariant
[22–24]. In systems with the same charge of both condensates,
the two-component model is rewritten in term of the total
current J, the total density 
̃2 = ∑

a |ψa|2, and the pseudo-
spin n. The pseudospin unit vector is the projection of the
superconducting condensates on spin-1/2 Pauli matrices σ :

n ≡ (nx,ny,nz) = 	†σ	

	†	
. (15)

When all condensates have the same couplings ga , the spinor
	 is defined as the two-vector of complex condensates

	† = (ψ∗
1 ,ψ∗

2 ). The finiteness of the energy dictates that n is
asymptotically a constant vector, while vanishing of neutral
modes implies that nx + iny ∝ ei(ϕ2−ϕ1) has no winding.

To obtain a similar projection for incommensurate charges,
the spinor 	 should be chosen so that the pseudospin does not
wind asymptotically (when neutral mode vanish). There are
several possibilities to realize such a projection and we choose

	† = (|ψ1|e−ig2ϕ1 ,|ψ2|e−ig1ϕ2 ). (16)

The projection (15) of (16) maps to the two-sphere target space.
It determines the pseudospin n that we use along the paper for
the visualization of the pseudospin texture. Note that (16) is
a nonholomorphic map, so it hard to justify the quantization
of the associated invariant. For this we introduce another map
which is holomorphic:

	† = (
ψ

∗g2
1 ,ψ

∗g1
2

)
. (17)

The associated projection is a map from the one-point com-
pactification of the plane (R2 ∪ {∞} � S2) to the two-sphere
target space spanned by n. That is n : S2 → S2, which is
classified by the homotopy class π2(S2) ∈ Z. This defines the
integer-valued CP 1topological charge

Q(n) = 1

4π

∫
R2

n · ∂xn × ∂yn dxdy = g1g2. (18)

If 	 �= 0 everywhere, Q is an integer number. Roughly
speaking, Q counts the number of times the texture n (15)
covers the target S2 sphere. For practical purposes, and since
it gives much better accuracy, we compute the degree of the
maps (16) or (17), instead of computing the formula (18).
Numerically calculated topological charge for the various
configurations we constructed is indeed found to be integer
(with a negligible error of order 10−4).

The map (17) provides a rigorous justification of the
topological invariant (18), but the associated texture n turns
out to be very difficult to visualize. So we still use (16)
that gives more straightforward physical interpretation for the
visualization of the pseudospin texture. Interestingly, when
computed numerically both definitions give similar result and
accuracy of the topological charge.

In our parametrization of the gauge couplings ea = ega , the
charges of the condensates are commensurate. That is, their
ratio is a rational number and the simplest case we discussed
is (g1,g2) = (1,2). There, the unit flux quantum excitation is a
molecule made of two fractional vortices in ψ2 bound together
by a single vortex in the ψ1 condensate. For different ratio
of the gauge couplings, the unit flux molecule-like bound
states assume very rich structures as shown in Fig. 1 for
g1 = 1 and g2 = 2,3,4,5. There, depending on the vorticities,
fractional vortices can either be completely split apart or
partially overlapping, as for example in (g1,g2) = (1,5).
The topological properties when fractional vortices overlap
are essentially different than when they do not. Indeed the
topological charge (18) is quantized only if there is no core
overlap. To emphasize the richness in unit flux structures,
we display in Fig. 2 configurations with other ratios of the
commensurate charges. All of these have nontrivial, very
different signature of the magnetic field. The structure of the
molecule-like bound state depends not only on the ratio of
the gauge couplings but also on the ratio m = |ψ1|2/|ψ2|2 of
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FIG. 2. (Color online) Molecule-like configurations of topological excitation carrying a unit flux quantum, for various values of winding
parameters (g1,g2) (indicated on the left). The parameters of the Ginzburg-Landau functional and the displayed quantities are the same as in
Fig. 1.

the densities associated with each condensate. This can be seen
from additional regimes we displayed in Appendix A.

As discussed later on in Sec. IV, depending on the ratio of
densities in both condensates, the structure of the single flux
quantum topological defect can be quite different. Indeed for
substantial disparity in densities the “symmetric molecule”
structure, dominated by the long-range quadrupolar mode
of the relative phase ϕ12, is no longer preferred. Instead, an
“asymmetric molecule” is formed and it is characterized by a
longer range dipolar mode of the relative phases. Such regimes
with disparity in the condensate densities can be seen in Fig. 3.
More regimes are given as additional material in Appendix A.

A. A closer look at liquid metallic deuterium–like system

We argued that our model captures topological aspects of
mixtures of condensates with commensurate charges and that it
qualitatively applies to various systems and for example to the
superconducting state for liquid metallic deuterium (LMD),
where one expects coexistence of electronic Cooper pairs
and Bose condensate of deuterons. Since reliable microscopic
parameters for this state are not available we will study a
phenomenological Ginzburg-Landau model for such a mixture
of charged condensates. The deuterium nucleus (deuteron) is
a spin-1 particle that can condense in several states [4,5].
Here we ignore spin degrees of freedom and treat it as a
scalar charged condensate carrying electric charge +e, while
electronic Cooper pairs carry charge −2e. The mass of the
electronic Cooper pairs is m = 2me ≈ 1 MeV/c while the
mass of the deuteron is md ≈ 1875 MeV/c. Let ψ1 and ψ2

respectively denote the deuteronic and electronic condensates,

so (g1,g2) = (1,2). Because of the electric neutrality at zero
temperature we consider

m1|ψ̃1|2 = 2m2|ψ̃2|2, (19)

[note for this expression we restore the ˜ symbols from (3)].
Thus in this regime the electronic condensate is responsible
for 99.9% of the screening of the flux. In Fig. 3, we show
a single flux quantum topological defect for big disparity in
ground-state densities that are likely to occur for liquid metallic
deuterium. There, the arrangement of fractional vortices is
somewhat different from those displayed in Fig. 1. Indeed,
unlike previously, some of the fractional vortices overlap. The
relative phase ϕ12 corresponding to the regime Fig. 1 assumes
quadrupolar structure. The relative phases corresponding to
Fig. 3 instead show a dipolar structure. This is shown in Fig. 4.
Dipole modes are longer range than quadrupole modes. This
change in the long-range behavior of the relative phases should
result in important modification of the large-scale vortex matter
structures. Long-range dipolar modes were shown to play an
important role, although in a different context, on large-scale
vortex structure formation [24]. As discussed below in Sec. IV,
the modification of the long-range modes is consistently
reproduced in the London approximation.

Here two constituent fractional vortices overlap. As a
result, the topological invariant (18) here is not quantized.
This can be heuristically understood by the fact that the
target sphere is not completely covered. With our crude
estimates the ratio of condensate densities for liquid metallic
deuterium is about the same as for liquid metallic hydrogen.
However because the commensurate charges are different, the
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B/Φ0 |ψ1|2 |ψ2|2 n

FIG. 3. (Color online) Vortex solutions carrying a single flux quantum for parameters of the Ginzburg-Landau functional (4) giving
a big disparity in condensate densities. The winding parameters here are (g1,g2) = (1,2). The other parameters are (α1,β1) = (−10,10),
(α2,β2) = (−10,0.01), and e = 0.2. This choice follows crude estimation (19) of relative condensate densities in the case of the superconducting
state of liquid metallic deuterium. Displayed quantities are the same as in Fig. 1. Note here that the pseudospin texture n is mostly located almost

to the south pole of the target sphere because of the very big disparity in densities. That is, since |ψ1|2 
 |ψ2|2, then nz = |ψ1|2−|ψ2|2
|ψ1|2+|ψ2|2 ≈ −1

everywhere except at the core of ψ2 that does not overlap with the core in ψ1. Note that since the core in ψ1 coincides with a core in ψ2, the
south pole nz = −1 is never reached.

topological excitations are completely different. The lowest
energy topological excitation in a liquid metallic hydrogen–
like system is an axially symmetric composite vortex, while
for LMD it is a composite object of two co-centered vortices
plus one satellite fractional vortex. The magnetic signature of
the topological defect in LMD looks like a pair of vortices,
while it is a single vortex for LMH.

B. The case of incommensurate charges

The conditions for finite-energy solutions (14) and the
flux quantization (11) rely on the fact that charges are
commensurate, that is, that their ratio is a rational number so
that they can be parametrized as ea = ega , where ga are integer
numbers. For generality, here we address the question of what
changes if charged condensates have incommensurate electric
charges. When ea stands for elementary charges of elementary
particles, they are integer multiples of an elementary electric
charge. With current progress in creation of artificial gauge
fields it cannot be ruled out that systems with incommensurate
coupling to the gauge field may be artificially realized.

For this exercise, we have to relax the condition that ga

are both integer numbers. Since ka have to be integer for the
ψa’s to be single valued, the condition (14) ensuring both finite
energy and flux quantization cannot be satisfied. As a result,
the elementary vortices carry different flux �a that cannot be
added together to add up to a flux quantum. More precisely,

(a) (b)

FIG. 4. (Color online) This shows the relative phases ϕ12 =
g1ϕ2 − g2ϕ1, for single flux quantum topological defect with vor-
ticities (g1,g2) = (1,2). The left panel (a) with quadrupole structure
corresponds to the regime in Fig. 1. On the other hand, the right
panel (b) corresponding to Fig. 3 has dipole structure which is longer
range.

the total flux (10) is

� = k1
2πg1|ψ1|2/e

g2
1 |ψ1|2 + g2

2 |ψ2|2
+ k2

2πg2|ψ2|2/e
g2

1 |ψ1|2 + g2
2 |ψ2|2

= k1�1 + k2�2, (20)

and it is impossible to (consistently) write this as an integer
times a flux quantum �0. Correspondingly, when charges
are incommensurate, it is not possible by any means to
eliminate the winding in the neutral sector (13c). Thus there
are no finite-energy solutions (in infinite domain). Instead
solutions have logarithmically divergent energy due to the
(superfluid) mode associated with the neutral sector. That is, a
phase gradient resulting from a phase winding always causes
logarithmic divergence of vortex energy and cannot be fully
compensated by the vector potential.

Let us now close this remark about mixtures of condensates
with incommensurate charges, and focus on the case where the
ratio of the coupling constants ea is a rational number. That is
ea = ega where ga are integers. We found that topological
defects carrying integer flux are bound states of different
fractional number of vortices in the different condensates.
Because of the frustrated interactions that vortices in the same
condensate repel, while they try to overlap with vortices in the
other condensate, these bound states arrange into very compli-
cated molecule-like structures. A large part of this exotic vortex
structures can be captured by investigating the London limit,
where fractional vortices can be mapped to Coulomb charges.

IV. LONDON LIMIT

When the electromagnetic repulsion is strong enough,
integer vortices split to form a bound state of fractional
vortices. The underlying physics describing the core splitting
can be accurately captured within the London approximation
where |ψa| = const everywhere (except for a sharp cutoff at
vortex core). There, the expression (13) further simplifies to

F = 1

2

(
B2 + 1

e2
2
|∇ × B|2

)
(21a)

+ |ψ1|2|ψ2|2
2
2

(∇ϕ12)2. (21b)
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The interaction energy of two nonoverlapping fractional
vortices is approximated in this London limit by considering
charged (21a) and neutral modes (21b), separately. The energy
of the charged sector (21a) reads as

Fmag =
∫

B
2

(B + λ2∇ × ∇ × B), (22)

where the London penetration length is λ = 1/e
. The London
equation for a (point-like) vortex placed at xa and carrying a
flux �a is

λ2∇ × ∇ × B + B = �aδ(x − xa), (23)

and its solution is

Ba(x) = �a

2πλ2
K0

( |x − xa|
λ

)
, (24)

where K0 is the modified Bessel function of the second kind.
For two vortices located at xa and xb, respectively carrying
fluxes �a and �b, the source term in the London equation
reads as �aδ(x − xa) + �bδ(x − xb) and the magnetic field is
the superposition of two contributions B(x) = Ba(x) + Bb(x).
Thus

Fmag =
∫

1

2
(Ba + Bb)[�aδ(x − xa) + �bδ(x − xb)]

= �a�b

2πλ2
K0

( |x2 − x1|
λ

)
+ Eva + Evb, (25)

and Eva ≡ ∫
Ba(xa)�a/2 is the (self-)energy of the vortex a.

Finally, the interaction energy of two vortices in components
a,b reads as

E
(int),mag
ab = 2πgagb|ψa|2|ψb|2


2
K0

( |xa − xb|
λ

)
. (26)

The interaction through the charged sector is thus screened
interaction given by the modified Bessel function. When the
couplings ea are parametrized such that they have the same
sign (since the theory is invariant under complex conjugation,
this is always possible), this interaction is always positive
for any a,b having the same sign of vorticity. It then gives
repulsive interaction between any kind of fractional vortices
with codirected winding. That is, vortices repel while a vortex
and an antivortex attract each other. On the other hand,
the interaction through the neutral sector is attractive (resp.
repulsive) for fractional vortices of the different (resp. same)
condensate. The energy associated with the neutral mode (21b)
reads as

Fneutral = |ψ1|2|ψ2|2
2
2

∫
(∇ϕ12)2. (27)

To evaluate the interaction between fractional vortices in
different condensates and respectively located at x1 and x2,
the neutral sector is expanded:

Fneutral =|ψ1|2|ψ2|2
2
2

∫
(g2∇ϕ1)2 + (g1∇ϕ2)2

− 2g1g2∇ϕ1 · ∇ϕ2. (28)

At sufficiently large distance, a phase winding around some
singularity located at a point xa is well approximated by

ϕa = θ . Thus

∇ϕa = eθ

|x − xa| = z × ∇ ln |x − xa|. (29)

As a result, the interaction part in the neutral sector reads as

E
(int),neutral
12 = −g1g2|ψ1|2|ψ2|2


2

∫
∇ϕ1 · ∇ϕ2

= 2πg1g2
|ψ1|2|ψ2|2


2
ln |x2 − x1|. (30)

Similarly, the interaction between two vortices in the same
condensate a is computed by requiring that the phase be the
sum of the individual phases ϕa = ϕ(1)

a + ϕ(2)
a , while ϕb = 0.

Then the interaction reads as

E(int),neutral
aa = −2πg2

b

|ψ1|2|ψ2|2

2

ln
∣∣x(2)

a − x(1)
a

∣∣, (31)

with here b �= a. To summarize, the interaction of vortices in
different condensates is

E
(int)
12

2π
= g1g2

|ψ1|2|ψ2|2

2

[
ln

r

R
+ wK0

(
r

λ

)]
, (32)

while interactions of vortices of similar condensates are

E(int)
aa

2π
= −g2

b |ψ1|2|ψ2|2

2

ln
r

R
+ g2

a |ψa|4

2

K0

(
r

λ

)
, (33)

with b �= a, r ≡ |xa − xb|, and R the sample size. Choosing
the energy scale to be 2πg1g2|ψ1|2|ψ2|2/
2 and defining the
parameters

s = g1

g2
and m = |ψ1|2

|ψ2|2 , (34)

the interaction between fractional vortices reads as

E11(r) = 1

s
ln

R

r
+ m

s
K0

(
r

λ

)
,

E22(r) = s ln
R

r
+ s

m
K0

(
r

λ

)
, (35)

E12(r) = −ln
R

r
+ K0

(
r

λ

)
.

Thus vortex matter in the London limit of a two-component
superconductor with incommensurate charges is described by
a 3-parameter family (m,s,R). This is illustrated in Fig. 5.

The interaction between vortices in the same condensates
is repulsive. In multicomponent superconductors where both
condensates have the same number of vortices in each
component, vortices in different condensates will attract each
other to form a bound state of co-centered vortices that
minimizes the energy cost of the neutral sector [19,25]. The
situation here is more subtle. Because both condensates have
different number of (fractional) vortices, the system has to
compromise between vortices in similar condensates that repel
each other and the fact that vortices in different condensates
try to overlap. This explains why, beyond the London limit
(see, e.g., Fig. 1), integer vortices form a molecule-like bound
state of split fractional vortices.
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FIG. 5. (Color online) Interaction energies between pointlike
charges associated with vortices in different condensates. The blue
(big) dot represents the vortex in ψ1 while the red (small) dots
represent the vortices in ψ2. Here we chose m = 0.2 and s = 1/2.
Alike charges always repel while different charges attract with
long-range logarithmic attraction.

A. Transition in the structure of the skyrmion

In the context of the mapping to point charges, the
finite-energy condition (14) is equivalent to requiring charge
neutrality. Thus we complete the mapping to point charges by
defining the electric charge q2 = g1 and q1 = −g2. A neutral
set of charged particle thus satisfy the charge neutrality∑

a

qaka = 0. (36)

We already know, from our solutions of the full nonlinear
model, that vortex solutions do exist and they have both finite
energy and carry unit flux quanta. We also observed that,
provided e is small enough, that cores of fractional vortices
are not superimposed. We now try to reproduce our results,
using the Eqs. (35) of the London limit. Here since a vortex
configuration is a neutral set of discrete charge, it can be
globally described by its dipole pi and quadrupole moments
dij in two dimensions:

pi =
∑

a

qar
(a)
i ,

(37)
dij =

∑
a

qa

(
2r

(a)
i r

(a)
j − δij r

(a) 2
i

)
.

The minimum of the interaction energy (35) should describe
the location of vortex cores. We apply this for a single vortex
with (g1,g2) = (1,2). Thus it is described by a set of three
point particles, two carrying a single positive charge and
one twice negatively charged. According to the interaction
energies, it forms a bound state of nonoverlapping particles;
see Fig. 6. Remarkably there is a transition of the “molecular”
structure at a given m = m� ≈ 0.29714. For m > m�, the
molecule is symmetric and it has no dipole moment. The long-
range interactions are thus dominated by quadrupole modes.
For sufficient disparity in densities, when m < m�, the least
energetic arrangement is no longer symmetric and thus the
vortex molecule develops a dipole moment that is long range

|p
|

m = |ψ1|2/|ψ2|2

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

Dipolar phase

Quadrupolar phase

m

0

0.1

0.2

0.28 0.3 0.32

FIG. 6. (Color online) Structure of the single skyrmion for g1 =
1 and g2 = 2 as a function of relative ground-state densities of the
two condensates. There is a transition in the dipole moment of the
molecule. The inset shows that transition closely. When ground-state
densities are quite similar, the molecule is symmetric, and it has zero
dipole moment. Below a certain threshold m�, the molecule becomes
asymmetric and it develops a nonzero dipole moment. The blue (big)
dot represents the vortex in ψ1 while the red (small) dots represent
the vortices in ψ2.

and should dramatically alter the large-scale structures. Indeed,
quadrupole modes are smaller in amplitude and also decay
faster than dipole modes. For examples of the effect of
long-range dipolar interactions in large-scale structures (in a
different context), see [24].

In our estimates to describe liquid metallic deuterium,
the London limit parameter m = |ψ1|2/|ψ2|2 
 1. Thus
according to the London limit picture Fig. 6, the single
flux quantum vortex in the superconducting phase of liquid
metallic deuterium should sit in the dipolar regime. As we
illustrated in Fig. 3, this is indeed the case, and there is
perfect agreement between the London limit picture and direct
numerical simulations.

Note that since the model describes independently con-
served condensates, it has U (1) × U (1) invariance. Then both
condensates have in principle different critical temperatures at
which they condense. Then, there is in principle also always
a regime where one of the condensates has much less density
than the other. So there is always, at least, a regime where
m 
 1 (resp. m � 1) if ψ1 (resp. ψ2) condenses first. So
there is always a phase dominated by the long-range dipolar
mode in the relative phases, that should dramatically influence
large-scale structuring of the vortex matter.

B. The case of many particles

The physics of the topological defects carrying a single
flux quantum is shown to be quite rich. Indeed even in the
simplest case when (g1,g2) = (1,2), the single skyrmion has
a transition in its internal structure (see Fig. 6). The emerging
long-range modes should have a very important influence on
the many-skyrmion states. Investigating the many-skyrmion
states may give valuable information about the transport
properties or about the lattice structures and their melting.
Within the London limit, such properties can be investigated

214507-8



TOPOLOGICAL DEFECTS IN MIXTURES OF . . . PHYSICAL REVIEW B 89, 214507 (2014)

using molecular dynamics or Monte Carlo simulations of
the point particles interacting according to (35). Although
the point-charge model does not completely capture all the
underlying physics, it can reproduce several aspects of the
structures obtained beyond the London limit. This is beyond
the scope of the current paper, yet we can address few general
comments about the case of many particles.

In order to investigate the many-body properties of our
model, one approach is to model fractional vortices by point
charges with elementary interactions (35), that is, to consider
a set of Na particles corresponding to (fractional) vortices in
the condensate a. For a system containing integer flux, the
number of particles should satisfy the relation g2N1 = g1N2.
The interacting energy in the case of many particles reads as

E =
N1∑
i=1

N1∑
j>i

E11
(∣∣x(1)

i − x(1)
j

∣∣)

+
N2∑
i=1

N2∑
j>i

E22
(∣∣x(2)

i − x(2)
j

∣∣)

+
N1∑
i=1

N2∑
j=1

E12
(∣∣x(1)

i − x(2)
j

∣∣), (38)

where x(a)
i denotes the position of the ith vortex of the

condensate a and interaction energies Eab are given by
(35). Note that this problem is related to the problem of
unconventional plasma discussed in the context of quantum
Hall states [26–28].

The many-particle problem (38) can be investigated using
different standard techniques such as molecular dynamics
or Monte Carlo simulations. In the light of the complicated
structure of the single skyrmions, one may expect very rich
phases of the vortex matter there. However this deserves full
investigation that is beyond the scope of the current paper.

V. CONCLUSIONS

We investigated physical properties of mixtures of charged
(bosonic) condensates, carrying different electric charges.
More precisely, we introduced a Ginzburg-Landau model that
accounts phenomenologically for such mixtures. Disregarding
the underlying microscopic theories that describe mixtures of
charged condensates, this model is expected to qualitatively
describe the topological excitations therein.

Elementary topological excitations are fractional vortices,
that is, vortex configurations with winding in only one
condensate. Because of the existence of a neutral mode,
describing relative counterdirected motion of particles, frac-
tional vortices have logarithmically divergent energy. The
condition for having a finite-energy solution in a mixture of
condensates having commensurate electric charges e1 = g1e

and e2 = g2e is that the phase should wind g1 times in ψ1

and g2 times in ψ2. Because of the commensuration of electric
charge, finite-energy configurations have different number of
fractional vortices in different condensates.

Fractional vortices in the same condensate repel while
fractional vortices in different condensates attract each other in
order to reduce the energy cost associated with the counterflow

of charge carriers. As a compromise, the topological excitation
carrying an integer flux quantum can form a molecule-
like bound state of fractional vortices, where there is no
overlapping of vortices in contrast to systems with the same
charges [19,24].

We also addressed the question of the underlying topol-
ogy. There, we showed that two configurations carrying an
integer flux quantum are differentiated from each other by
a CP 1topological invariant. The topological excitations were
explicitly constructed numerically and their structure, namely
the spatial arrangement of constituent fractional vortices, can
be understood by investigating the London limit physics,
where fractional vortices are mapped to point Coulomb
charges.

The model we introduced and its topological excitations
applies, at least qualitatively, to various physical systems
where different condensates are formed and where they
are commensurately coupled to the vector potential of the
magnetic field. Namely it could effectively describe the
projected superconducting state of liquid metallic deuterium
where deuterons form a charged Bose-Einstein condensate
mixed with electronic Cooper pairs. This state of matter is
currently a subject of experimental pursuit [7]. Since these
experiments are conducted in diamond anvil cell that can be
equipped with a receiving coil, the finding which we report
could help to confirm or rule out formation of this state.
Mixtures of commensurately charged condensates might also
be an interesting system to be realized in cold atoms with
synthetic gauge fields.
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APPENDIX A: ADDITIONAL MATERIAL

In Figs. 7 and 8, we give additional single flux quantum
skyrmions for different values of the parameters of the
interacting potential (5). In particular, we investigate here the
role of m = |ψ1|2/|ψ2|2 parametrizing the relative ground-
state densities of both charged condensates.

APPENDIX B: FINITE-ELEMENT ENERGY
MINIMIZATION

We consider the two-dimensional problem (4) defined
on a domain � ⊂ R2 bounded by ∂�. In our simulations,
we choose the domain � to be a disk. The problem is
supplemented by the boundary condition n · Dψa = 0 with n
the normal outgoing vector on ∂�. This condition physically
implies that no current flows through the boundary. This
is thus a superconductor/insulator or superconductor/vacuum
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FIG. 7. (Color online) Single flux quantum topological excitations with disparity in the densities of each condensate. Here, the parameters
of the Ginzburg-Landau functional (4) are (α1,β1) = (−3,1), (α2,β2) = (−5,5), and e = 0.2. Each row displays solutions for different winding
parameters (g1,g2) (indicated on left). Displayed quantities in each row are respectively the magnetic field B (divided by the flux quantum
�0) and the densities of both condensates |ψ1|2 and |ψ2|2 (in units of their ground-state value). The rightmost panel displays the normalized
projection of n onto the plane, while the color scheme indicates the magnitude of nz. Blue corresponds to the south pole (−1) while red is the
north pole (+1) of the target sphere S2.
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FIG. 8. (Color online) Vortex solutions carrying a single flux quantum. The parameters of the Ginzburg-Landau functional (4) are (α1,β1) =
(−5,5), (α2,β2) = (−3,1), and e = 0.2. Each row displays solutions for different winding parameters (g1,g2) (indicated on left). Displayed
quantities in each row are respectively the magnetic field B (divided by the flux quantum �0) and the densities of both condensates |ψ1|2 and
|ψ2|2 (in units of their ground-state value). The rightmost panel displays the normalized projection of n onto the plane, while color scheme
indicates the magnitude of nz. Blue corresponds to the south pole (−1) while red is the north pole (+1) of the target sphere S2.
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boundary condition. Since this boundary condition is gauge
invariant, additional constraint can be chosen on the boundary
to fix the gauge. Our choice is to impose the radial gauge on
the boundary eρ · A = 0 (note that with our choice of domain,
this is equivalent to n · A = 0). This choice eliminates (most
of) the gauge degrees and the boundary condition separates
into two parts:

n · ∇ψa = 0 and n · A = 0. (B1)

Note that these boundary conditions allow a topological defect
to escape from the domain. To prevent this in simulations
of individual skyrmions or skyrmion groups when no field
is applied, the numerical grid is chosen to be large enough
so that the attractive interaction with the boundaries is
negligible. The size of the domain is then much larger than
the typical interaction length scales. Thus, with this method
one has to use large numerical grids, which is computationally
demanding. This guarantees that the solutions are not boundary
pressure artifacts. In particular this means that the observed
core splitting cannot be attributed to finite-size effects as in
mesoscopic samples [29–31].

The variational problem is defined for numerical com-
putation using a finite-element formulation provided by the
FREEFEM++ library [18]. Discretization within finite-element
formulation is done via a (homogeneous) triangulation over
�, based on the Delaunay-Voronoi algorithm. Functions are
decomposed on a continuous piecewise quadratic basis on each
triangle. The accuracy of such method is controlled through
the number of triangles (we typically used 3 ∼ 6 × 104), the
order of expansion of the basis on each triangle (second-order
polynomial basis on each triangle), and also the order of the
quadrature formula to compute the integral on the triangles.

Initial guess

The initial field configuration carrying N flux quanta is
prepared by using an ansatz which imposes phase windings
around spatially separated Na = Nga vortices in each con-
densate:

ψa = |ψa|ei�a+iϕ̄a ,

|ψa| = ua

Na∏
k=1

√
1

2

[
1 + tanh

(
4

ξa

[
Ra

k (x,y) − ξa

])]
, (B2)

where a = 1,2, ua = √−αa/βa is the ground-state density of
a given condensate, and ϕ̄a its ground-state phase. Because of
U (1) × U (1) invariance, both ϕ̄a can be chosen to be zero. ξa

parametrizes the size of cores while the functions

�a(x,y) =
Na∑
k=1

tan−1

(
y − ya

k

x − xa
k

)
,

(B3)

Ra
k (x,y) =

√(
x − xa

k

)2 + (
y − ya

k

)2
.

(xa
k ,ya

k ) denotes the position of the singularity of the kth
vortex of the a condensate. The starting configuration of
the vector potential is determined by solving numerically
Ampère’s equation on the background of the superconducting
condensates given by Eqs. (B2) and (B3).

For a given starting configuration, the free energy is then
minimized with respect to all degrees of freedom, with the
condition (B1) that no current flows through the boundary.
Here we used a nonlinear conjugate gradient method. The
algorithm was iterated until relative variation of the norm of
the gradient of the functional F with respect to all degrees of
freedom was less than 10−6.
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