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Effect of weak disorder on the phase competition in iron pnictides
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We analyze the effect of weak disorder on the competition between antiferromagnetic order and superconductiv-
ity in a model for iron-based superconductors. Under the assumption of an approximate particle-hole symmetry,
we show that conventional s++ superconductivity cannot be realized in the case of coexisting magnetic and
superconductive orders, observed experimentally at intermediate doping levels. This result holds for arbitrary
impurity concentrations, and, in particular, in the clean limit. The inclusion of disorder further amplifies the phase
competition between itinerant antiferromagnetism and conventional superconductivity. In addition, we analyze
the effect of disorder on the characteristic length scales of the two order parameters, and find that in a disordered
sample the staggered moment fluctuates on shorter scales than the superconductive order parameter, even if both
length scales are the same in the clean limit.
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I. INTRODUCTION

Phase competition is a hallmark of strongly correlated
electron systems that exhibit ground states with rather distinct
order yet of comparable energy. Changing parameters in the
Hamiltonian by applying external fields, stress, or chemical
composition allows one to tune from one state to another. Com-
plex phase diagrams divulge, on the one hand, our limitation
to make quantitative predictions for a given compound. On the
other hand, the nature of the competing ordered states reflects
the relevant degrees of freedom in a low energy description.
An important aspect of phase competition that is crucial for
a realistic description of correlated materials is the role of
disorder and impurities.

Iron-based superconductors display a phase diagram char-
acterized by antiferromagnetism, nematic order, and supercon-
ductivity along with regions in the parameter space where the
nonmagnetic normal state displays quantum critical and more
conventional behavior [1–4]. Numerous arguments support a
sign-changing superconducting state, where the s+− state, with
opposite sign of the Cooper pair wave function on hole and
electron pockets, is the most prominent example [5,6]. Among
the strongest evidence in favor of this state are the emergence
of a spin-resonance mode in inelastic neutron scattering
experiments [7,8] and the field-dependence of the quasiparticle
interference pattern in scanning tunneling spectroscopy [9]. In
Refs. [10–12], it was argued that the nature of the phase compe-
tition between antiferromagnetism and superconductivity can
be another powerful tool to distinguish between sign-changing
and sign-preserving superconducting states. This conclusion
was based on two key ingredients: (i) the same electrons
that contribute to the ordered antiferromagnetic moment also
contribute to the Cooper pair condensate and (ii) there exists
at least an approximate particle-hole symmetry between the
electron and hole bands shifted by the ordering vector of the
magnetic order Q:

ξhole(k) ≈ −ξelec.(k + Q). (1)

This latter condition seems to be reasonably well satisfied
in many iron-based superconductors, allowing one to make

the connection between phase stability and pairing state, a
conclusion that cannot be drawn so easily in other systems.
If both conditions are fulfilled, Refs. [10–12] concluded that
antiferromagnetism and conventional (s++) superconductivity
will be separated by a strong first-order transition as sketched in
Fig. 1(a). AFM and SC phase transition lines meet at a bicritical
point. In contrast, in the case of s+− pairing (and similarly
for d-wave pairing), the system is at the verge between a
first-order transition and crossing second-order transitions
with a regime of homogeneous and simultaneous order of
both states as depicted in Fig. 1(b). Depending on details of
the electronic structure and interactions, AFM and SC phase
transition lines meet at a bicritical point or at a tetracritical
point, respectively. The observation of crossing second-order
lines in some, but not all, systems was then argued to be
strong evidence for unconventional pairing. Thus one can
“read off” the superconducting pairing state from the phase
diagram of the iron-based superconductors. At the heart of this
conclusion was the fact that the magnetic order parameter has
a typical momentum Q, which couples the superconducting
condensates in electron and hole sheets of the Fermi surface,
similar to an internal Josephson coupling in momentum space.
The effect is rooted in the same coherence factors that lead to
the resonance mode enhancement at the transferred momentum
Q in inelastic neutron scattering experiments.

The theory of Refs. [10–12] was based on the assumption
that disorder plays no role in the phase competition. However,
the widely studied system Ba(Fe1−xCox)2As2 and a number
of related systems are clearly affected by disorder. This
insight was revealed in first-principle calculations [13,14], and
very clearly demonstrated in recent NEXAFS experiments
that identified the spin and valence state of Co [15]. A
rigid-band calculation of a perfectly clean system as performed
in Refs. [10–12] is therefore not sufficient. Disorder has
been shown to strongly affect the phase competition between
antiferromagnetism and superconductivity. It is therefore
crucial to investigate the role of disorder on the interplay
between superconducting pairing and phase competition.
More generally, the investigation of the role of disorder in
unconventional superconductors has proven to yield important
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FIG. 1. (Color online) Sketches of the two types of phase di-
agrams experimentally observed in iron-based superconductors.
(a) Phase diagram where SC and AFM orders mutually exclude each
other. The transition between AFM and SC is first-order, and there
may be a region of heterogeneous coexistence, depending on the
thermodynamic variable we used as a control parameter. (b) Phase
diagram exhibiting a region where SC and AFM orders coexist
microscopically and thus compete for the same electrons. SC and
AFM transitions are second-order and meet in a tetracritical point.

clues with regard to the competition between alternative states
of order [16–25]. In addition, the more general question of
how one can manipulate the degree of competition between
different phases clearly deserves more detailed attention.

In this paper, we investigate the role of disorder on the
phase competition between magnetism and superconductivity.
In our analysis, we therefore consider the regime where
the ordering temperatures of both states remain finite, i.e.,
are not suppressed due to disorder. By analyzing several
experimentally motivated models for the microscopic nature
of disorder we demonstrate that the distinct phase competition
between itinerant antiferromagnetism and either s++ or s+−
superconductivity is further enhanced if one includes disorder.
Thus the statements of Refs. [10–12], relating the phase
diagram and the nature of the pairing state, apply as well
to disordered systems.

II. PHENOMENOLOGICAL APPROACH

Before we enter a microscopic analysis of the phase
competition, we phenomenologically describe the situation
of two second-order phase transitions, one antiferromagnetic
and one superconductive, that meet in a multicritical point. The
resulting phase diagrams can be divided in two classes: either
superconductivity is able to microscopically coexist with anti-
ferromagnetism, or superconductivity and antiferromagnetism
mutually exclude each other. In Fig. 1, these two types of
phase diagrams found in iron pnictide materials are sketched.
The first class shows a bicritical point in the phase diagram,
and a first-order transition line between superconductivity
and antiferromagnetism, Fig. 1(a). The second class shows
a tetracritical point in the phase diagram, a region where both
order parameters are nonzero (referred to as homogeneous
coexistence [10–12]), and all phase-transitions are second-
order, Fig. 1(b).

Around the multicritical point in the phase diagram, the
free energy can be expanded simultaneously in both order
parameters, in the spirit of Ginzburg-Landau theory of super-
conductivity [26,27]. The most generic form of the free energy,

allowed by the symmetry, in terms of the antiferromagnetic M
and the superconductive � order parameters reads as

�F =
∫

dr
(

1

2
amM2 + 1

4
umM4 + 1

2
as|�|2

+ 1

4
us|�|4 + 1

2
γ M2|�|2 + . . .

)
. (2)

The last quartic term in Eq. (2) has to be positive, γ > 0,
in order to ensure competition between the two ordered
phases. Gradient terms accounting for temporal and spatial
fluctuations of the order parameters can be included in this
expansion of the free energy as well, and will be discussed later.
Whether the phase transitions are first or second order, and
thereby the shape of the phase diagram near the multicritical
point, is determined by the quartic coefficients. The analysis of
the quadratic form associated with the quartic terms suggests
to introduce the quantity

g = γ√
umus

− 1, (3)

which determines the shape of the phase diagram. For g <

0, we encounter a phase diagram with second-order phase
transitions only, and thus a tetracritical point. For g > 0,
antiferromagnetism and superconductivity are separated by
a first-order phase transition line that terminates in a bicritical
point. Below, we will determine microscopic expressions
for the coefficients in Eq. (2) for a disordered system with
electron-electron interactions. The resulting values of these
coefficients determine the location of the multicritical point as
a function of microscopic parameters. Changing the disorder
strength or other parameters in the Hamiltonian will then affect
the location of the multicritical point. Equation (2) is then valid
in the vicinity of this multicritical point.

In Refs. [10–12], using a weak coupling analysis, it was
found for the clean system that g++ = 2 and g+− = 0. In case
of perfect particle-hole symmetry, the latter result is exact, as
shown in Ref. [28]. In what follows, we derive the coefficients
of the expansion (2) from a microscopic model describing the
essential features of the iron pnictides in presence of disorder.
The model is introduced in Sec. III and its implications in the
presence of disorder are studied in the remainder of this paper.

III. MODEL

We consider the two-band model that is illustrated in Fig. 2.
It consists of a circular hole band at the � point, and an elliptical
electron band shifted by vector Q. This is the minimal model
in which phase competition of antiferromagnetism and s++
or s+− superconductivity in the iron pnictides can be studied.
The Hamiltonian

H = H0 + HSC + HAFM + Hdis (4)

of this two-band model contains the usual noninteracting part

H0 =
∑
k,σ

∑
α

ξα,kψ
†
α,k,σ ψα,k,σ , (5)

where we label the two bands by the index α. ψ†
α and ψα

are the creation and annihilation operators in the respective
band. Since small changes in the band structure lead to small
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FIG. 2. (Color online) The two-band model on which our micro-
scopic description of the iron pnictides is based. The hole band at
the � point is a circular band, whereas the electron band centered
around Q could in principle be of elliptic form. Additionally, we
could introduce a finite chemical potential μ to fit our model to more
realistic band structures, and introduce ξα,k = εα,k − μ.

changes of g, we focus on the particle-hole symmetric case
in the following. Deviations from particle-hole symmetry
were investigated in Refs. [10–12]. Within the assumption of
particle-hole symmetry, no further details of the dispersion ξk
are needed to calculate g. In our analysis of the coefficients of
the momentum dependence we assume a parabolic dispersion,
i. e., ξ1,k = ξ0 − k2

2m
, and ξ2,k = −ξ1,k in case of particle-hole

symmetry. Note that band 2 is centered around Q, which in
our notation is included in the band index.

A. Superconductivity and magnetic order

The electrons are subject to an effective electron-electron
interaction leading to superconductivity and antiferromag-
netism. Here, we do not attempt to find microscopic ex-
pressions for the pairing interaction but are investigating the
consequences of alternative pairing states. So, we assume
for simplicity that the superconductive and antiferromagnetic
couplings are described by two microscopic Hamiltonians of
different nature.

Superconductivity is described by a BCS-like Hamiltonian,

HSC =
∑

k,k′,q

∑
α

V s
k,k′,qψ

†
α,k+q,↑ψ

†
α,−k,↓

×ψα,−k′+q,↓ψα,k′,↑,
(6)

V s
k,k′,q =

{
Vs for |ξk|,|ξk′ |,ξk+q|,|ξ−k′+q| < 
s,

0 otherwise,

where ᾱ refers to the opposite of α. The electron-electron
interaction leading to superconductivity is present for electrons
with energies within a shell of width 2
s around the Fermi
energy. For phonon-mediated electron-electron interaction
leading to conventional superconductivity, this energy cutoff
would be given by the Debye frequency. In case of an electronic
pairing mechanism, the cutoff is expected to be of the order
of the Fermi energy. The same electrons that form the Cooper
pairs are subject to an interaction that might lead to magnetic
order. Antiferromagnetism shall be described in an itinerant

picture by

HAFM =
∑

k,k′,q

∑
σ,σ ′,s,s ′

∑
α,β

V m
k,k′,qψ

†
α,k,σ ψ

†
β,k′,s

× σ σσ ′σ ss ′ψ
β̄,k′−q,s ′ψᾱ,k+q,σ ′ ,

(7)

V m
k,k′,q =

{
Vm for |ξk|,|ξk′ |,|ξk+q|,|ξk′−q| < 
m,

0 otherwise,

where 
m is the characteristic energy cutoff for magnetic
interactions. Its nature is unimportant for our results, and in
what follows, we assume that it is of the order of or smaller
than the Fermi energy, 
m � ξkF .

B. Disorder

Weak quenched disorder is represented by the potential
Uαβ(r) = ∑Nimp

i=1 uαβ(r − Ri) of Nimp randomly distributed
identical impurities,

Hdis =
∫

dr �†
α,σ (r)Uαβ(r)�β,σ (r), (8)

where �(†)(r) are the field operators in position space. Here
Uαβ(r) is the impurity potential matrix element that may
describe intraband scattering (α = β) as well as interband
scattering processes (α �= β). In the following, we assume the
impurity potential uαβ(r − Ri) to be short-ranged. We describe
impurity scattering in the Born approximation, in which the
rate of electron collisions with impurities is characterized by

1

ταβγ δ,k
= 2π

∫
dk′

(2π )2
nimpuαβ,k−k′u∗

δγ,k−k′ δ(ξk − ξk′), (9)

where uk−k′ is the Fourier component of the potential of a
single impurity and nimp the impurity concentration.

We consider the model with a sufficiently smooth disorder,
which leads to significantly smaller interband than intraband
scattering. This hierarchy of scattering rates in iron pnictides
is also supported by experiment [29–31]. Without loss of gen-
erality, we may assume s-wave scattering which corresponds
to δ-correlated disorder when considering the scattering in
one band. More general models of disorder will not change
the results qualitatively, leading only to the replacement of
the elastic scattering time by the transport scattering time.
Then, the scattering amplitudes are characterized by constants
u11 (u22) for scattering within band 1 (2), and by a constant
u12 for scattering between the bands. Impurity scattering in
this two-band model is therefore characterized by intraband
scattering rates τ1

−1 ≡ τ1111
−1 and τ2

−1 ≡ τ2222
−1, and the

interband scattering rate τ12
−1 ≡ τ1221

−1, which can be also
assumed momentum-independent. From Eq. (9) follows that
the scattering rate τ1221

−1 is real, whereas τ1212
−1 is allowed

to have a nontrivial phase. Both scattering rates have equal
magnitude, |τ1212

−1| = τ1221
−1. Note, the generalization of this

approach to more extended impurities, discussed in Refs. [32]
and [33], will be done elsewhere [34].

In this paper, we consider several models of disorder to
describe the corresponding physically relevant limits.

A. Dominant hole-band scattering. Several experiments and
first-principles calculations have demonstrated that intraband
scattering in the hole band (labeled by 1) is significantly
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stronger than in the electron band (band 2). This is supported,
for example, by transport measurements [35,36], scanning
tunneling microscopy [37], as well as first-principles density
functional theory calculations [14]. The physically relevant
limit is therefore τ2

−1 
 τ1
−1 for the corresponding intraband

scattering rates. However, in this paper, we consider a more
general model where the values of the intraband scattering
rates are arbitrary, τ1

−1 �= τ2
−1.

Furthermore, the transition temperature Tc is suppressed
with increasing impurity concentration. In case of s+− pairing,
this is caused by interband scattering processes [38,39].
The suppression of the SC transition temperature is an
order of magnitude smaller than theoretical prediction based
on the scattering rates obtained from transport experiments
[29–31]. Hence the interband scattering rate τ12

−1 that leads
to suppression of Tc is smaller than the intraband scattering
rate in the band that dominates the transport properties. Thus,
in iron pnictides, τ12

−1 < τ1
−1 seems a reasonable starting

point.
Since the intraband scattering rate τ1

−1 in the hole band is
clearly the largest scattering rate in iron pnictide materials, we
neglect interband scattering in the first model. Since without
interband scattering, the intraband scattering rates in the two
bands simply add up in the physical observables calculated in
this paper, a finite intraband scattering rate in the electron band
yields qualitatively similar results, and we consider our model
in the limit,

τ1
−1 �= τ2

−1 and τ12
−1 = 0, (10)

where the physically relevant limit to iron pnictides is τ2
−1 


τ1
−1. This model, summarized in Eq. (10), will be referred to

as model A throughout this paper.
B. Investigation of interband scattering. Although the

interband scattering seems to be significantly weaker than the
intraband scattering in the hole band, setting the interband
scattering rate to zero is an oversimplification with respect
to some aspects. The weak suppression of the SC transition
temperature is one example of the consequences of a finite
interband scattering rate. Therefore we analyze the influence
of a finite interband scattering rate as well and use the model

τ1
−1 = τ2

−1 ≡ τ0
−1 and τ12

−1 ≡ tτ0
−1, (11)

for the investigation of interband scattering on the phase
competition in iron pnictides. This model of disorder in iron
pnictides has already been considered by Ref. [23] in a slightly
different context. We argued that the interband scattering rate
is smaller than the largest intraband scattering rate τ1

−1, thus
the range 0 < t < 1 is the limit interesting for the ratio of
interband to intraband scattering rates in iron pnictides. The
model itself, however, is not limited to this parameter range,
and allows for the analysis of arbitrary ratios t . We will refer to
this model with a finite interband scattering rate, summarized
in Eq. (11), as model B in the following.

IV. FULL GINZBURG-LANDAU EXPANSION

In this section, we derive as an illustration the full
Ginzburg-Landau expansion for model A of disorder in iron
pnictides, based on the dominant scattering mechanism. Thus
we consider the interband scattering rate τ12

−1 to be zero, and

FIG. 3. Vertices involved in the diagrams for the free energy.

finite intraband scattering rates τ1
−1 and τ2

−1 in bands 1 and
2, respectively. Experimental evidence suggests that the hole
band is more severely affected by impurities than the electron
band, so for the sake of clarity we concentrate on the limit
τ2

−1 = 0 in the following derivation of the free energy. We also
calculated the expansion of the free energy for the more general
case of arbitrary intraband scattering rates τ1

−1 �= τ2
−1 > 0.

The results will be presented at the end of this section.
One can calculate the coefficients in the Ginzburg-Landau

expansion using the Eilenberger [40] approach or straightfor-
wardly using perturbation theory based on the vertices depicted
in Fig. 3. The quadratic coefficients correspond to the diagrams
presented in Fig. 4, and the quartic coefficients correspond to
those shown in Figs. 5 and 6.

In order to arrive at an expansion of the free energy of the
model A introduced in Sec. III, we may write the partition
function as

Z
Z0̃

= 〈Tτ e− ∫ β

0 dτ HSC[ψ†(τ ),ψ (τ )]+HAFM[ψ†(τ ),ψ (τ )]〉0̃ (12)

in Matsubara interaction representation, where the average
〈. . .〉0̃ = tr[e−βH0̃ . . .]/Z0̃ refers to the noninteracting part
H0̃ = H0 + Hdis. We follow the usual procedure to make the
action quadratic in the fermionic operators by introducing
Hubbard-Stratonovich fields and find an effective action in
terms of these fields. In momentum and frequency space, we
use complex scalar fields �1,q(ωm) and �2,q(ωm) to decouple
HSC, and a three-component vector field Mq(ωm) to decouple
HAFM, where ωm are bosonic Matsubara frequencies. Thereby
we find for the effective action in terms of these fields,

Seff
SC = −

∑
k,n

∑
q,m

∑
α

[
1

Vs
�∗

α,q(ωm)�α,q(ωm)

+�α,q(ωm)ψ∗
α,k+q,↑(νn + ωm)ψ∗

α,−k,↓(−νn)

+�∗
α,q(ωm)ψα,k+q,↓(νn + ωm)ψα,−k,↑(−νn)

]
(13)

and

Seff
AFM = −

∑
k,n

∑
q,m

{
1

Vm
M2

q(ωm) +
∑
s,s ′

[Mq(ωm)σ ss ′

×
∑

α

ψ∗
α,k,s(νn)ψα,k+q,s ′ (ωm + νn)]

}
. (14)

FIG. 4. Diagrams for the quadratic coefficients in the free energy.
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FIG. 5. Quartic coefficients I. These contributions correspond to
the quartic order terms of pure SC and AFM.

From the effective action, we may construct the elements of
a diagrammatic technique to derive the expansion of the free
energy, and the superconducting and antiferromagnetic parts
of the action contain different types of vertices associated with
the fields M, �α , and �∗

α , see Fig. 3.
In order to embed impurity scattering in the diagrammatic

technique, we include impurity lines as new diagrammatic
elements in our formalism, each associated with a factor
1/2πρFτ1. Impurity scattering gives rise to a finite self
energy and vertex corrections. Within this model of impurity
scattering, the propagator in the electron band is given by
the bare electron propagator, G2,k(νn) = (iνn − ξ2,k)−1. The
propagator in the hole band is given by

= G1,k(νn) = 1

iνn − ξ1,k + i
2τ1

sgn νn

, (15)

with a finite self energy due to impurity scattering, which
we here treat in the lowest nonvanishing order (Born ap-

FIG. 6. Quartic coefficients II. These contributions are responsi-
ble for the phase competition.

proximation). Contributions with crossed impurity lines are
neglected since they are suppressed by a small factor [41]
1/kFl, where l = vFτ1 is the mean free path and vF is the
Fermi velocity. Therefore we construct our diagrams from
vertices that already contain the full propagators. Additionally,
vertices are renormalized due to impurity scattering, which
is indicated by a shaded region in the diagrams. There are
no vertex corrections of the vertices associated with M and
�2 to consider here since we set τ12

−1 = 0 and τ2
−1 = 0,

respectively. Vertex corrections of vertices associated with �1

are given by the Cooperon ladder in band 1, which leads to a
frequency-dependent factor

C1(νn,q,ωm) = 2τ1|νn| + 1

2τ1|νn| − 1

2

τ 2
1 v2

F

(2τ1|νn| + 1)(2τ1|νn|)2
q2

− sgn νnτ1

(2τ1|νn|)2
ωm, (16)

to leading order in q and ωm. Here the restriction of
sgn(νn)(νn + ωm) > 0 is implied in every summation that
contains this Cooperon ladder. Again, in the calculation of the
vertex corrections, and also in the construction of the diagrams,
all contributions from crossed impurity lines can be neglected
due to the small factor 1/kFl.

These prerequisites enable us to derive the full Ginzburg-
Landau expansion of the free energy of our two-band model
in presence of weak impurity scattering, which reads

�F =
∑
α,β

as,αβ (q,ωm)

2
�α�∗

β + am(q,ωm)

2
M2

+
∑

α

us,α

4
|�α|4 + um

4
M4 +

∑
αβ

γα,β

2
M2�α�∗

β

(17)

in frequency and momentum space. We note that Eq. (17)
accounts for the gradient terms ∝(∇�α)2, ∝(∇M)2, ∝(∂τ�α),
and ∝(∂τ M) in the free energy that characterize spatial
and temporal fluctuations of the order parameters, which is
reflected in the dependence of the quadratic coefficients on
finite incoming frequency ωm and momenta q.

In our analysis, we implicitly assumed that the sole effect of
disorder is to change the values of the coefficients of the order
parameters. In the critical regime, it is well established that
disorder may change the universality class of the transition,
lead to Griffiths and quantum Griffiths effects, or even cause
glassy behavior close to the transition point. These effects,
however, only become important in the very close vicinity of
the critical point [42,43] as a consequence of the weakness
of the interaction sufficient to induce the ordered state. Thus,
on the one hand, we consider our model sufficiently far away
from the multicritical point to ignore these effects, while at the
other hand sufficiently close to the multicritical point such that
an expansion of the free energy is justified. References [42,43]
demonstrated that this intermediate regime covers a wide
range if the pairing and magnetic interactions are sufficiently
weak.
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A. Quadratic coefficients

The diagrams for the quadratic terms in the free energy are
shown in Fig. 4, and the leading-order behavior in the limiting
cases of vanishing and strong disorder is

am(q,ωm) = am +
{

7ζ (3)ρFv2
F

8π2T 2 q2 , T τ1 � 1

4ρFv
2
Fτ

2
1 q2 , T τ1 
 1

+
{πρF

2T
|ωm| , T τ1 � 1

8ρFτ1|ωm| , T τ1 
 1
, (18)

as,11(q,ωm) = as,11 +
{

7ζ (3)ρFv2
F

16π2T 2 q2 , T τ1 � 1
πρFv2

Fτ1

8T
q2 , T τ1 
 1

+ πρF

4T
|ωm|, (19)

as,22(q,ωm) = as,22 + 7ζ (3)ρFv
2
F

16π2T 2
q2 + πρF

4T
|ωm|, (20)

as,12(q,ωm) = as,12 = as,21(q,ωm), (21)

where

am = 4

Vm
− 4ρF

[
ψ0

(
3

2
+ 1

8πT τ1
+ 
m

T

)

− ψ0

(
1

2
+ 1

8πT τ1

)]
≈ 4

Vm
− 4ρF ln


m

max(T ,τ1
−1)

,

(22)

as,11 = as,22 = −2ρF

[
ψ0

(
3

2
+ 
s

T

)
− ψ0

(
1

2

)]

≈ −2ρF ln 
s
T

, (23)

as,12 = as,21 = − 2

Vs
. (24)

The magnetic critical points (x,T ) are the points of the phase
diagram (as sketched in Fig. 1) where am = 0 holds, and
analogously, the superconducting critical points are defined by
as,11 + as,22 + |as,12| + |as,21| = 0. Note that doping can affect
the values of the coupling constants Vm and Vs. The intersection
of the two critical lines then defines the multicritical point of
the phase diagram.

The renormalization of the superconductive vertex de-
scribes diffusion of Cooper pairs in band 1, which, however,
does not affect the SC transition temperature because the
coefficient as,1 ≡ as,1(0,0) does not depend on the scattering
rate τ1

−1 anymore, and it coincides with the respective result
in band 2 which is not affected by impurity scattering. For
nonmagnetic impurities in a usual s-wave superconductor,
this constitutes the Anderson theorem [44–46]. From Eq. (22)
follows that the magnetic ordering temperature vanishes for
τ1

−1 � TN,clean, where TN,clean is the corresponding transition
temperature of the clean system. The phase competition
discussed in this paper is, of course, only sensible for τ1

−1 <

TN,clean, where both competing states order. From the quadratic
coefficients am and as,11 at finite q and ωm, we also find
the typical length scales of fluctuations of the magnetic and

TABLE I. The characteristic length scales of the order parameter
fluctuations, obtained from the Ginzburg-Landau expansion under the
assumption of second-order phase transitions at the respective critical
points.

ξSC,AFM clean disordered

SC vF
Tc

( T

Tc
− 1)−1/2

√
vFl

Tc
( T

Tc
− 1)−1/2

AFM vF
Tc

( T

Tc
− 1)−1/2 l( T

Tc
− 1)−1/2

superconducting order parameters to be affected differently
by disorder. They are summarized in Table I. In the clean
case, we find the same characteristic length scale for both
order parameters. It corresponds to the result for the coherence
length of a superconductor [47] and is independent of disorder
strength. For strong disorder, both lengths are reduced with
increasing scattering rate τ1

−1. However, the magnetic length
is stronger suppressed by disorder than the superconductive
coherence length, cf. Table I.

Thus, even if the spatial variation of both order parameters
is the same in the clean limit, it is different if one includes
disorder. Then, the characteristic length scales for the magnetic
degrees of freedom become shorter.

B. Quartic coefficients

The coefficients of the quartic terms of pure SC and AFM,
which are not due to phase competition, are depicted in Fig. 5.
The resulting coefficients are

um = − ρF

4π2T 2
ψ2

(
1

2
+ 1

8πT τ1

)

− ρF

96π3T 3τ1
ψ3

(
1

2
+ 1

8πT τ1

)

=
{

7ρFζ (3)
2π2T 2 , T τ1 � 1

16
3 ρFτ

2
1 , T τ1 
 1

, (25)

us,1 = us,2 = 7ζ (3)ρF

4π2T 2
. (26)

Again, the coefficients associated with superconductivity do
not depend on the strength of disorder whereas the quartic
coefficient associated with the magnetic order parameter does.

The diagrams contributing to the coefficients of the quartic
terms reflecting the phase competition between magnetic order
and superconductivity are depicted in Fig. 6, and the results are

γ11 = γ22 = −2ρFτ1

πT

[
ψ1

(
1

2
+ 1

8πT τ1

)
− ψ1

(
1

2

)]

=
{

7ζ (3)ρF

2π2T 2 , T τ1 � 1
πρFτ1

T
, T τ1 
 1

, (27)

γ12 = γ21 = −16ρFτ
2
1

[
ψ0

(
1

2
+ 1

8πT τ1

)
− ψ0

(
1

2

)]

+ 2ρFτ1

πT
ψ1

(
1

2

)

=
{

7ζ (3)ρF

4π2T 2 , T τ1 � 1
πρFτ1

T
, T τ1 
 1

. (28)
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Depending on the assumption for the underlying symmetry
of the superconducting order parameter, these results can be
summarized into

γ++ = γ11 + γ22 + γ12 + γ21 =
{

3 7ζ (3)ρF

2π2T 2 , T τ1 � 1
4πρFτ1

T
, T τ1 
 1

, (29)

γ+− = γ11 + γ22 − γ12 − γ21 =
{

7ζ (3)ρF

2π2T 2 , T τ1 � 1

32ρFτ
2
1 , T τ1 
 1

, (30)

where the indices refer to s++ and s+− symmetry of the order
parameter �, and we omitted the expressions for arbitrary T τ1

for the sake of brevity.
In the case of strong disorder, we find γ+− → 0 to leading

order, i. e., superconducting and magnetic order parameters
completely decouple in the limit τ1

−1 → ∞, thus competition
between magnetism and superconductivity ceases to exist in
this limit. As the consideration of finite interband scattering
shows, this complete decoupling only occurs in the limit
τ12

−1 → 0, but even at finite interband scattering rates, the
competition between SC and AFM order is mitigated by the
intraband scattering. Since we are in the regime of weak
disorder, the limit of large τ−1 is understood in the sense
that Tc 
 τ−1 
 EF, where EF denotes the Fermi energy.

In the case of zero interband scattering rate, these calcu-
lations can be easily generalized to arbitrary finite intraband
scattering rates τ1

−1 and τ2
−1 in band 1 and 2, respectively.

Our calculations show that the intraband scattering rates in
the absence of interband scattering simply add up to a total
scattering rate τt

−1 = τ1
−1 + τ2

−1. Therefore the structure
of the resulting coefficients remains the same, and the
corresponding coefficients can be obtained by substitution of
τt

−1 for τ1
−1 in the previously discussed expansion of the free

energy.

V. PHASE COMPETITION IN PRESENCE OF
INTRABAND SCATTERING

The full Ginzburg-Landau expansion now allows us to
calculate g+± = γ+±/

√
usum − 1 which determines the nature

of the phase diagram. Here, the index refers to the respective
symmetry of the SC order parameter. In Fig. 7, we plotted g

as a function of Tcτ1 for the two pairing symmetries under
consideration, since we expanded the free energy around the
multicritical point, where T ≈ Tc. In the two limiting cases of

FIG. 8. (Color online) Influence of disorder on g in case of s+−

and s++ pairing.

vanishing disorder and strong disorder, we find

g++ = γ++√
umus

− 1

=
{

2, Tcτ1 � 1

π2
√

6ζ (3)
7 − 1 ≈ 7.3, Tcτ1 
 1

, (31)

g+− = γ+−√
umus

− 1

=
{

0, Tcτ1 � 1

−1, Tcτ1 
 1
(32)

for the two respective cases. In the clean limit (Tcτ1 → ∞),
we recover the results obtained from a model disregarding
disorder [10–12]. g++ = 2 means that s++ superconductivity
cannot coexist with antiferromagnetism, whereas g+− = 0
allows for both possible types of phase diagrams since a more
detailed band structure may lead to a small positive or negative
g+−. This was taken as evidence against s++ superconductivity
to be realized in the iron pnictides.

The consideration of disorder supports this reasoning since
g++ increases with disorder and the s++ pairing state is even
more inconsistent with the observed variety of phase diagrams.
The s+− pairing state is driven towards the regime of phase
coexistence by increasing disorder but the consideration of a
more detailed band structure would still allow for both types of
phase diagrams. The result of g+− = −1 in the limit of strong
disorder results from the complete decoupling of AFM and
SC orders since in this limit γ+− = 0. Note that our findings
also imply the possibility of a disorder-induced transition

FIG. 7. (Color online) g as a function of Tcτ for s++ and s+− pairing symmetries.
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FIG. 9. (Color online) The parameter g, which characterizes the shape of the phase diagram as a function of Tcτ0 for different ratios of
interband to intraband scattering rate t : t = 0 (red line), 0 < t < 1 (light blue lines), t = 1 (blue line), and t = 2 (green dotted line).

from mutual exclusion to coexistence of superconductivity
and antiferromagnetism in the iron pnictides. These findings
are summarized in Fig. 8.

VI. INFLUENCE OF INTERBAND SCATTERING

Our treatment of the problem with a finite interband scat-
tering rate τ12

−1 in Eilenberger formalism [40] is analogous to
the approach described in Ref. [23], and we consider a model
with finite interband scattering rate τ12

−1 and equal intraband
scattering rates τ0

−1 in the hole and electron bands as well.
This approach allows for the expansion of the SC and AFM
gap equations which can, up to a factor, be identified with
the first derivative of the free energy with respect to the order
parameters.

We extract the coefficients of the free energy expansion
from the expanded gap equations. In presence of interband
scattering, the coefficients contributing to the quantity g+± =
γ+±/

√
us,+±um − 1, which determines the nature of the

multicritical point, read

us,+− = − ρF

4π2T 2
ψ2

(
1

2
+ t

4πT τ0

)

− ρF

12π2T 2

t

4πT τ0
ψ3

(
1

2
+ t

4πT τ0

)
, (33)

us,++ = − ρF

4π2T 2
ψ2

(
1

2

)
= 7ρF ζ (3)

2π2T 2
, (34)

um = − ρF

4π2T 2
ψ2

(
1

2
+ 1 + t

4πT τ0

)

− ρF

12π2T 2

1 + t

4πT τ0
ψ3

(
1

2
+ 1 + t

4πT τ0

)
, (35)

γ+− = 8ρFτ
2
0 (1 + 2t)

[
ψ0

(
1

2
+ 1 + t

4πT τ0

)

− ψ0

(
1

2
+ t

4πT τ0

)]
− 2ρFτ0

πT

[
(1 + t)

× ψ1

(
1

2
+ 1 + t

4πT τ0

)
+ t ψ1

(
1

2
+ t

4πT τ0

)]
,

(36)

γ++ =− 8ρFτ
2
0

(1 + t)2

[
ψ0

(
1

2
+ 1 + t

4πT τ0

)
− ψ0

(
1

2

)]

−2ρFτ0

πT

1

1 + t

[
ψ1

(
1

2
+ 1 + t

4πT τ0

)
− 2 ψ1

(
1

2

)]
,

(37)

where t = τ0/τ12 < ∞ is the ratio of interband to intraband
scattering rate. In the limit of τ12

−1 = 0, this corresponds
to the results discussed in Sec. V, but with the intraband
scattering rate doubled, since now the scattering rate in the
electron band is finite, and equal to the scattering rate in
the hole band. Again, we find that AFM and s+− SC decouple
in the limit of Tcτ0 → ∞ (g+− = −1), resulting in a phase
diagram exhibiting a region where AFM and SC coexist
microscopically whereas for s++ SC, g++ ≈ 7.3, and AFM
and SC exclude each other.

For finite interband scattering rates, AFM and SC no longer
decouple completely in the limit of strong disorder but the
coupling γ+− is reduced in the case of s+− pairing compared
to the clean case. The stronger interband scattering is, the
closer g+− is to zero, but for all ratios t > 0 we found g+− <

0, implying a phase diagram with a tetracritical point and
coexistence of SC and AFM. For s++ pairing, in contrast, we
find limTcτ0→0 g++ ≈ 7.3 and limTcτ0→0 = 2, irrespective of
the ratio t . Furthermore, we found that in case of s++ pairing,
the interband scattering simply adds to the intraband scattering
rate. Thus the qualitative behavior does not depend on t , and we
find g � 2, thus s++ SC is not able to coexist microscopically
with AFM, not even in the presence of inter- and/or intraband
scattering. These results are summarized in Fig. 9.

In conclusion, for the s+− pairing state, intraband scattering
and interband scattering are antagonistic processes, but the
effect of intraband scattering is always stronger, even in the
limit of t > 1, whereas for the s++ pairing state, the rates
of these two scattering processes simply add up. Thus in the
presence of interband scattering, we find the s++ pairing state
to be inconsistent with phase diagrams revealing a regime
of microscopic coexistence of AFM and SC. The analysis of
the s+− state, in contrast, suggests that this order parameter
symmetry will always result in a phase diagram exhibiting a
regime of coexistence of AFM and SC. Still, a more detailed
analysis including finite ellipticity and/or chemical potential
could also lead to g > 0, thus allowing for both types of phase
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diagrams. Since ellipticity and chemical potential yield only
small corrections, they could not bring the s++ state to coexists
with magnetic order. Therefore the analysis of finite inter- and
intraband scattering supports the reasoning based on phase
competition against the s++ as a suitable candidate for the
pairing state in iron pnictides.

VII. CONCLUSION

We studied a model of iron pnictides and related iron-based
superconductors and included impurity scattering in the mi-
croscopic model. We developed two complementary simplified
models for impurity scattering in the iron pnictides motivated
by experimental observations. Model A concentrates on the
most important scattering process in the materials under
consideration which is intraband scattering in the hole band.
Therefore we neglected intraband scattering in the electron
band and all types of interband scattering processes, since
τ1

−1 � τ2
−1,τ12

−1. Model B focuses on the interband scat-
tering rate, neglected in model A, yet makes the simplifying
assumption that the intraband scattering rates of both bands
are the same.

We derived the full Ginzburg-Landau expansion of the
free energy from this microscopic model. From the quadratic
coefficients we find that the transition temperature of neither
s++ nor s+− superconductivity is influenced by impurity
scattering if we take only intraband scattering into account.
This is in accordance with the Anderson theorem. We further
compared the coherence lengths obtained from the gradient
terms in the expansion and found the coherence length of the
magnetic order parameter more strongly reduced by impurity
scattering than the coherence length of the superconducting
order parameter.

From the quartic coefficients, we concluded how impurity
scattering affects the phase competition in the iron pnictides.
Our analysis supports the argument obtained in the clean
case [10–12] that s++ superconductivity is inconsistent with
phase diagrams that show microscopic coexistence of anti-
ferromagnetism and superconductivity. This behavior occurs
in models with and without interband scattering. Thus the
consideration of disorder provides an even stronger argument
against the s++ state to be realized in the iron pnictides
and supports s+− superconductivity or other sign-changing
superconducting states.
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APPENDIX A: EXEMPLARY CALCULATION OF γ12

To illustrate the calculation of the diagrams for the
coefficients in the free energy, let us provide here a detailed

computation of the coefficient γ12 in the framework of our
simplified model. In the absence of interband scattering there
is one diagram that contributes to the coefficient γ12. In the
following, we use the abbreviation ν̃n = νn + sgn νn/2τ1 and
use that the Cooperon ladder only depends on the absolute
value of νn. The diagram, Fig. 6(c), evaluates to

T

∞∑
n=−∞

∫
dk

(2π )2
C1(νn)

×G1,k(νn)G1,−k(−νn)G2,k(νn)G2,−k(−νn)

= T

∞∑
n=−∞

C1(νn)ρF

∫
dε

1

ε − iν̃n

1

ε + iν̃n

1

ε + iνn

1

ε − iνn

= ρFT

∞∑
n=−∞

4πτ 2
1 C1(νn)

|νn|(2τ1|νn| + 1)(4τ1|νn| + 1)

= ρF

4π2T 2

∞∑
n=0

1(
n + 1

2

)2(
n + 1

2 + 1
8πT τ1

) . (A1)

This sum may be conveniently evaluated approximately in
the limits T τ1 � 1 and T τ1 
 1, as well as exactly. To
calculate the coefficients from the diagrams, we have to
include the proper symmetry factor which is 2 in the case
of γ12. The resulting coefficient is then given by

γ12 = πρFτ1

T
+ 16ρFτ1

2

[
ψ0

(
1

2

)
− ψ0

(
1

2
+ 1

8πT τ1

)]

=
{

7 ζ (3)ρF

4π2T 2 , T τ1 � 1,
πρFτ1

T
, T τ1 
 1.

(A2)

APPENDIX B: TREATMENT OF AFM AND s++ SC IN THE
EILENBERGER FORMALISM

The coefficients of the Ginzburg-Landau expansion for
model B, given in Eqs. (33) to (37), have been obtained from
the equation of state using the Eilenberger formalism [40].
The application of the Eilenberger formalism to a sys-
tem showing antiferromagnetism and s+− superconductivity
can be done in complete analogy to Ref. [23], using the
same parametrization of the Eilenberger Green’s function.
In this appendix, we sketch the respective procedure for
s++ superconductivity. The mean-field Hamiltonian can be
written as H = 1

2

∑
k,α,β �̄k,αHk,αβ�k,β where we summa-

rized the fermionic operators in the two bands into �̄k,α =
(ψ†

1,k,αψ1,−k,αψ
†
2,k,αψ2,−k,α) and introduced the Hamiltonian

matrix consisting of noninteracting and mean-field parts,

Hk = H0,k + Hmf,k

= ξkτ3ρ3σ0 − �τ2ρ0σ2 + Mτ3ρ1σ3, (B1)

where τi , ρi , and σi are the Pauli matrices in Nambu, band,
and spin space, respectively. The matrix Green’s function is
defined by

(iνn − Hk − �)G(k,νn) = 1, (B2)

where the self-energy of model A (intraband scattering with
rate τ0

−1 in both bands, interband scattering with rate τ12
−1)
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is given by

� = 1

4πρFτ0

∫
dk

(2π )2
τ3ρ0σ0G(k,νn)τ3ρ0σ0

+ 1

4πρFτ12

∫
dk

(2π )2
τ3ρ1σ0G(k,νn)τ3ρ1σ0. (B3)

Since in the gap equations as well as in the self energy,
the matrix Green’s function only appears integrated over
momenta, it is convenient to introduce the Eilenberger (or
quasiclassical) Green’s function

G(νn) = 2i

πρF

∫
dk

(2π )2
τ3ρ3σ0G(k,νn), (B4)

and rewrite all the equations in terms of G. From Eqs. (B1)
to (B4), we find self-consistently that for our model, the

Eilenberger Green’s function must be of the form

G = gνn
τ3ρ3σ0 − ifνn

τ1ρ3σ2 − isνn
τ0ρ2σ3 + oνn

τ2ρ2σ1. (B5)

This parametrization can be used to obtain an expansion
of the gap equations for the order parameters � and M .
Such an expansion corresponds, up to an overall prefactor,
to the first derivative of the free energy with respect to the
order parameter, i.e., the equation of state. Therefore we can
extract the quadratic and quartic coefficients of the free-energy
expansion.

By using the parametrization (B5) in the self energy (B3),
we find that the self energy depends on intraband and interband
scattering rate only via the total scattering rate τt

−1 ≡ τ0
−1 +

τ12
−1 for the s++ pairing state. Thus we expect no qualitatively

new effects due to interband scattering here that were not
already captured in the analysis of intraband scattering.
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