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We present a lattice nonperturbative renormalization group (NPRG) approach to quantum XY spin models by
using a mapping onto hardcore bosons. The NPRG takes as initial condition of the renormalization group flow
the (local) limit of decoupled sites, allowing us to take into account the hardcore constraint exactly. The initial
condition of the flow is equivalent to the large S classical results of the corresponding spin system. Furthermore,
the hardcore constraint is conserved along the RG flow, and we can describe both local and long-distance
fluctuations in a nontrivial way. We discuss a simple approximation scheme, and solve the corresponding flow
equations. We compute both the zero-temperature thermodynamics and the finite temperature phase diagram on
the square and cubic lattices. The NPRG allows us to recover the correct critical physics at finite temperature in
two and three dimensions. The results compare well with numerical simulations.
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I. INTRODUCTION

The study of frustrated quantum spin systems is one of
the great challenges in condensed matter. The intertwinement
between quantum fluctuations and frustrated interactions is
beyond mean-field approaches and allows for the realization
of exotic phases [1]. Numerical approaches usually suffer
from the sign problem, are constraint to relatively small sizes,
or work well for quasi-one-dimensional systems. Numerous
field theoretic approaches exist, which are based on mapping
the quantum spin operators to either bosonic or fermionic
operators, for instance using hardcore bosons [2], Schwinger
bosons [3], or pseudofermions [4]. While these methods have
given useful insights into the physics of spin systems, they
also suffer from important limitations. For example, these
approaches artificially increase the size of the Hilbert space,
and on-site constraints have to be implemented to project
out unphysical states. These are however generally difficult
to implement, and the projection of the unphysical states
is usually done only on average, i.e., at a mean-field level.
(The same kind of mapping, and the mean-field description
of the associated constraints, is also used to study the Kondo
physics [5].) In the case of semiclassical (large S) approaches,
the mean-field solutions, plus their spin-wave corrections, tend
to underestimate quantum fluctuations, and break down when
the system becomes disordered, as in a spin-liquid phase.

In this paper, we propose a renormalization group (RG)
scheme to address quantum XY spin models using the mapping
onto hardcore bosons [2]. This approach treats the hardcore
constraint exactly and is capable of describing both ordered
and disordered states, and therefore might be interesting for
the study of exotic phases of spin systems. We note that a
fermionic renormalization group approach has already been
implemented for quantum spins using pseudofermions [6–
8]. It can describe different types of fluctuations on equal
footing, and is thus useful to compute phase diagrams beyond
mean-field theories. However, this approach is perturbative
in the coupling constants, though functional in momentum
and frequency, and is thus confined either to the description
of disordered states or to large frequencies or momenta.
Indeed, the presence of an ordered state is characterized by

a divergence of the momentum-frequency dependent coupling
constants, where the fermionic RG breaks down. In this
respect, the approach described in this paper is well suited
for describing ordered states, which will be represented by
(potentially exotic) superfluid phases of the hardcore bosons.

Here we show how to implement a lattice nonperturbative
renormalization group (NPRG) technique for the simplest
Hamiltonian for hardcore bosons [see Eq. (2)], corresponding
to the quantum XY model in a magnetic field. The strategy
of the NPRG is to construct a family of models indexed by
a momentum scale k, such that fluctuations are gradually
included as one lowers k from a microscopic scale k = �

(corresponding to an exactly solvable model) down to k = 0
(where one recovers the model of interest) [9,10]. This is
done by adding a regulator term �Ĥk to the Hamiltonian.
The lattice NPRG is characterized by its initial condition
[11–13]. The regulator term is chosen such that, at the micro-
scopic scale k = �, the Hamiltonian Ĥ + �Ĥ� corresponds
to the limit of decoupled sites. The hardcore constraint is
thus included right at the beginning of the RG flow. The
intersite coupling is then gradually restored as k is lowered,
and the hardcore constraint is conserved along the flow. At
small k � �, �Ĥk plays the role of an infrared regulator that
suppresses the long-distance fluctuations, and the RG flow
is equivalent to that of the standard NPRG, thus giving the
same results for critical properties close to a phase transition.
The lattice NPRG has proven to be a successful method for
computing both universal and nonuniversal quantities, such
as the thermodynamics and phase diagrams, for classical and
quantum systems [11–18].

This paper is organized as follows. In Sec. II we describe
the lattice NPRG for hardcore bosons. We introduce a scale-
dependent effective action and discuss the initial condition
of the RG flow. We show that it is given by the classical
solution of the corresponding spin system. We discuss the
flow equations and present a simple approximation scheme.
This section closely follows that of Ref. [13], but will allow
for a clear and self-contained introduction to the approach. In
Sec. III, we compute the thermodynamics at zero and finite
temperature in two and three dimensions, and find a good
agreement with recent Monte Carlo simulations. We show that
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the thermodynamics for densities close to zero or one is well
described in terms of universal functions given by Bogoliubov
theory, corresponding to the limit of dilute particles or holes,
respectively. We recover the correct finite temperature physics,
in particular the critical regime close to the critical temperature
in dimension three, as well as the Berezinskii-Kosterlitz-
Thouless (BKT) physics in dimension two. The main results
are summarized in the Conclusion (Sec. IV). Some additional
technical details are given in Appendixes A, B, and C, and
we show that the NPRG can recover the harmonic spin-wave
corrections exactly in Appendix D.

II. LATTICE NPRG

The simplest model of XY quantum spins- 1
2 is given by the

Hamiltonian

ĤXY = −2t
∑
〈r,r′〉

[
σ̂ x

r σ̂ x
r′ + σ̂ y

r σ̂
y

r′
] − μ

∑
r

[
σ̂ z

r + 1/2
]
, (1)

where t is the spin interaction energy in the x-y plane between
nearest-neighbor sites 〈r,r′〉, and μ is a constant magnetic
field along the z axis (up to a constant introduced for later
convenience). Here σa

r are spin-1/2 operators, which satisfy
the SU(2) commutation relations [σ̂ a

r ,σ̂ b
r′ ] = δr,r′ iεabcσ̂ c

r . This
model has been studied in detail using a number of meth-
ods [2,19–25].

Following Matsubara and Matsuda [2], we can map the
spin operators onto hardcore bosons using b̂r = σ̂ x

r − iσ̂
y
r ,

b̂
†
r = σ̂ x

r + iσ̂
y
r , and b̂

†
rb̂r = σ z

r + 1/2, where the eigenstates
|↓〉 and |↑〉 of σ̂ z are mapped onto the states with zero
and one boson, respectively. One can check that the SU(2)
algebra is recovered if the creation (b̂†r) and annihilation
(b̂r) operators respect the hardcore bosonic commutation
relation [b̂r,b̂

†
r′ ] = δr,r′ (1 − 2b̂

†
rb̂r) in addition to the hardcore

constraints (b̂(†)
r )2 = 0.

The spin Hamiltonian is thus rewritten as

Ĥ = −t
∑
〈r,r′〉

[b̂†rb̂r′ + b̂
†
r′ b̂r] − μ

∑
r

b̂†rb̂r, (2)

which is the Hamiltonian we will study in the rest of the paper.
Here, t is interpreted as a hopping amplitude between neigh-
boring sites and μ as a chemical potential for the bosons. Note
that spin-spin interactions along the z axis σ̂ z

r σ̂ z
r′ , that appear

for example in the Heisenberg model, would correspond to
interactions between neighboring sites for the hardcore bosons.
These interactions are not straightforward to implement in the
current version of the lattice NPRG, but we briefly comment
on how to circumvent this problem in the conclusion.

We set � = kB = 1, as well as the lattice spacing as unit
length throughout the paper.

A. Scale-dependent effective action

Following the general strategy of the lattice NPRG, we con-
sider a family of models with Hamiltonian Ĥk = Ĥ + �Ĥk

indexed by a momentum scale k varying from a microscopic
scale � down to zero. The regulator term is defined by

�Ĥk =
∑

q

Rk(q)b̂†qb̂q, (3)

where b̂q is the Fourier transform of b̂r and the sum over q
runs over the first Brillouin zone ] − π,π ]d of the reciprocal
lattice. The cutoff function Rk(q) modifies the bare dispersion
tq = −2t

∑d
i=1 cos qi of the bosons (from now on, we assume

that the bosons are on a hypercubic lattice, though most of
the discussion of this section is more general). R�(q) is
chosen such that the effective (bare) dispersion tq + R�(q)
vanishes [11–13]. The Hamiltonian Ĥ� = Ĥ + �Ĥ� then
corresponds to the local limit of decoupled sites (vanishing
hopping amplitude). With the choice R�(q) + tq = 0, only the
hopping is modified and the local Hamiltonian is unchanged.

Here, we use the cutoff function [12,13]

Rk(q) = −ZA,kεksgn(tq)(1 − yq)�(1 − yq), (4)

with � = √
2d , εk = tk2, yq = (2dt − |tq|)/εk , and �(x)

the step function. The k-dependent constant ZA,k is defined
below (ZA,� = 1). Since Rk=0(q) = 0, the Hamiltonian Ĥk=0

coincides with the Hamiltonian (2) of the original model. For
small k, the function Rk(q) gives a mass ∼k2 to the low-energy
modes |q| � k and acts as an infrared regulator as in the
standard NPRG scheme [9,10].

The physics of the system is completely described by the
source-dependent partition function,

Zk[J,J ∗] = Tr
{
Tτ e

− ∫ β

0 dτ (Ĥk−
∑

r[Jr(τ )b̂†r(τ )+J ∗
r (τ )b̂r(τ )])

}
, (5)

where β = 1/T is the inverse temperature, Tτ is the imag-
inary time ordering operator, and b̂

(†)
r (τ ) = eτĤ b

(†)
r e−τĤ . If

evaluated at vanishing sources J = J ∗ = 0, one recovers the
(scale-dependent) partition function, from which one obtains
the thermodynamics [26]. Furthermore, functional derivatives
with respect to the sources give access to all correlation
functions. In particular, the (source-dependent) superfluid
order parameter φ

(∗)
r (τ ) = 〈b̂(†)

r (τ )〉 is given by

φr(τ ) = δ ln Zk[J,J ∗]

δJ ∗
r (τ )

, φ∗
r (τ ) = δ ln Zk[J,J ∗]

δJr(τ )
. (6)

We can then introduce the scale-dependent effective action,

�k[φ∗,φ] = − ln Zk[J ∗,J ] +
∫ β

0
dτ

∑
r

(J ∗
r φr + c.c.)

− �Hk[φ∗,φ], (7)

defined as a (modified) Legendre transform of ln Zk[J,J ∗],
which includes the explicit subtraction of �Hk[φ∗,φ] =∫ β

0 dτ
∑

q Rk(q)φ∗
q(τ )φq(τ ). By varying the scale k, a renor-

malization group equation can be obtained for the scale-
dependent effective action [27],

∂k�k[φ∗,φ] = 1
2 Tr

{
∂kRk

(
�

(2)
k [φ∗,φ] + Rk

)−1}
, (8)

where �
(2)
k is the second-order functional derivative of �k . In

Fourier space, the trace in (8) involves a sum over momenta
and frequencies as well as the two components of the complex
field φ [28].

For the purpose of this work, we can concentrate on two
quantities, the first one being the effective potential

Vk(n) = 1

βN
�k[φ,φ∗]|φ const, (9)
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where φ is a uniform and time-independent field and N is
the number of lattice sites. The global U(1) symmetry of the
Hamiltonian b̂

(†)
r → e±iαb̂

(†)
r implies that Vk(n) is a function of

n = |φ|2 (not to be confused with the density of particle n̄). Its
minimum determines the condensate density n0,k and the ther-
modynamic potential (per site) V0,k = Vk(n0,k) = −Pk in the
equilibrium state, where Pk is the (scale-dependent) pressure.

The second quantity of interest is the two-point vertex
function

�
(2)
k,ij (r − r′,τ − τ ′; φ) = δ(2)�k[φ]

δφir(τ )δφjr′(τ ′)

∣∣∣∣
φ const

, (10)

which determines the one-particle propagator Gk = −�
(2)−1
k .

Here the indices i,j refer to the real and imaginary parts
of φ = 1√

2
(φ1 + iφ2). Because of the U(1) symmetry of the

Hamiltonian, the two-point vertex function in a constant field
takes the form [29]

�
(2)
k,ij (q; φ) = δi,j�A,k(q; n) + φiφj�B,k(q; n) + εij�C,k(q; n)

(11)

in Fourier space, where q = (q,iω), ω is a Matsubara fre-
quency, and εij the antisymmetric tensor. The symmetries
of the two-point function and an explicit expression for the
propagator are given in Appendix A.

B. Initial conditions

1. Local effective action

Since the Hamiltonian Ĥ� = Ĥ + �Ĥ� corresponds to the
local limit, the initial value of the scale-dependent effective
action is given by

��[φ∗,φ] = �loc[φ∗,φ] +
∫ β

0
dτ

∑
q

φ∗
q(τ )tqφq(τ ), (12)

where

�loc[φ∗,φ] = − ln Zloc[J ∗,J ] +
∫ β

0
dτ

∑
r

(J ∗
r φr + c.c.)

(13)

is the Legendre transform of the thermodynamic potential
− ln Zloc[J ∗,J ] in the local limit. In Eq. (13), J is related
to φ by the relation φr(τ ) = δ ln Zloc[J ∗,J ]/δJ ∗

r (τ ) and Zloc

is the partition function obtained from Ĥ�.
Even for this simple Hamiltonian, it is not possible

to compute the functional �loc[φ∗,φ] for arbitrary time-
dependent fields. However, the effective potential Vloc(n) and
the two-point vertex function �

(2)
loc are easily calculated in a

time-independent field φ, which are the two quantities we will
need, given the approximations made on the flow equations
(Sec. II C).

To calculate Vloc and �
(2)
loc in a constant field, it is sufficient

to solve the problem of a single site with constant complex
external source J . The corresponding Hamiltonian reads

Ĥloc(J,J ∗) = −μb̂†b̂ − J ∗b̂ − J b̂†, (14)

and is trivially diagonalized. Labeling the eigenvectors |±〉 and
the corresponding eigenvalues E±(J,J ∗) (with |−〉 the ground

FIG. 1. (Color online) Local effective potential Vloc(n) as a func-
tion of n for a negative chemical potential (for μ > 0, the potential is
shifted by −μ). Inset: n = |φ|2 as a function of the source |J |2.

state), we obtain

E±(J,J ∗) = −μ

2
±

√
4|J |2 + μ2

2
. (15)

At zero temperature β → ∞ (the finite temperature case is
discussed in Appendix B), we obtain the superfluid order
parameter

φ(∗) = J (∗)√
4|J |2 + μ2

,

|φ|2 = |J |2
4|J |2 + μ2

, (16)

and the effective potential

Vloc(n) = E− + J ∗φ + Jφ∗

= −μ

2
− |μ|

2

√
1 − 4n, (17)

with n = |φ|2. Figure 1 shows the superfluid order parameter
φ as a function of the external source J , and the local effective
potential Vloc(n). Note that, due to the hardcore constraint, the
field is bounded 0 � n � 1

4 . This can be understood easily with
the following reasoning: any (one-site) state can be written as
|ψ〉 = cos θ |0〉 + ei� sin θ |1〉, with θ and � two angles (|0〉
and |1〉 are the state with zero and one boson, respectively).
From this we get φ = 〈b̂〉 = ei� cos θ sin θ = ei� sin(2θ )/2;
hence n = |φ|2 cannot be larger than 1/4 [30]. Although
Vloc(n) is finite for all n ∈ [0, 1

4 ], its derivatives are diverging
at n = 1

4 , as can be seen from

∂iVloc(n)

∂ni
= Ai |μ|(1 − 4n)

1
2 −i , (18)

where Ai+1 = 2(2i − 1)Ai and A0 = − 1
2 . This recurrence

equation can be solved and yields Ai = 4i−1�(i − 1
2 )/�( 1

2 ),
where �(z) is the Gamma function (Ai = (2i−2)!

(i−1)! if i � 1).
The fact that the derivatives of Vloc diverge can be under-

stood as follows: because n cannot be larger than 1
4 , quantum

fluctuations make it difficult to increase n to its maximum.
Stated otherwise, it costs a lot of energy to increase n, and an
infinite amount to have n = 1

4 , rendering it impossible to get
n > 1

4 . Furthermore, this property is preserved along the RG
flow, since Eq. (8) contains the derivatives of the effective
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action in the denominator, implying that fluctuations that try
to increase the value of the order parameter close to 1

4 will
be suppressed. The boundedness of the order parameter in the
context of the lattice NPRG has already been observed in the
case of classical spin systems, where the magnetization cannot
be greater than one [11].

Remark that Vloc(n) is not well defined for μ = 0 as the field
becomes independent of the source (n = 1

4 for all |J |). This
can be traced back to the fact that Ĥloc(0,0) = 0 in this limit
and that the bosons do not have any dynamics. However, we
will see that all physical quantities computed with the lattice
NPRG are well defined in the limit μ → 0.

To determine the two-point vertex �
(2)
loc, we start from

the (source-dependent) normal and anomalous local Green
functions

Gn(τ ) = −〈Tτ b̂(τ )b̂†(0)〉 + |〈b̂〉|2,
Gan(τ ) = −〈Tτ b̂(τ )b̂(0)〉 + 〈b̂〉2. (19)

The Fourier transforms Gn(iω) and Gan(iω) are easily ex-
pressed in terms of the eigenstates |±〉 of the Hamiltonian,

Gn(iω) = −
[ |〈+|b̂|−〉|2
iω + E+ − E−

− |〈−|b̂|+〉|2
iω + E− − E+

]
,

Gan(iω) = −〈+|b̂|−〉〈−|b̂|+〉 2(E+ − E−)

ω2 + (E+ − E−)2
. (20)

From the relation �(2) = −G−1, we obtain

�A,loc(iω; n) = − 1

2D
[Gn(iω) + Gn(−iω) + 2Gan(iω)],

�B,loc(iω; n) = Gan(iω)

nD
, (21)

�C,loc(iω; n) = i

2D
[Gn(iω) − Gn(−iω)],

where D = Gn(iω)Gn(−iω) − Gan(iω)2. �
(2)
loc is expressed in

terms of the condensate density n (rather than the external
source J ) by inverting (16).

An explicit calculation gives

�A,loc(iω; n) = V ′
loc(n),

�B,loc(iω; n) = V ′′
loc(n), (22)

�C,loc(iω; n) = ZC,loc(n)ω = − sgn(μ)√
1 − 4n

ω,

showing that �A,loc and �B,loc are frequency independent,
whereas �C,loc is linear in frequency. Furthermore, the sign
of ZC reflects the particle (hole) type of the local excitations
for negative (positive) chemical potential. The results of
Eq. (22) are in agreement with the (zero-temperature) Ward
identities [13,29]

∂

∂ω
�C,k(q; n)

∣∣∣∣
q=0

= −∂2Vk(n)

∂n ∂μ
,

∂2

∂ω2
�A,k(q; n)

∣∣∣∣
q=0

= − 1

2n

∂2Vk(n)

∂μ2
. (23)

The results of Eq. (22) also agree with the high frequency
behavior of the local Green functions; see Appendix C.

2. Mean-field solution

The initial effective action �� [Eq. (12)] treats the local
fluctuations exactly but includes the intersite hopping term at
the mean-field level, reproducing the classical (large S) solu-
tion of the XY quantum spin model [2,22,24]. Alternatively,
we can think of �� as the effective action of the equivalent
of the strong-coupling random phase approximation (RPA)
theory used in the context of the Bose-Hubbard model [31].

The effective potential reads

V�(n) = Vloc(n) − 2 dt n, (24)

while the two-point vertex function takes the RPA-like form

�
(2)
�,ij (q; n) = �

(2)
loc,ij (iω; n) + δi,j tq. (25)

Expanding V�(n) about n = 0, we find

V�(n) = −μ + |μ|
2

+ (|μ| − 2dt) n + O(n2), (26)

The ground state is disordered as long as V ′
�(0) � 0. Thus the

transition to the superfluid state is determined by the criterion
V ′

�(0) = 0, i.e.,

μ = μ±
c = ±2 dt. (27)

Equation (27) can also be obtained from the condition
det�(2)

� (q = iω = 0; n = 0), which signals the appearance of a
pole at zero momentum and frequency in the one-particle prop-
agator G� = −�

(2)−1
� . In fact, it is well known that Eq. (27)

is exact: for μ � −2 dt (μ � 2 dt) the system is empty (full);
because the dynamics is nonrelativistic, the propagator cannot
be renormalized, since there are no other particles (holes) with
which to interact. Therefore, the critical chemical potential is
unchanged when fluctuations are included.

The condensate density n0,� in the superfluid phase is
determined by

V ′
�(n0,�) = V ′

loc(n0,�) − 2 dt = 0. (28)

The hopping amplitude t acts as a source term for the local
potential Vloc(n). This gives

n0,� = 1
4 (1 − μ̄2), (29)

where we have introduced μ̄ = μ/(2 dt). The pressure is given
by

P� = −V�(n0,�) = dt

2
(1 + μ̄)2, (30)

and the density n̄ = ∂P/∂μ reads

n̄� = 1
2 (1 + μ̄). (31)

We can also obtain the dispersion relation in the superfluid
phase using det�(2)

� (q; n�) = 0 (after analytic continuation
iω → ω + i0+),

Eq =
√

εq(μ̄2εq + 2 dt(1 − μ̄2)), (32)

where we have introduced εq = tq + 2 dt . All these results are
in perfect agreement with the large S (mean-field) calculations.
In fact, the NPRG being one-loop exact, one can recover
exactly the harmonic (spin-wave) corrections, as shown in
Appendix D. However, in the context of hardcore bosons, there
is no obvious small parameter that would allow us to control a
perturbative expansion.
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C. Approximation of the RG equation

To obtain the flow equations, we follow here the same
reasoning that was used in Refs. [12,13] and that we briefly
recall. Because one cannot obtain the explicit form of the
scale-dependent effective action �k[φ∗,φ] at k = �, we cannot
write an ansatz for it that could be used in combination with
the flow equation (8), as it is usually done in the standard
implementation of the NPRG [9,10]. However, as we have
seen above, we can compute both the effective potential Vk(n)
and the two-point vertex function in constant field �

(2)
k (q; n),

which are the quantities of interest in the Blaizot–Méndez-
Galain–Wschebor (BMW) scheme [32–34]. Therefore, the
BMW approximation that we implement here allows us to
obtain closed RG equations for both quantities. An additional
approximation is to use a derivative expansion of the two-point
vertex function to obtain the propagators that are needed in the
evaluation of the flow equations. This is always possible, as
the function Rk(q) acts as an infrared regulator and �

(2)
k (q; n)

is regular in q for q → 0, and we approximate it by

�A,k(q; n) = ZA,k(n)εq + VA,k(n)ω2 + V ′
k(n),

�B,k(q; n) = V ′′
k (n),

�C,k(q; n) = ZC,k(n)ω,

(33)

in agreement with the symmetries of the two-point vertex
function [see Eq. (A4)]. Note that even though VA,k(n)
is initially zero, it is important to include it in order to
properly describe the infrared behavior in the superfluid
phase [12,13,29,35]. Furthermore, it is crucial to keep the full
lattice structure in the early stages of the RG flow (k � �), and
we have kept the full dispersion in �A,k . Following Ref. [11],
ZA,k(n) is defined as

ZA,k(n) = 1

t
lim
q→0

∂

∂q2
�A,k(q; n), (34)

so that ZA,k(n0,k) is a field renormalization factor [11,36].
Solving the flow equations for the functions Vk(n), ZC,k(n),

VA,k(n), and ZA,k(n) is not a simple numerical task. Indeed, at
zero temperature, the system is always in the ordered phase (for
the nontrivial case |μ| < 2 dt) implying that the effective po-
tential becomes a convex function during the flow: the potential
must be flat between n = 0 and n = n0,k=0 [n0,k determines the
position of the minimum of Vk(n); see below]. Furthermore,
the hardcore constraint implies that all derivatives of these
functions will be singular as n goes to 1

4 . Moreover, we have
shown in Appendix D that the NPRG reproduces exactly, in
a loop expansion, the spin-wave corrections to the mean-field
result, which already compare very well with the Monte Carlo
simulations on the square lattice [24]. This implies that the
NPRG has the capability to do as well as the large S expansion
at the level of the thermodynamics.

We therefore use in the rest of the paper the simplest
approximations described now, which will also compare well
with the Monte Carlo calculations. This will still show the
power of the method while allowing us to concentrate on the
physics. The numerical solution of the flow equations can
be further simplified by expanding Vk(n), ZC,k(n), VA,k(n),
and ZA,k(n) around n0,k . Because VA,k(n) and ZA,k(n) are
field independent at k = �, approximating them by ZA,k ≡

ZA,k(n0,k) and VA,k ≡ VA,k(n0,k) should be a good approxi-
mation (it is one-loop exact). The field dependence of Vk(n)
and ZC,k(n) is more important, but we will nevertheless
approximate ZC,k(n) by ZC,k ≡ ZC,k(n0,k), and expand the
effective potential to quadratic order about its minimum,

Vk(n) =
{

V0,k + λk

2 (n − n0,k)2 if n0,k > 0,

V0,k + δkn + λk

2 n2 if n0,k = 0,
(35)

where the condensate density n0,k is defined by

∂Vk(n,μ)

∂n

∣∣∣∣
n0,k

= 0. (36)

One can systematically improve the NPRG results by increas-
ing the order of the expansion.

Nevertheless, these approximations have been shown to be
very successful in describing the thermodynamics of bosons in
the continuum and on the lattice in two and three dimensions,
either in the dilute regime or close to the Mott transition, at
zero or finite temperature [12–17,37]. The approximated flow
equations are detailed in Appendix D of Ref. [13]; see, in
particular, Eqs. (D4)–(D6).

III. THERMODYNAMICS

We now discuss the thermodynamics and the finite tem-
perature phase diagram in two and three dimensions. To do
so, we solve the flow equations, with the approximations
discussed above for a given value of μ, t , and β. To simplify
the notations, the subscript k is dropped whenever we refer to
a k = 0 quantity (e.g., n0 ≡ n0,k=0).

A. Zero temperature

Figures 2 and 3 show the zero-temperature condensate den-
sity n0 and superfluid density, defined as ns = ZA(n0)n0 [35],
in two and three dimensions, respectively. Notice that even
if the initial conditions are singular in the limit μ → 0
(Sec. II B), all physical quantities are well defined in this limit
(see also Appendix D). Even with the simple approximations
made here, the results compare well with the Monte Carlo
calculations in two dimensions [24]. There are much fewer
numerical calculations for ground-state properties in three
dimensions (but see, for example, Refs. [19,20] for spin-wave
calculations), but we can compare our calculation at half-
filling μ = 0 to the recent simulations of Ref. [23] for the
ground-state energy and the superfluid density; see Table I.
Our calculations differ by a few percent from the Monte Carlo.

The thermodynamics close to the points μ = μ−
c = −2 dt

can be interpreted using the standard physics of the dilute Bose
gas due to the presence of a quantum critical point. Indeed,
at T = 0 (and fixed t), when μ − μ−

c goes from negative
to positive, one induces a quantum phase transition between
the vacuum of particles to a superfluid state (with finite den-
sity) [38]. Above two dimensions (the upper critical dimension
of the T = 0 quantum phase transition), the boson-boson
(renormalized) interaction λk is irrelevant and the critical be-
havior at the transition is mean field, with a correlation-length
exponent ν = 1/2 and a dynamical exponent z = 2. However,
λk cannot be completely ignored and enters the equation
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FIG. 2. (Color online) Condensate density n0 (solid line) and
superfluid density ns (dashed line) as a function of μ at T = 0 in two
dimensions. Symbols show the Monte Carlo calculations of Ref. [24]
for n0 (diamonds) and ns (squares). Inset: behavior close to the critical
point μc = −4t . The dotted line and the dot-dashed line correspond
to the dilute limit of n0 and ns , respectively. For clarity, the NPRG
calculation is not shown, but it fails to correctly reproduce the dilute
limit.

of state (it is dangerously irrelevant in the renormalization
group sense). In fact, the thermodynamics close to the critical
point μ = μ+

c = 2 dt can be interpreted in the same way, as
the transition goes from the vacuum of holes (for μ > μ+

c )
to a superfluid with a finite density of holes (for μ < μ+

c ),
the only difference being that the excitations are holelike
(with a negative quasiparticle weight). This has a direct
correspondence with the density-driven Mott transition in the
context of the Bose-Hubbard model [14,16,39]. In particular,
it implies that the thermodynamics is given by the universal
functions of the so-called d-dimensional dilute gas universality
class, and reads for the condensate and superfluid densities

n0(μ,T ) =
(

δμ±

4πt

)d/2

Fd

(
T

δμ± ,g̃(δμ±)

)
,

ns(μ,T ) =
(

δμ±

4πt

)d/2

Gd

(
T

δμ± ,g̃(δμ±)

)
, (37)

FIG. 3. (Color online) Condensate density n0 (solid line) and
superfluid density ns (dashed line) as a function of μ at T = 0 in three
dimensions. Inset: behavior close to the critical point μc = −6t . The
dotted line and the dot-dashed line correspond to the dilute limit of
n0 and ns , respectively.

TABLE I. Zero-temperature pressure P and superfluid density ns

on a cubic lattice for μ = 0. Monte Carlo (MC) data from Ref. [23].

NPRG MC

P 1.576 1.583 64(4)
ns 0.254 0.262 3(2)

where δμ± = ∓(μ − μ±
c ) is positive in the superfluid phase.

Here g̃(ε) is a renormalized interaction given by

g̃(ε) =

⎧⎪⎨
⎪⎩

8π

√
a2

3ε
/
t if d = 3,

− 4π

ln
(

1
2

√
a2

2ε

/
t

)
+C

if d = 2, (38)

where C is the Euler constant and ad is the d-dimensional
s-wave scattering length. It can be computed for instance in
the U → ∞ limit of the Bose-Hubbard model (U is the finite
boson-boson on-site interaction) [40]

ad =
{ 1

8πA
if d = 3,

e−C

2
√

2
if d = 2,

(39)

where A � 0.1264.
For g̃(δμ±) � 1, i.e., close enough to the quantum critical

point, the universal functions Fd and Gd can be computed at
T = 0 using Bogoliubov theory and read [41]

F3(0,y) = 8π3/2

y

(
1 − 5

√
2y

12π2

)
,

G3(0,y) = 8π3/2

y

(
1 −

√
2y

3π2

)
, (40)

in d = 3, and

F2(0,y) = 4π

y
+ ln 2 − 2

2
,

G2(0,y) = 4π

y
+ ln 2 − 1

2
, (41)

in d = 2. We have used the fact that the superfluid density is
equal to the density of particles in Bogoliubov theory at zero
temperature to obtain Gd . The dilute limit is also shown in
Figs. 2 and 3 [42]. We clearly see that it works only very close
to the critical point δμ± � t , when the system is dilute enough,
and one can neglect the effects of the lattice. We notice that,
in two dimensions, the NPRG fails to reproduce correctly the
dilute limit, unless the δμ± is infinitesimally small (the vacuum
limit δμ± = 0 is correctly described). [However, Eq. (41)
describes well the Monte Carlo data in the dilute regime.] We
ascribe this to a failure of the derivative expansion at this order
in strong coupling, which could be corrected by including more
terms in the expansion, or by working in a fully self-consistent
BMW scheme [43].

B. Finite temperature

The NPRG allows us to study quantum systems at all
temperatures, and also successfully describes finite temper-
ature phase transitions. Furthermore, it reproduces at least
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FIG. 4. (Color online) Critical temperature as a function of the
chemical potential in three dimensions. Symbols are Monte Carlo
data from Ref. [25]. Dashed lines show the dilute limit; see Eq. (43).

qualitatively the expected behavior of the BKT phase in two
dimensions.

1. Superfluid to normal fluid transition in d = 3

To find the finite temperature phase diagram, we look for
the lowest temperature such that n0,k=0 = 0, which signals the
transition between the Bose condensate and the normal phase.
Figure 4 shows these results, which compare surprisingly well
with the Monte Carlo calculation of Ref. [25], the largest error
being at most of the order of 3% (close to μ = 0). The quantum
critical points at T = δμ± = 0 help one to understand the
phase diagram away from the particle-hole symmetric point
μ = 0. The critical temperature takes the scaling form

Tc(δμ±) = δμ±Hd (g̃(δμ±)),

where to lowest order in g̃(δμ±) in three dimensions [16]

H3(y) = 4π

(2 ζ (3/2) y)2/3
, (42)

with ζ (x) is the zeta function. This implies

Tc

t
= 4π

(
A

2ζ (3/2)

)2/3(
δμ±

t

)2/3

� 1.0412

(
δμ±

t

)2/3

, (43)

in nice agreement with our calculations and the Monte Carlo
for δμ± � t .

The NPRG also allows us to study the critical behavior close
to the finite-temperature phase transition. It is well known that
this transition is described by the three dimensional classical
O(2) model, and that the RG flow goes to the (nontrivial)
Wilson-Fisher fixed point. At the critical point, the condensate
and superfluid densities scale as

n0,k = ñ∗
0k

d−2+η∗
,

ns,k = ñ∗
s k

d−2, (44)

where η∗ ≡ η∗
A is the anomalous dimension at the fixed

point (ηA,k = −k∂k ln ZA,k). Away from the fixed point in the
ordered phase, the critical flow stops at a characteristic length
scale, the Josephson length ξJ [44], scaling as ξJ ∝ α−ν , where
α ∝ |T − Tc(μ)| or α ∝ |μ − μc(T )| depending on the control

FIG. 5. (Color online) Scaling of the condensate and superfluid
densities close to the finite temperature phase transition at μ � 5t in
three dimensions. Symbols: fits using Eq. (45) using ν � 0.606 and
η � 0.059.

parameter, implying the scaling laws

n0 ∝ αν(d−2+η∗),

ns ∝ αν(d−2). (45)

Figure 5 shows the scaling of n0 and ns in the critical regime,
which is well fitted by the critical exponent ν � 0.606 and
η � 0.059, that should be compared to the best estimates
of the three dimensional O(2) model: resummed pertubative
calculations (ν � 0.6700, η � 0.0334) [45], Monte Carlo
simulations (ν � 0.6717, η � 0.0381) [46], and NPRG in the
BMW approximation (ν � 0.674, η � 0.041) [34]. It has been
shown that the value of the critical exponents improves when
one increases the order of the truncation of the potential, and
the order of the derivative expansion [47,48].

2. BKT transition

In this section we show how the BKT transition tem-
perature TBKT can be estimated from the NPRG approach.
For the classical O(2) model, the NPRG reproduces most
of the universal properties of the BKT transition [49,50]. In
particular, one finds a line of quasifixed points, which enables
us to identify a low-temperature phase (T < TBKT), where
the running of the superfluid density ns,k = ZA,k(n0,k)n0,k ,
after a transient regime, becomes very slow, implying a very
large correlation length ξ (although not strictly infinite as
expected in the low-temperature phase of the BKT transition).
In this low-temperature phase, the anomalous dimension
ηA,k depends on the (slowly varying) superfluid density
ns,k , which takes its largest value ∼1/4 when the RG flow
crosses over to the disordered (long-distance) regime, and
is then rapidly suppressed as ns,k further decreases. On the
other hand, the essential scaling ξ ∼ econst/(T −TBKT)1/2

of the
correlation length above the BKT transition temperature TBKT

is reproduced [50]. Thus, although the NPRG approach does
not yield a low-temperature phase with an infinite correlation
length, it nevertheless allows us to estimate the BKT transition
temperature, and reasonable estimates have been obtained
using the lattice NPRG in the two-dimensional classical XY

model [11], the quantum O(2) model [51], the dilute Bose
gas [15], and the Bose-Hubbard model [17].

We use this method, described in detail in Ref. [15], to
compute the TBKT as a function of μ, as shown in Fig. 6.
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A. RANÇON PHYSICAL REVIEW B 89, 214418 (2014)

FIG. 6. (Color online) Critical temperature TBKT as a function
of the chemical potential in two dimensions (red circles). Black
diamonds are Monte Carlo data from Ref. [25]. Dashed lines show
the dilute limit Eq. (46).

The results obtained are of the correct order of magnitude
compared to the Monte Carlo simulations of Ref. [25] and are
up to 30% off. This is not too surprising due to the crudeness
of the present approximations, but is nevertheless encouraging
for the method. The dilute limit can be understood using the
same approach as before. It has been shown that the BKT tem-
perature of the two dimensional Bose gas is given by [52–55](

μ

T

)
BKT

= 1

2π
g̃ ln

(
2ζ

g̃

)
, (46)

where ζ � 13.2 ± 0.4 has been obtained from a classical
Monte Carlo simulation [54,55]. This result, with the use of
Eqs. (38) and (39), is also shown in Fig. 6, and agrees with
the Monte Carlo of Ref. [25] close to μ±

c . Here, as observed
at zero temperature, the NPRG fails to reproduce the dilute
limit [56].

IV. CONCLUSION

We have presented a detailed lattice NPRG study of the
simplest model of quantum XY spins- 1

2 at zero and finite
temperature using a mapping onto hardcore bosons. The lattice
NPRG allows us to take into account both the strong local
correlations (imposed by the hardcore constraint) and the
long-distance fluctuations, which are crucial in describing the
critical behavior at finite temperature. The initial condition
of the RG flow for hardcore bosons is described by the
classical spin-wave theory for the corresponding XY model.
The hardcore constraint imposes a very specific form for
the functional behavior of the effective action and is con-
served along the flow. We have therefore developed a field
theoretic approach which is able to take into account strong
constraints beyond a mean-field level. Since the lattice NPRG
is primarily a renormalization group approach, it has the
capability to describe nontrivial critical points, which in the
present model exist only at finite temperature. Furthermore,
the method reproduces most of the properties of the BKT
phase in two dimensions. We have presented the simplest
approximations and solved the corresponding flow equations.
Already at this level, we obtained good results both at
zero and finite temperature, for both the thermodynamics
and the critical behavior. Furthermore, the method can be
improved by keeping more terms in the field expansion and

the derivative expansion, which would increase the accuracy
of the results for both the thermodynamics and the critical
exponents.

We have shown that the approach can reproduce the
harmonic spin-wave corrections, which in the present model
account for most of the quantum corrections for the ther-
modynamics, and compare very well with the Monte Carlo
calculations [24]. However, the NPRG allows us to go beyond
the 1/S expansion and to describe quantum and classical
critical regimes, which are out of reach of spin-wave theories.
Although not discussed here, it has been shown that the NPRG
is a method of choice in studying superfluid phases [29,35,57–
61]. It is free of the infrared divergences usually encountered
in perturbative approaches such as Bogoliubov or spin-wave
theories, it satisfies the Hugenholtz-Pines theorem [62], and
recovers the hydrodynamic regime at low energy (described
by Popov’s hydrodynamic theory [63], in the context of dilute
superfluids). This is of particular importance for lattice systems
away from the dilute limit [12,13].

This work opens the door to the study of more compli-
cated models presenting exotic phases. Indeed, the study of
frustrated systems, for instance on the triangular or kagome
lattices, and the predicted spin liquid phases would be an in-
teresting challenge for the lattice NPRG. This would certainly
imply studying the momentum and frequency dependence
of nontrivial correlation functions, which is possible in this
formalism [64]. Furthermore, this approach allows for more
refined initial conditions, including clusters of sites (instead
of only one site as done here), as was already done in the
fermionic language [8,65]. It should be noted that our bosonic
formulation is able to describe ordered phases, which are
usually out of reach of the standard fermionic RG [6–8].

Finally, we want to address the question of the treatment
of the quantum Heisenberg model in this framework. This
model is described, in the hardcore bosons formulation, by
adding a nearest-neighbor interaction to the Hamiltonian (2).
The standard, one-particle irreducible (1-PI), implementation
of the NPRG, on which the current approach is based,
assumes that the regulator term �Ĥk is quadratic in the fields
[see Eq. (3)], and thus does not allow for the decoupling of
the nearest-neighbor interaction at the beginning of the flow.
There exist however generalizations to the 2-PI case, which
are important in describing ordered phases of fermionic sys-
tems [66], that would solve this problem. These formulations
of the NPRG could be generalized to treat hardcore bosons, in
much the same spirit. (Note that this could also be of use for
pseudofermion approaches.) In particular, the initial conditions
would be the same (given by the on-site Hamiltonian solved
exactly), the differences coming from the form of the regulator
(both quartic and quadratic in the fields), as well as from the
flow equations.
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APPENDIX A: TWO-POINT VERTEX
FUNCTION AND PROPAGATOR

We discuss here some symmetries of the two-point vertex
function �(2), and give the expression of the propagator
G = −�(2)−1. All these expressions are true for the scale-
dependent effective action �k , the (exact) effective action �k=0,
and the local effective action �loc (and their corresponding
effective potentials, two-point functions, and propagators),
and we therefore suppress the index k in the following
expressions.

Due to the U(1) symmetry of the hardcore bosons
Hamiltonian, the two-point vertex function in a constant field
φ [see Eq. (10)] takes the form [29]

�
(2)
ij (q; φ) = δi,j�A(q; n) + φiφj�B(q; n) + εij�C(q; n),

(A1)

where n = |φ|2, q = (q,iω), the indices i,j refer to the real
and imaginary parts of φ = 1√

2
(φ1 + iφ2), and εij is the

antisymmetric tensor.
For q = 0, we can relate �

(2)
k to the derivative of the effective

potential V (n) [defined in Eq. (9)],

�
(2)
ij (q = 0; φ) = ∂2V (n)

∂φi∂φj

= δi,jV
′(n) + φiφjV

′′(n) (A2)

[V ′(n) = ∂V/∂n, etc.], so that

�A(q = 0; n) = V ′(n),

�B(q = 0; n) = V ′′(n), (A3)

�C(q = 0; n) = 0.

Furthermore, parity and time-reversal invariance imply [29]

�A(q; n) = �A(−q; n) = �A(q, − iω; n),

�B(q; n) = �B(−q; n) = �B(q, − iω; n),

�C(q; n) = −�C(−q; n) = −�C(q, − iω; n).

(A4)

The propagator G = −�(2)−1 can be expressed as

Gij (q; φ) = φiφj

2n
Gll(q; n) +

(
δi,j − φiφj

2n

)
Gtt(q; n)

+ εijGlt(q; n), (A5)

where l stands for longitudinal and t for transverse. We have

Gll(q; n) = −�A(q; n)

D(q; n)
,

Gtt(q; n) = −�A(q; n) + 2n�B(q; n)

D(q; n)
,

Glt(q; n) = �C(q; n)

D(q; n)
,

(A6)

with D = �2
A + 2n�A�B + �2

C .

APPENDIX B: INITIAL EFFECTIVE ACTION
AT FINITE TEMPERATURE

1. Effective potential

At finite temperature, the local partition function and the
order parameter in constant sources read

Zloc(J,J ∗) =
(

2e
βμ

2 cosh
β
√

4|J |2 + μ2

2

)N

,

φ(∗) = J (∗)√
4|J |2 + μ2

tanh
β
√

4|J |2 + μ2

2
. (B1)

The effective potential is obtained from

Vloc(n) = − 1

βN
log Zloc(J,J ∗) + J ∗φ + φ∗J, (B2)

where the sources have to be expressed as functions of φ and
φ∗. One has to inverse the relationship between the sources
and the field φ numerically, and we therefore give the effective
potential as an implicit function of n = |φ|2,

n = |J |2
4|J |2 + μ2

[
tanh

β
√

4|J |2 + μ2

2

]2

,

Vloc(n) = −μ

2
− 1

β
ln

{
2 cosh

β
√

4|J |2 + μ2

2

}

+ 2
|J |2√

4|J |2 + μ2
tanh

β
√

4|J |2 + μ2

2
. (B3)

Figure 7 shows n as a function of the source and Vloc(n) for
different temperatures.

In order to compute the coefficients of the field expansion
of the effective potential V0,�, δ�, and λ� [see Eq. (35)], we
also need the first two derivatives of the effective potential,
which read

V ′
loc(n) =

√
4|J |2 + μ2 coth

β
√

4|J |2 + μ2

2
,

V ′′
loc(n) = 2(4|J |2 + μ2)3/2

[
sinh(β

√
4|J |2 + μ2) − β

√
4|J |2 + μ2

]
coth3

(
1
2β

√
4|J |2 + μ2

)
4|J |2β

√
4|J |2 + μ2 + μ2 sinh(β

√
4|J |2 + μ2)

, (B4)

and which are implicit functions of n through Eq. (B3). The initial effective potential at finite temperature is given by

V�(n) = Vloc(n) − 2 dt n. (B5)
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A. RANÇON PHYSICAL REVIEW B 89, 214418 (2014)

FIG. 7. (Color online) Left: n = |φ| as a function of the source |J |2 for different temperatures. Right: local effective potential Vloc(n) as a
function of n for a negative chemical potential for different temperatures. Symbols show the zero-temperature limit; see Eqs. (16) and (17).

To obtain the initial value of the order parameter, we first need
to find the value of the source J0 such that V ′

loc(n) − 2 dt = 0,
that is √

4|J0|2 + μ2 coth
β
√

4|J0|2 + μ2

2
= 2 dt. (B6)

Because the left-hand side of this equation is a monotonously
increasing function of |J0|2, the condition V ′

loc(n) − 2 dt = 0
is impossible if

μ coth
βμ

2
> 2 dt, (B7)

implying J0 = 0 and n0,� = 0, as well as

V0,� = −μ

2
− 1

β
ln

{
2 cosh

βμ

2

}
,

δ� = μ coth
βμ

2
− 2 dt,

λ� = 2μ coth3

(
βμ

2

)(
1 − βμ

sinh βμ

)
.

(B8)

The case

μ coth
βμ

2
= 2 dt

corresponds to the mean-field phase transition between the
superfluid and the normal phase [2], with δ� = n0,� = 0. This
defines the mean-field critical temperature T MF

c (μ). Finally, if

μ coth
βμ

2
< 2 dt, (B9)

one has to find J0 numerically through Eq. (B6) and compute
V0,�, n0,�, and λ� using Eqs. (B3) and (B4) (δ� = 0 by
definition).

2. Inverse propagator

The calculation of the inverse propagator is mostly the
same as in the case of zero temperature, but one must be
careful in the handling of the zero-frequency terms. Indeed,
at zero temperature, for the normal propagator (and similarly
for the anomalous propagator), the disconnected part |〈b̂〉|2
is exactly compensated and no term proportional to βδn,0

appears after Fourier transformation from imaginary time
to Matsubara frequencies ωn = 2πnT . This is not the case
at finite temperature. An explicit calculation of the Green
functions at finite temperature as functions of the sources
gives

Gn(iωn) = − (2|J |2 + μ(μ − iωn)) tanh
(

1
2β

√
4|J |2 + μ2

)
√

4|J |2 + μ2
(
ω2

n + 4J 2 + μ2
)

−βδn,0
|J |2sech2

(
1
2β

√
4|J |2 + μ2

)
4|J |2 + μ2

,

Gan(iωn) = 2J 2 tanh
(

1
2β

√
4|J |2 + μ2

)
√

4|J |2 + μ2
(
ω2

n + 4|J |2 + μ2
)

−βδn,0
J 2sech2

(
1
2β

√
4|J |2 + μ2

)
4|J |2 + μ2

. (B10)

Using Eq. (21), we obtain the three components of the inverse
propagator

�A,loc(iωn; n) =
√

4|J |2 + μ2 coth

(
1

2
β
√

4|J |2 + μ2

)
,

�B,loc(iωn; n) = δn,0V
′′

loc(n) + (1 − δn,0)

× 2(4|J |2 + μ2)3/2 coth3
(

1
2β

√
4|J |2 + μ2

)
μ2

,

�C,loc(iωn; n) = −
√

4|J |2 + μ2 coth
(

1
2β

√
4|J |2 + μ2

)
μ

ωn.

(B11)

While at finite temperature �A,loc stays frequency independent
[and equal to V ′

loc(n)] and �C,loc is still linear in frequency
(defining a finite temperature ZC,loc), we see that �B,loc now
has a very peculiar frequency dependence: it is equal to V ′′

loc(n)
for ωn = 0, as it should be, but takes another (constant) value
for all ωn �= 0. This is nevertheless consistent with the high
frequency behavior of the propagators; see Appendix C. Of
course, in the limit β → ∞, we recover the zero-temperature
limit �B,loc(iω; n) = V ′′

loc(n) for all frequencies.
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APPENDIX C: HIGH FREQUENCY BEHAVIOR
OF THE LOCAL GREEN FUNCTIONS

1. Zero temperature

The normal and anomalous local Green functions defined
in Eq. (19) can be written as

Gn(iω) =
∫ ∞

−∞
dω′ An(ω′)

iω − ω′ ,

Gan(iω) =
∫ ∞

−∞
dω′ Aan(ω′)

iω − ω′ , (C1)

when iω �= 0. The local spectral functions are defined by

An(t) = 1

2π
〈[b̂(t),b̂†(0)]〉,

Aan(t) = 1

2π
〈[b̂(t),b̂(0)]〉, (C2)

where b̂(t) and b̂†(t) are the hardcore boson operators in
the Heisenberg picture, with local Hamiltonian Ĥloc(J,J ∗)
[Eq. (14)]. Form the spectral representation Eq. (C1), we obtain
the high frequency expansion

Gn(iω) = a

iω
+ b

(iω)2
+ O(ω−3),

Gan(iω) = c

(iω)2
+ O(ω−3), (C3)

where

a =
∫ ∞

−∞
dω An(ω)

= 〈[b̂,b̂†]〉,

b =
∫ ∞

−∞
dω ω An(ω)

= 2π [i∂tAn(t)]t=0 = 〈[[b̂,Ĥloc],b̂†]〉,

c =
∫ ∞

−∞
dω ω Aan(ω)

= 2π [i∂tAan(t)]t=0 = 〈[[b̂,Ĥloc],b̂]〉. (C4)

To obtain Eq. (C4), we used the equations of motion of
the operators b̂(t) and b̂†(t). Using the hardcore bosonic
commutation relations, we obtain

a = 1 − 2〈b̂†b̂〉,
b = −μ(1 − 2〈b̂†b̂〉) + 2J 〈b̂†〉,
c = −2J 〈b̂〉.

(C5)

The (field dependent) local density n̄loc = 〈b̂†b̂〉 is given by

n̄loc = −∂μVloc(n)

= 1
2 (1 + sgn(μ)

√
1 − 4n).

(C6)

Using the relationship between the field φ(∗) = 〈b̂(†)〉 and the
source J (∗)

φ(∗) = J (∗)√
4|J |2 + μ2

,

|J |2 = μ2 n

1 − 4n
, (C7)

we obtain

a = −sgn(μ)
√

1 − 4n

= 1

ZC,loc(n)
,

b = |μ|
(√

1 − 4n + 2n√
1 − 4n

)

= V ′
loc(n) + nV ′′

loc(n)

ZC,loc(n)2
,

c = − 2|μ|φ2

√
1 − 4n

= − φ2V ′′
loc(n)

ZC,loc(n)2
. (C8)

These results are consistent with the high frequency behavior
of the normal and anomalous local Green functions, see
Sec. II B, which are given by

Gn(iω) = −�A,loc(iω; n) + n�B,loc(iω; n) + i�C,loc(iω; n)

Dloc
,

Gan(iω) = φ2�B,loc(iω; n)

Dloc
, (C9)

where

Dloc = �2
C,loc + �A,loc(�A,loc + 2n�B,loc),

the high frequency limit of which is given by

Dloc = (ZC,loc(n)ω)2.

2. Finite temperature

At finite temperature, Eqs. (C1), (C4), and (C5) are still
valid. With the help of Eq. (B1), one can compute a, b, and c

using

n̄loc = 1

β

∂ ln Zloc

∂μ

= 1

2
+ μ tanh

(
1
2β

√
4|J |2 + μ2

)
2
√

4|J |2 + μ2
, (C10)

as well as the results of Appendix B. The results of an explicit
calculation can be rewritten as

a = 1

ZC,loc(n)
,

b = V ′
loc(n) + n�B,loc(iωn; n)

ZC,loc(n)2
,

c = −φ2�B,loc(iωn; n)

ZC,loc(n)2
.

(C11)

Here �B,loc(iωn; n) is evaluated at (large) finite frequencies,
and is therefore not equal to V ′′

loc(n) (see Appendix B). These
results are consistent with high frequency dependence of the
Green functions [see Eq. (C9)].

APPENDIX D: ONE-LOOP CORRECTIONS AT T = 0

In the standard implementation NPRG, one obtains the
one-loop corrections by solving the flow equation (8) without
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renormalizing the effective action in the right-hand side of the
equation, which can be rewritten as

∂k�k = 1
2∂kTr log

{
�

(2)
� + Rk

}
. (D1)

This equation can be integrated exactly and gives

�1l = �� + 1

2
Tr log

{
�

(2)
�

�
(2)
� + R�

}
. (D2)

Note the presence of the term �
(2)
� + R� = �loc, which is

important in order to get the correct results. From this, we
get the one-loop effective potential by evaluating the effective
action in constant field and performing the integral over
frequency [67],

V1l(n)

= V�(n) + 1

2|Zloc,C |
∑

q

{√
(tq + V ′

loc + nV ′′
loc)2 − (nV ′′

loc)2

−
√

(V ′
loc + nV ′′

loc)2 − (nV ′′
loc)2 − tq

}
, (D3)

where we have hidden the field dependence of Zloc,C and Vloc

for notational convenience.
To obtain the one-loop pressure and condensate density,

we rewrite the effective potential as V1l = V� + δV and the
condensate density as n0,1l = n0,� + δn0. Then n0,1l is defined
by V ′

1l(n0,1l) = 0, which gives

V ′
1l(n0,1l) = V ′

�(n0,1l) + δV ′(n0,1l)

= V ′
�(n0,�) + δn0V

′′
�(n0,�) + δV ′(n0,�) + · · ·

= δn0V
′′
�(n0,�) + δV ′(n0,�) + · · ·

= 0, (D4)

where the dots stand for higher loop corrections. From this,
we get

n0,1l = n0,� − δV ′(n0,�)

V ′′
�(n0,�)

= n0,� −
∑

q

{
(2 dt)2 + dt(1 − μ̄2)tq − μ̄2t2

q

4 dt Eq
− 1

2

}
,

(D5)

where we have used Eq. (32) and μ̄ = μ/(2 dt). This is the
result quoted by Coletta et al. in Ref. [24]. (It is different
from that of Ref. [22], as discussed in Ref. [24].) Note that
the field dependence of the effective potential Vloc(n) and of
ZC,loc(n) is crucial in recovering the correct one-loop result. If
we approximate ZC,loc(n) by a constant and expand Vloc(n) to
order n2, the error is of about 5% at μ = 0.

The pressure at one loop can be obtained from

P1l = −V1l(n0,1l)

= −V1l(n0,�) − δn0V
′

1l(n0,�) + · · ·
= −V1l(n0,�) − δn0V

′
�(n0,�) + · · ·

= −V1l(n0,�), (D6)

which gives

P1l = P� + 1

2

∑
q

(Eq − 2 dt), (D7)

where we have used
∫

q tq = 0. In the case d = 2, this is the 1/S

spin-wave correction given in Ref. [24]. We therefore recover
the correct result for the density, given by a derivative with
respect to the chemical potential.
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Galain, and N. Wschebor, Phys. Rev. E 80, 030103 (2009).
[34] F. Benitez, J.-P. Blaizot, H. Chaté, B. Delamotte, R.
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[49] M. Gräter and C. Wetterich, Phys. Rev. Lett. 75, 378 (1995).
[50] G. v. Gersdorff and C. Wetterich, Phys. Rev. B 64, 054513

(2001).
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