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Three-magnon processes in magnetic nanoelements: Quantization and localized mode effects
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Three-magnon effects are known to be important for nonlinear processes in magnetic thin films. In such a
process, for example, the uniform mode at a frequency ω can decay into two modes at a lower frequency ω/2.
In magnetic nanoelements, there are additional concerns which do not occur in films. First, in small elements,
the excitation wave vectors become a set of discrete values. This limits the availability of final states. Second,
localized modes are important in nanoelements. Our study is based on micromagnetic calculations using the
Landau-Lifshitz equations. We use an oscillating magnetic field at frequency ω to drive the system and to study
the response over a wide range of frequencies and for a wide set of input powers. In nanoelements, the typical
response occurs not exactly at ω/2 but for several frequencies which are symmetrically spaced around ω/2.
This is explained by the two considerations introduced above. We study the response both as a function of the
amplitude of the driving field and as a function of the driving frequency. In this way, we can study the system
response both at resonance and outside of resonance.
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I. INTRODUCTION

Nonlinear magnetic dynamics have been an important
research topic for many years [1–9], however, most of the
earlier experimental studies were limited to large samples
of yttrium iron garnet because of its low linewidth. With
recent developments in thin-film creation and structuring, it has
become possible to extend these studies to new materials, such
as ferromagnetic metals [10–20], and new structures including
ultrathin films and nanoelements.

The equations of motion for the magnetization are in-
herently nonlinear, and studies of nonlinear objects, such
as solitons, have been researched substantially. Nonlinear
processes in magnetic materials can also lead to a number of
interesting effects for waves. For example, a single input wave
at frequency ω can result in output waves at the harmonics
[10,18] of ω, 2ω, 3ω, 4ω, etc. In addition, one can mix two
input waves with frequencies ω1 and ω2 to produce output
waves with frequencies of 2ω1 + ω2 or 2ω1 − ω2, for example,
see Refs. [10,15,18,20].

In this paper, we study a different nonlinear mechanism,
the three-magnon process, that can give rise to very different
output waves. In such a process, for example, the uniform
mode at a frequency ω can decay into two modes at a lower
frequency ω/2. Such three-magnon effects are known to be
important for the so-called saturation of the ferromagnetic
resonance (FMR) [2]. These processes can also be important
for signal processing or magnetic logic applications.

The existence of these lower-frequency modes in a thin
film depends on the so-called backward-volume-magnetostatic
waves where the frequency of the modes decreases as the
wave vector increases. Here we study three-magnon processes,
theoretically, in magnetic nanoelements [21–28] and find that
two important new considerations occur:

(1) In small elements, the wave vector becomes a set of
discrete values. This limits the availability of states at the
frequency of ω/2 because the frequency also becomes a set of
discrete values.

(2) Localized modes are important in nanoelements.
These modes often have low frequencies and provide a

mechanism for a decay from ω to ω/2 that does not involve
the usual magnetostatic waves that one finds in extended
films.

Our study is based on micromagnetic calculations using
the Landau-Lifshitz (LL) equations. We use an input wave at a
frequency ω and study the response of the system over a wide
range of frequencies and for a wide set of input powers. Our
results show that a typical response occurs not exactly at ω/2
but for several pairs of frequencies which are symmetrically
spaced around ω/2. This is explained by the two considerations
introduced above.

II. THEORETICAL CONSIDERATIONS

We first review the typical three-magnon decay process
for the uniform mode in ferromagnetic resonance in an
extended film. The uniform mode is characterized by a
wave vector k = 0 and a frequency ω. The three-magnon
decay process depends on the availability of modes at a
frequency of ω/2. Figure 1 shows the dispersion curves for the
different standing spin-wave modes in a thin film of thickness
275 nm for propagation parallel to the applied field. The
parameters for this plot are applied field H = 500 Oe and
saturation magnetization M = 0.76 kG, gyromagnetic ratio
γ = 2.85 GHz/kOe, and exchange stiffness constant D =
1.1×10−12 kG cm2. (Using A = DMs/2, this is equivalent
to an exchange constant A = 4.18×10−7 erg/cm, somewhat
reduced from the value used later of A = 1.3×10−6 erg/cm,
which typically is used in micromagnetic calculations. The
reduced value of exchange here allows us to see the general
features more easily.) The curves are calculated using the
methods developed in Ref. [29]. Recently, these methods have
been checked against micromagnetic simulations with good
agreement [30].

In the example shown here, there clearly are modes below
the half-frequency value, and one could expect a three-magnon
decay to be possible. One only needs to satisfy conservation of
energy and momentum. If the system is driven by a spatially
uniform oscillating magnetic field at frequency ωo, then these
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FIG. 1. (Color online) Dipole-exchange modes in a thin film for
propagation parallel to the applied field. The dashed lines indicate a
possible decay from the uniform mode (k = 0) to two half-frequency
modes. The parameters (given in the text) are appropriate for a
275-nm-thick Permalloy film in an external field of 500 Oe.

conditions are as follows:

�ωo = �ω1 + �ω1, (1)

0 = �k1 + −�k1, (2)

where ωo is the FMR frequency and ω1 = ωo/2. Similarly, in
Eq. (2), the initial momentum for the uniform FMR mode is
0, and the momentum for one of the states to which the FMR
mode decays is given by �k1. A decay possibility that satisfies
all these conservation rules is shown by the dashed lines
in Fig. 1.

Of course, the propagation direction does not have to be
parallel to the applied field. At other angles of propagation,
there are also modes which will satisfy these two conditions.
We do note that, as the angle between the propagation wave
vector and the external static field gets larger, the frequencies
generally are pushed up to larger values and, thus, half-
frequency modes are no longer available.

With these ideas in mind, one would expect that, if the
system is driven at a frequency ω, there could be a response
at ω and a nonlinear response at ω/2. In fact, it is not quite
so simple; it is well known that there is a threshold value for
the driving field and that only above this value will there be
a response at ω/2. We will see that our numerical results for
nanosized elements are actually quite different. While there is
a threshold field, the typical response is not at ω but exists at
multiple pairs of frequencies which are symmetrically spaced
around ω/2.

The dynamic micromagnetic calculation uses the LL
equation to find the magnetization of each of the cells as it
evolves through time. The method is similar to that used in
OOMMF [31]. The LL equation is as follows:

∂ �M
∂t

= −|γ |( �M × �Heff) − |γ | α

Ms

�M×( �M× �Heff), (3)

where �M is the magnetization of the cell and �Heff is the
effective magnetic field present in the cell and is given by

�Heff = �H0 + �Hex + �Hdip + hdcos(ωt)ŷ, (4)

where �H0 is the external static magnetic field in the z direction,
�Hex is the effective exchange field between nearest-neighbor

cells, �Hdip includes the dipole fields created from all cells
including the single cell’s own demagnetizing field, and
hd cos (ωt) ŷ is the driving field from the microwave field when
it is present. The dipole field is calculated efficiently through
a standard fast Fourier transform (FFT) method.

The coupled set of magnetic cells is driven with an
oscillating field hd at a given frequency ωd . To measure the
response, one can calculate the Fourier transform of the time
evolution of the magnetization using a FFT method. There are
a number of ways to do this for a multisite system. One way
is to first find the average magnetization for the structure as a
whole as a function of time and then do the FFT. For example,
the average value for the magnetization in the x direction is
given by

m̄x(t) =
∑

all cells i

m(i)
x (t). (5)

The Fourier transform of this would be

m̄x(ω) = F [m̄x(t)]. (6)

This would result in a series of peaks in the frequency space
where the peaks typically occur near the nonlinearly generated
waves of the system. Of course, one would expect that the
largest peak occurs at the driving frequency ωd . In fact, there
are also peaks at harmonics of the driving frequency. This has
recently been examined both experimentally and theoretically.
The first method is good for understanding how the system, as
a whole, responds to a uniform oscillating field, for example.
But a spatially odd spin wave will not be seen in this because
the motion in one cell will be canceled out by the spin motion
somewhere else in the system during the averaging.

In contrast, one can first perform a FFT on the time
evolution of the spin motion in each cell and then average
the FFT amplitude values over all cells. This method does not
suffer from the cancellation issues in the first method, and
both even and odd modes are seen. Because of this, the second
method gives more information on the nonlinear response,
and we will use this method in what follows. In terms of
experimental measurements, a technique, such as the standard
ferromagnetic resonance, measures the behavior of the average
magnetization. However, there are localized techniques, such
as microfocused Brillouin light scattering [32–34], which can
measure excitations in a portion of a nanoparticle, and they
would be appropriate for measurements that are related to the
localized Fourier transforms discussed here.

III. RESULTS

The geometry is illustrated in Fig. 2. The sample lies in the
yz plane, and a static magnetic field H = 1 kOe is applied
at a slight misalignment (0.1°) from the long axis of the
nanoparticle in the plane of the nanoparticle. The misalignment
prevents any numerical problems that sometimes occur in
highly symmetric situations. Furthermore, in real systems, it
is impossible to align the magnetic field perfectly with the
nanoparticle axis. In addition, there is a microwave driving
field hd , which is along the y axis.
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FIG. 2. The geometry used in this paper. A rectangular nanoele-
ment has its long axis in the z direction. There is an applied static
magnetic field H applied in the zy plane at an angle of 0.1° away
from the z axis. An oscillating field hd is applied in the y direction.

We use the second method outlined above to char-
acterize the response of a nanoelement with dimensions
320 nm×640 nm×100 nm to a single driving frequency.
Figure 3 shows the frequency response of the system for
driving fields hd with different amplitudes but all at a frequency
of 12.46 GHz. For this calculation, the parameters are—cell
size = 5 nm×5 nm×100 nm, number of cells = 64×128×1,
saturation magnetization Ms = 763.9 G, exchange constant
A = 1.3×10−6 erg/cm, and damping constant α = 0.02.
The frequency resolution resulting from the FFT transform
is 0.01 GHz. The system is brought to an equilibrium state,
in this case, a nearly saturated state generally known as a
“flower state” before the oscillating field is introduced. After
the driving field is turned on, we wait about 5 ns to achieve
dynamic equilibrium before data collection for the FFT is
turned on.

We have performed a number of checks to see that our
results do not depend significantly on cell size. For example,
using a unit cell of 10 nm×10 nm×100 nm and reducing the
number of cells give, essentially, the same results. We have also
reduced the cell size for the thickness to 50 nm and doubled
the number of cells with the same general results emerging.
The key results seen in Fig. 3 are as follows:

(1) At low amplitude driving fields, the only substantial
response is at the driving field. All other responses are several
orders of magnitude smaller.

(a)

(b)

(c)

(d)

FIG. 3. (Color online) The excitation spectrum of a 320 nm×
640 nm×100 nm Permalloy bar when driven at 12.46 GHz with
driving fields of different amplitudes. There is a static applied field
of 1 kOe in the z direction. The dashed line shows the half-frequency
position. A pair of symmetrically spaced peaks (around the half
frequency) is visible at a driving field of 30 Oe.

(2) At a higher amplitude for the driving field (hd = 30 Oe),
one sees a peak at the driving field and several sets of peaks
which are equidistant in frequency from the half-frequency
point ω/2.

(3) At even higher amplitudes, one sees numerous small
peaks throughout the entire frequency range. The individual
peaks rest on a background which shows a broad peak
near ω/2.

We can understand the general trends of these results by
examining a version of Fig. 1 showing the dipole-exchange
modes but now adjusted for a finite structure. First, as noted
above, in small elements, the wave vector is quantized. Here,
as an illustration, we assume that the quantized wave vectors
in the horizontal plane are given by qz = ± nπ/Lz, where Lz

is the length of the nanoelement in the z direction and n is an
integer. Second, in finite systems, it is not appropriate to have
a mode characterized by +qz or by −qz. Because of reflections
at the edges, all the modes are essentially standing modes and
contain both positive and negative wave-vector contributions.

Because of the two features discussed above, the conserva-
tion of energy and momentum rules discussed above become
modified. We can now have a three-magnon process where an
initial spatially uniform mode (k = 0) with a frequency ωo

mode decays to two modes, one at frequency ωo/2 + �ω and
one at ωo/2 − �ω. This conserves energy because

�ωo = �

(
ωo

2
+ �ω

)
+ �

(
ωo

2
− �ω

)
. (7)

For this process to occur, there must be two states spaced
equally (in frequency) about ωo/2. Because the dispersion
relation is no longer continuous, this is not guaranteed and only
happens at a few special points. The process also conserves
momentum because the initial wave vector has k = 0 and
the total final wave vector is also zero because of the finite
structure. (Each state now has both +k and −k components).
This new set of decay possibilities is illustrated in Fig. 4. It is
this new set of conservation rules that leads to the peaks in the

FIG. 4. (Color online) The lowest-frequency dipole-exchange
mode in a nanoelement for propagation parallel to the applied field.
The parameters (given in the text) are appropriate for a 275-nm-thick
Permalloy film in an external field of 500 Oe. The finite length of
the rectangular ribbon is 617 nm leading to a discretization of the
allowed wave vectors. The dashed lines indicate possible decays from
the uniform mode (k = 0) to two modes equally spaced about the
half-frequency position.
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FFT spectrum which are equally spaced in frequency about
the ω/2 value.

We note that, in the absence of translational invariance
where the absence here is caused by the finite size of the
sample, there is technically no requirement for conservation of
momentum. However, in large samples, the concept of momen-
tum conservation is useful, and it continues to be conceptually
useful as we begin to make the samples smaller. Nonetheless,
the idea that all spin-wave modes are standing waves implies
that, essentially, all modes have a total momentum of zero, i.e.,
the sum of the wave vectors for a given mode is zero.

The true situation is not as simple as this in nanoelements,
and the modes do not exactly follow the quantization outlined
above, nor do they exactly follow the frequencies predicted
by the dipole-exchange calculation. First, dynamic pinning of
the modes alters the allowed wavelengths. Also, the static and
dynamic demagnetizing fields in a nanoelement are different
from those in the extended film, and this alters the frequency
somewhat, particularly for the uniform mode (where q = 0),
which is shifted up by about 1 GHz from the dipole-exchange
value. Nonetheless, the simple quantization picture gives some
good insight into why the new peaks in the FFT spectrum are
distributed symmetrically around ω/2 rather than at ω/2 and
why there is a relatively small number of these peaks. We
note that a related discussion on the width of the ω/2 magnon
peak in Brillouin light-scattering experiments has been given
earlier [35].

We comment on the issue of resonance for these results.
In experiments, it is common to set the driving frequency at a
resonant frequency of the system. This is normally performed
to ensure a large response. However, in the nonlinear limit, the
resonance frequency changes as a function of the amplitude
of the driving field [14]. So, it is impossible to set a single
resonance frequency and have it valid for all driving fields.
Nonetheless, it is interesting to see how the response of the
system changes as a function of frequency and, in particular,
in the regions where the driving frequency is close to the
resonance frequency.

Figure 5 explores the response of the nanoparticle where
the driving amplitude is held constant but the frequency is
changed. The geometry of the system is the same as that used
in Fig. 3. With a static field of 1 kOe applied along the long
axis, the resonance frequency in the linear limit is estimated
to be around 12.6 GHz. In Fig. 5(a), the driving frequency
is 11.8 GHz, relatively far away from resonance, and there is
no significant response near the ω/2 frequency. In contrast, in
Fig. 5(b) where the frequency is 12 GHz, there are two sharp
peaks, symmetrically spaced around the ω/2 frequency. At
12.6 GHz, in Fig. 5(c), we see a significant set of responses
throughout the frequency range, but many are symmetrically
spaced around ω/2. Finally, at a frequency well away from
resonance at 13.2 GHz [Fig. 5(d)], the response is quite small
except at the driving frequency. It is clear from this figure that,
as the driving frequency approaches the resonance frequency,
the response of the system gets larger as expected and that the
symmetric spacing of the modes around ω/2 exists for a range
of frequencies, not just for the resonance frequency.

It is interesting to note that many of the peaks in Fig. 5(c)
can simply be explained by other nonlinear processes. We
identify the main peaks in Fig. 5(c) as ωo = 12.6, ω1 = 5.91,

FIG. 5. (Color online) The excitation spectrum of a 320 nm×
640 nm×100 nm Permalloy bar when driven at different frequencies.
The driving field has an amplitude of 30 Oe. There is a static applied
field of 1 kOe in the z direction. The dashed lines show the half-
frequency positions. The frequency of 12.6 is close to the resonance
field. Some peaks are labeled with their frequencies in gigahertz.

and ω2 = 6.69 GHz. Many of the other peaks come from the
allowed nonlinear combinations of these three modes. For
example, the peaks at 5.12 and 7.48 GHz result from 2ω1 −ω2

and 2ω2 − ω1 processes, respectively. Then the frequencies
of 6.69 and 7.48 GHz can be combined similarly to produce
the peak at 8.26 GHz. The peaks at 11.81 and 13.39 GHz are
the second harmonics of ω1 and ω2. Many of the remaining
modes can be identified in a similar fashion as arising directly
from combinations of ωo, ω1, or ω2 or from combinations of
these frequencies with the frequencies they generate. Finally,
we note that, in addition to the identified satellite peaks around
ω/2, there are often other satellite peaks surrounding the strong
peak at the driving frequency. These seem to be associated with
a nonlinear generated combination of the driving frequency
and the lowest-frequency peak that is probably an edge mode
with a long lifetime.

We can get some idea of the nature of the waves which are
involved in the three-magnon process by making a “snapshot”
of the mode. This is performed by finding the amplitude of
the Fourier transform of the transverse magnetization, in this
case My , in each cell at a specified frequency. Figure 6 shows
the profiles for the two modes near ω/2 seen in Fig. 5(c) at
frequencies of 5.91 and 6.69 GHz. It is clear from these figures
that both modes show some localization, i.e., the amplitude
is larger at the ends of the nanoelement, in contrast to the
uniform amplitude expected from a sinusoidal standing wave.
The localized modes may not have well defined k vectors.
For example, a Fourier transform of the spatial pattern would
show some peaks at specific wave vectors as well as broader
background structures. Nonetheless, because it is a standing
mode, one expects that the total wave vector will continue to
be zero. The mode at 5.91 GHz has minimal variation in the
y (horizontal) direction and ky � 0. In contrast, the mode at
6.69 GHz has a node in the excitation as one moves along the
y axis and ky � π/Ly .
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FIG. 6. (Color online) A spatial representation of the excitations
at 5.91 and 6.69 GHz using the parameters from Fig. 5(c). The colors
show the amplitude of the excitation, obtained through the FFT, for the
different frequencies. The excitations clearly show some localization
in that the amplitudes are smaller in the center of the bar.

It is important to note that the existence of the three-
magnon process depends critically on the dimensions of the
nanoelement. For example, as is well known for thin films, the
size of the dip seen in the dispersion relation shown in Figs. 1
and 4 depends on both the magnetic field and the thickness of
the film. As the film is made thinner, the dip is reduced, and
there may be no modes with frequencies as low as ω/2. We
find a similar result in our numerical studies. For example, we
found no three-magnon-like processes in a nanoelement with

a 10-nm thickness. In nanoelements, other considerations are
also important. If one has a nanoelement with a square cross
section, this creates an effective anisotropy field (from the
dynamic demagnetizing fields), which acts like an external
field pointing along the long axis of the nanoelement. This
field makes it harder to get large-amplitude oscillations, and
thus, the nonlinear regime requires very large driving fields
with amplitudes of over 100 Oe. Thus, nonlinear effects and,
in particular, three-magnon effects are difficult to obtain in this
limit. This also matches with our numerical results.

IV. SUMMARY

We have studied the nonlinear decay processes of a
rectangular magnetic nanoelement when driven by an oscil-
lating, but spatially uniform, microwave field at frequency
ω. In particular, the three-magnon process, which, in thin
films, leads to waves at ω/2, produces a different result in
nanoelements, leading to responses at several frequencies
which are symmetrically spaced around ω/2. When the driving
field is large and near the resonance frequency for the uniform
mode, the excitation spectrum can be quite complicated.
However, many of the peaks seen in that spectrum result
from nonlinear combinations of the original wave and the
three-magnon waves which are spaced around ω/2.

ACKNOWLEDGMENT

This work was funded by NSF Grant No. DMR 0907063.
The author would like to thank J. Marsh for carrying out some
of the numerical calculations.

[1] N. Bloembergen and R. W. Damon, Phys. Rev. 85, 699
(1952).

[2] H. Suhl, Phys. Rev. 101, 1437 (1956); ,J. Phys. Chem. Solids 1,
209 (1957).

[3] C. E. Patton, Phys. Rep. 103, 251 (1984).
[4] B. A. Kalinikos, N. G. Kovshikov, and C. E. Patton, Phys. Rev.

Lett. 80, 4301 (1998).
[5] M. Wu, B. A. Kalinikos, and C. E. Patton, Phys. Rev. Lett. 95,

237202 (2005).
[6] Nonlinear Phenomena and Chaos in Magnetic Materials,

edited by P. E. Wigen (World Scientific, Singapore, 1994).
[7] S. O. Demokritov, B. Hillebrands, and A. Slavin, Phys. Rep.

348, 441 (2001).
[8] G. Bertotti, I. D. Mayergoyz, and C. Serpico, Nonlinear

Magnetization Dynamics in Nanosystems (Elsevier, Amsterdam,
2009).

[9] K. Livesey, R. L. Stamps, and M. Kostylev, Phys. Rev. B 75,
174427 (2007).

[10] M. Bao, A. Khitun, Y. Wu, J.-Y. Lee, K. L. Wang, and A. P.
Jacob, Appl. Phys. Lett. 93, 072509 (2008).

[11] C. Cheng and W. E. Bailey, Appl. Phys. Lett. 103, 242402
(2013).

[12] H. M. Olson, P. Krivosik, K. Srinivasan, and C. E. Patton,
J. Appl. Phys. 102, 023904 (2007).

[13] M. Yan, P. Vavassori, G. Leaf, F. Y. Fradin, and M. Grimsditch,
J. Magn. Magn. Mater. 320, 1909 (2008).

[14] Y. Khivintsev, B. Kuanr, T. J. Fal, M. Haftel, R. E. Camley,
Z. Celinski, and D. L. Mills, Phys. Rev. B 81 054436
(2010).

[15] Y. Khivintsev, J. Marsh, V. Zagorodnii, I. Harward I, J. Lovejoy,
P. Krivosik, R. E. Camley, and Z. Celinski, Appl. Phys. Lett. 98,
042505 (2011).

[16] H. Ulrichs, V. E. Demidov, S. O. Demokritov, and
S. Urazhdin, Phys. Rev. B 84, 094401 (2011).

[17] C. T. Boone, J. A. Katine, J. R. Childress, V. Tiberkevich,
A. Slavin, J. Zhu, X. Cheng, and I. N. Krivorotov, Phys. Rev.
Lett. 103, 167601 (2009).

[18] J. Marsh, V. Zagorodnii, Z. Celinski, and R. E. Camley,
Appl. Phys. Lett. 100, 102404 (2012).

[19] M. P. Wismayer, B.W. Southern, X. L. Fan, Y. S. Gui, C.-M. Hu,
and R. E. Camley, Phys. Rev. B 85, 064411 (2012).

[20] J. Marsh and R. E. Camley, Phys. Rev. B 86, 224405
(2012).

[21] K. Y. Guslienko, S. O. Demokritov, B. Hillebrands, and A. N.
Slavin, Phys. Rev. B 66, 132402 (2002).

[22] M. Grimsditch, G. K. Leaf, H. G. Kaper, D. A. Karpeev, and
R. E. Camley, Phys. Rev. B 69, 174428 (2004).

[23] R. D. McMichael and M. D. Stiles, J. Appl. Phys. 97, 10J901
(2005).

[24] V. E. Demidov, M. Buchmeier, K. Rott, P. Krzysteczko,
J. Münchenberger, G. Reiss, and S. O. Demokritov, Phys. Rev.
Lett. 104, 217203 (2010).

214402-5

http://dx.doi.org/10.1103/PhysRev.85.699
http://dx.doi.org/10.1103/PhysRev.85.699
http://dx.doi.org/10.1103/PhysRev.85.699
http://dx.doi.org/10.1103/PhysRev.85.699
http://dx.doi.org/10.1103/PhysRev.101.1437
http://dx.doi.org/10.1103/PhysRev.101.1437
http://dx.doi.org/10.1103/PhysRev.101.1437
http://dx.doi.org/10.1103/PhysRev.101.1437
http://dx.doi.org/10.1016/0022-3697(57)90010-0
http://dx.doi.org/10.1016/0022-3697(57)90010-0
http://dx.doi.org/10.1016/0022-3697(57)90010-0
http://dx.doi.org/10.1016/0022-3697(57)90010-0
http://dx.doi.org/10.1016/0370-1573(84)90023-1
http://dx.doi.org/10.1016/0370-1573(84)90023-1
http://dx.doi.org/10.1016/0370-1573(84)90023-1
http://dx.doi.org/10.1016/0370-1573(84)90023-1
http://dx.doi.org/10.1103/PhysRevLett.80.4301
http://dx.doi.org/10.1103/PhysRevLett.80.4301
http://dx.doi.org/10.1103/PhysRevLett.80.4301
http://dx.doi.org/10.1103/PhysRevLett.80.4301
http://dx.doi.org/10.1103/PhysRevLett.95.237202
http://dx.doi.org/10.1103/PhysRevLett.95.237202
http://dx.doi.org/10.1103/PhysRevLett.95.237202
http://dx.doi.org/10.1103/PhysRevLett.95.237202
http://dx.doi.org/10.1016/S0370-1573(00)00116-2
http://dx.doi.org/10.1016/S0370-1573(00)00116-2
http://dx.doi.org/10.1016/S0370-1573(00)00116-2
http://dx.doi.org/10.1016/S0370-1573(00)00116-2
http://dx.doi.org/10.1103/PhysRevB.75.174427
http://dx.doi.org/10.1103/PhysRevB.75.174427
http://dx.doi.org/10.1103/PhysRevB.75.174427
http://dx.doi.org/10.1103/PhysRevB.75.174427
http://dx.doi.org/10.1063/1.2975174
http://dx.doi.org/10.1063/1.2975174
http://dx.doi.org/10.1063/1.2975174
http://dx.doi.org/10.1063/1.2975174
http://dx.doi.org/10.1063/1.4842195
http://dx.doi.org/10.1063/1.4842195
http://dx.doi.org/10.1063/1.4842195
http://dx.doi.org/10.1063/1.4842195
http://dx.doi.org/10.1063/1.2756481
http://dx.doi.org/10.1063/1.2756481
http://dx.doi.org/10.1063/1.2756481
http://dx.doi.org/10.1063/1.2756481
http://dx.doi.org/10.1016/j.jmmm.2008.02.184
http://dx.doi.org/10.1016/j.jmmm.2008.02.184
http://dx.doi.org/10.1016/j.jmmm.2008.02.184
http://dx.doi.org/10.1016/j.jmmm.2008.02.184
http://dx.doi.org/10.1103/PhysRevB.81.054436
http://dx.doi.org/10.1103/PhysRevB.81.054436
http://dx.doi.org/10.1103/PhysRevB.81.054436
http://dx.doi.org/10.1103/PhysRevB.81.054436
http://dx.doi.org/10.1063/1.3541787
http://dx.doi.org/10.1063/1.3541787
http://dx.doi.org/10.1063/1.3541787
http://dx.doi.org/10.1063/1.3541787
http://dx.doi.org/10.1103/PhysRevB.84.094401
http://dx.doi.org/10.1103/PhysRevB.84.094401
http://dx.doi.org/10.1103/PhysRevB.84.094401
http://dx.doi.org/10.1103/PhysRevB.84.094401
http://dx.doi.org/10.1103/PhysRevLett.103.167601
http://dx.doi.org/10.1103/PhysRevLett.103.167601
http://dx.doi.org/10.1103/PhysRevLett.103.167601
http://dx.doi.org/10.1103/PhysRevLett.103.167601
http://dx.doi.org/10.1063/1.3688036
http://dx.doi.org/10.1063/1.3688036
http://dx.doi.org/10.1063/1.3688036
http://dx.doi.org/10.1063/1.3688036
http://dx.doi.org/10.1103/PhysRevB.85.064411
http://dx.doi.org/10.1103/PhysRevB.85.064411
http://dx.doi.org/10.1103/PhysRevB.85.064411
http://dx.doi.org/10.1103/PhysRevB.85.064411
http://dx.doi.org/10.1103/PhysRevB.86.224405
http://dx.doi.org/10.1103/PhysRevB.86.224405
http://dx.doi.org/10.1103/PhysRevB.86.224405
http://dx.doi.org/10.1103/PhysRevB.86.224405
http://dx.doi.org/10.1103/PhysRevB.66.132402
http://dx.doi.org/10.1103/PhysRevB.66.132402
http://dx.doi.org/10.1103/PhysRevB.66.132402
http://dx.doi.org/10.1103/PhysRevB.66.132402
http://dx.doi.org/10.1103/PhysRevB.69.174428
http://dx.doi.org/10.1103/PhysRevB.69.174428
http://dx.doi.org/10.1103/PhysRevB.69.174428
http://dx.doi.org/10.1103/PhysRevB.69.174428
http://dx.doi.org/10.1063/1.1852191
http://dx.doi.org/10.1063/1.1852191
http://dx.doi.org/10.1063/1.1852191
http://dx.doi.org/10.1063/1.1852191
http://dx.doi.org/10.1103/PhysRevLett.104.217203
http://dx.doi.org/10.1103/PhysRevLett.104.217203
http://dx.doi.org/10.1103/PhysRevLett.104.217203
http://dx.doi.org/10.1103/PhysRevLett.104.217203


R. E. CAMLEY PHYSICAL REVIEW B 89, 214402 (2014)

[25] V. E. Demidov, U.-H. Hansen, and S. O. Demokritov, Phys. Rev.
Lett. 98, 157203 (2007).

[26] V. S. Tiberkevich, J.-V. Kim, and A. N. Slavin, Phys. Rev. B 78,
092401 (2008).

[27] Y. S. Gui, N. Mecking, X. Zhou, G. Williams, and C.-M. Hu,
Phys. Rev. Lett. 98, 107602 (2007); Y. S. Gui, N. Mecking, and
C.-M. Hu, ibid. 98, 217603 (2007).

[28] Y. S. Gui, A. Wirthmann, N. Mecking, and C.-M. Hu, Phys. Rev.
B 80, 060402(R) (2009); ,80, 184422 (2009).

[29] T. Wolfram and R. E. DeWames, Prog. Surf. Sci. 2, 233
(1972).

[30] E. Meloche, J. I. Mercer, J. P. Whitehead, T. M. Nguyen, and
M. L. Plumer, Phys. Rev. B 83, 174425 (2011).

[31] M. J. Donahue and D. G. Porter, National Institute of Standards
and Technology, Interagency Report No. NISTIR6376, 1999
(unpublished).

[32] M. Madami, G. Gubbiotti, S. Tacchi, and G. Carlotti, in Solid
State Physics, edited by R. E. Camley and R. L. Stamps
(Academic, Burlington, MA, 2012), Vol. 63, pp. 79–150.

[33] D. R. Birt, B. O’Gorman, M. Tsoi, X. Li, V. E. Demidov, and
S. O. Demokritov, Appl. Phys. Lett. 95, 122510 (2009).

[34] H. Ulrichs, V. E. Demidov, S. O. Demokritov, A. V. Ognev,
M. E. Stebliy, L. A. Chebotkevich, and A. S. Samardak,
Phys. Rev. B 83, 184403 (2011).

[35] C. L. Ordóñez-Romero, B. A. Kalinikos, P. Krivosik, W. Tong,
P. Kabos, and C. E. Patton, Phys. Rev. B 79, 144428 (2009).

214402-6

http://dx.doi.org/10.1103/PhysRevLett.98.157203
http://dx.doi.org/10.1103/PhysRevLett.98.157203
http://dx.doi.org/10.1103/PhysRevLett.98.157203
http://dx.doi.org/10.1103/PhysRevLett.98.157203
http://dx.doi.org/10.1103/PhysRevB.78.092401
http://dx.doi.org/10.1103/PhysRevB.78.092401
http://dx.doi.org/10.1103/PhysRevB.78.092401
http://dx.doi.org/10.1103/PhysRevB.78.092401
http://dx.doi.org/10.1103/PhysRevLett.98.107602
http://dx.doi.org/10.1103/PhysRevLett.98.107602
http://dx.doi.org/10.1103/PhysRevLett.98.107602
http://dx.doi.org/10.1103/PhysRevLett.98.107602
http://dx.doi.org/10.1103/PhysRevLett.98.217603
http://dx.doi.org/10.1103/PhysRevLett.98.217603
http://dx.doi.org/10.1103/PhysRevLett.98.217603
http://dx.doi.org/10.1103/PhysRevLett.98.217603
http://dx.doi.org/10.1103/PhysRevB.80.060402
http://dx.doi.org/10.1103/PhysRevB.80.060402
http://dx.doi.org/10.1103/PhysRevB.80.060402
http://dx.doi.org/10.1103/PhysRevB.80.060402
http://dx.doi.org/10.1103/PhysRevB.80.184422
http://dx.doi.org/10.1103/PhysRevB.80.184422
http://dx.doi.org/10.1103/PhysRevB.80.184422
http://dx.doi.org/10.1016/0079-6816(72)90001-9
http://dx.doi.org/10.1016/0079-6816(72)90001-9
http://dx.doi.org/10.1016/0079-6816(72)90001-9
http://dx.doi.org/10.1016/0079-6816(72)90001-9
http://dx.doi.org/10.1103/PhysRevB.83.174425
http://dx.doi.org/10.1103/PhysRevB.83.174425
http://dx.doi.org/10.1103/PhysRevB.83.174425
http://dx.doi.org/10.1103/PhysRevB.83.174425
http://dx.doi.org/10.1063/1.3237168
http://dx.doi.org/10.1063/1.3237168
http://dx.doi.org/10.1063/1.3237168
http://dx.doi.org/10.1063/1.3237168
http://dx.doi.org/10.1103/PhysRevB.83.184403
http://dx.doi.org/10.1103/PhysRevB.83.184403
http://dx.doi.org/10.1103/PhysRevB.83.184403
http://dx.doi.org/10.1103/PhysRevB.83.184403
http://dx.doi.org/10.1103/PhysRevB.79.144428
http://dx.doi.org/10.1103/PhysRevB.79.144428
http://dx.doi.org/10.1103/PhysRevB.79.144428
http://dx.doi.org/10.1103/PhysRevB.79.144428



