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Nanogranular metal composites, consisting of immiscible metallic and insulating phases deposited on a
substrate, are characterized by two distinct electronic transport regimes depending on the relative amount of
the metallic phase. At sufficiently large metallic loadings, granular metals behave as percolating systems with a
well-defined critical concentration above which macroscopic clusters of physically connected conductive particles
span the entire sample. Below the critical loading, granular metal films are in the dielectric regime, where current
can flow throughout the composite only via hopping or tunneling processes between isolated nanosized particles
or clusters. In this case transport is intrinsically nonpercolative in the sense that no critical concentration can
be identified for the onset of transport. It is shown here that, although being very different in nature, these two
regimes can be described by treating percolation and hopping on equal footing. By considering general features
of the microstructure and of the electrical connectedness, the concentration dependence of the dc conductivity
of several nanogranular metal films is reproduced to high accuracy within an effective-medium approach. In
particular, fits to published experimental data enable us to extract the values of microscopic parameters that
govern the percolation and tunneling regimes, explaining thus the transport properties observed in nanogranular
metal films.

DOI: 10.1103/PhysRevB.89.214201 PACS number(s): 73.40.Gk, 64.60.ah, 72.80.Tm, 81.05.Rm

I. INTRODUCTION

Among the different classes of conductor-insulator com-
posites, nanogranular metal films are quite unique materials
as they display distinct and tunable electrical, optical, and
magnetic properties depending on the nature and concentration
of the metallic phase, as well as on the structure of the
films [1–3]. In the preparation of this class of composites,
various sputtering, evaporation, and ion implantation methods
are used to deposit immiscible metals and insulators on a
substrate to form composite films with a wide range of the
volume fraction φ of the metallic phase. At large φ, the
composite is basically a metallic continuum whose electronic
conductivity σ is limited by grain boundaries and scattering
with few insulating inclusions. As φ decreases, σ is lowered
by the enhanced concentration of the insulating phase. This
“metallic regime” persists until matrix inversion occurs at
a material dependent critical value φc, below which the
metallic continuum is broken up into disconnected metallic
particles or clusters dispersed in the insulating phase. In this
“dielectric regime,” electrons flow throughout the composite
only by tunneling or hopping processes between isolated, and
homogeneously dispersed, nanometric metallic particles.

These two distinct, structurally driven, transport regimes
are very different in nature, as seen from the temperature and
relative concentration dependencies of σ . Above φc, granular
metal films are assimilable to percolative systems in which
coalescing metallic particles form a system spanning conduc-
tive network. As a function of φ, the resulting conductivity
for φ � φc is thus expected to follow a percolation power-law
behavior of the form [4,5]

σ � σ0(φ − φc)t , (1)

where σ0 is a constant and t � 2 (t � 1.3) is the universal
transport exponent for three-dimensional (two-dimensional)
systems. Furthermore, for φ > φc transport shows typically
a metallic behavior, with the resistivity increasing linearly

with the temperature. In contrast to the percolation mechanism
implied by Eq. (1), tunneling between submicron conducting
particles in the dielectric regime hints to the absence of any
“critical” concentration, as electrons have to tunnel across
interparticle distances that increase gradually as φ is reduced.
Considering that in the limit of dilute particles of size D

the mean particle separation δ scales as δ ∝ D/φ1/d , where
d is the system dimensionality, the tunneling conductivity
σ ∝ exp(−2δ/ξ ) for sufficiently large temperatures is thus
expected to follow

σ ∝ exp

(
−ad

D

ξφ1/d

)
, (2)

where ξ is the tunneling decay length and ad is a dimensionless
constant, which for point particles dispersed in a three-
dimensional (two-dimensional) volume takes up the value
a3 � 1.41 (a2 � 2.12) [6,7]. As a function of temperature T ,
the dielectric regime is associated with a stretched exponential
behavior of the form

σ ∝ exp

(
−

√
T0

T

)
, (3)

which arises from tunneling processes in the presence of a
Coulomb gap [8–11]. Equation (3) applies for temperatures
lower than a φ-dependent characteristic temperature, T0, which
typically increases from T0 ∼ 100 K for φ � φc to a few
thousands of Kelvin for φ values deep in the dielectric
region [1,12].

The limiting φ dependencies of σ highlighted in Eqs. (1)
and (2) arise from general considerations which do not rely
on the detailed knowledge of the composite film morphology.
However, while Eq. (1) is shown to properly fit the measured
σ in the metallic regime [13–17], the exponential behavior
of Eq. (2) is less often used to interpret the observed φ

dependence of the dielectric regime [15,18]. In Ref. [14],
for example, the dielectric region is understood in terms of
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Eq. (1) with a tunneling-induced nonuniversal exponent [19],
while in Refs. [15,16] additional percolation transitions are
considered to be active in the φ < φc region. The power-law
behavior of Eq. (1), or its generalizations, requires however
either a cutoff in the interparticle conductances [20], or very
peculiar (crystal-like) arrangements of the metallic particles in
the matrix [21], both of which are difficult to justify from the
disordered morphology of nanogranular films in the dielectric
regime. Furthermore, the variable range hopping mechanism
at the basis of the stretched exponential behavior of Eq. (3)
is, in principle, incompatible with the notion of a fixed cutoff
distance between the particles. From these considerations, we
see that although the temperature dependence of σ is quite well
understood [10], there is still no general consensus on how to
interpret the behavior of the conductivity as a function of the
metallic content at fixed temperatures. In particular, there is
a need to further understand the different regimes of granular
metals within a single, coherent description.

In this paper, we present an effective-medium formulation
that naturally accounts for the metallic (percolation) and
dielectric (tunneling) regimes of granular thick films, and
the transition between them. With the term “thick film” we
mean that the film thickness is much larger than the typical
particle size, so that the system is three dimensional. By
considering general properties of the microstructure and of
the electrical connectedness, we clarify how the percolation
behavior of Eq. (1) for φ > φc evolves into the exponential one
of Eq. (2) for φ < φc. In this way, we can reproduce the room-
temperature conductivity data of several composite films in the
whole range of φ, and extract from experiments the tunneling
characteristics, the percolation threshold, and the microscopic
conductances governing the overall conductivity behavior.
Furthermore, by using a cherry-pit model for the conductive
particle dispersion in the films, we identify the different
observed values of φc in terms of partial overlaps between the
particles, providing thus a simple microscopic interpretation
for the location of the dielectric-metallic transition.

II. MODEL AND EFFECTIVE-MEDIUM APPROXIMATION

During the deposition process of granular metal films,
the metallic particles nucleate and grow giving rise to a
spatial distribution of the metallic grains which depends on
the relative amount of metallic and insulating phases, on the
interaction between them, and on the film growth conditions.
Detailed description of film microstructure requires thus
specific knowledge of the microscopic processes governing the
spatial distribution of the two phases. However, observational
studies of many different film microstructures evidence quite
general features, such as homogeneity and disorder of particle
dispersions, nanometric size of metallic grains in the dielectric
regime, and matrix inversion in the transition region. These
generic features can be taken into account without detailed
knowledge of the processes governing them by employing a
minimal model of the microstructure chosen as to capture the
essential aspects.

To define a minimal model for granular metal films we
consider spherical metallic particles with equal diameter D

dispersed in a continuum insulating medium. We simulate
coalescing between the metallic particles by allowing the

FIG. 1. (Color online) (a) Illustration of the model for nanogran-
ular composite films in which the metallic particles are represented
as partially overlapping spheres dispersed in a continuum matrix.
For volume fractions φ lower than the percolation threshold φc,
the composite is constituted by dispersions of isolated particles and
clusters of overlapping particles. For φ > φc the film microstructure
is modeled as a continuum of overlapping spheres with isolated
voids. φc is the critical volume fraction for the percolation of
overlapping spheres. (b) Model of interparticle conductances. For any
two overlapping spheres, the conductance is set equal to gm, as for
spheres 1 and 2. When two particles do not overlap, their conductance
is chosen to be of tunneling type, as for spheres 1 and 3, and 2 and 3.

spheres to overlap to some extent. At low volume fractions,
the metallic phase is thus composed primarily of isolated
spheres, while at large φ the composite consists basically
of a metallic continuum with few isolated voids, as shown
schematically in Fig. 1(a). The regions of low and large φ

correspond respectively to the dielectric and metallic regimes
of the granular films. The critical volume fraction φc separating
these two regions corresponds to the geometrical percolation
threshold for intersecting spheres, i.e., φc is the smallest φ

such that a system spanning cluster of overlapping spheres
exists. The specific value of φc depends on the degree of
particle overlapping and on the statistical properties of the
dispersion, which however we do not specify at the moment.

To model the electrical connectedness at the microscopic
level, we define two kinds of interparticle conductances, as
illustrated schematically in Fig. 1(b). When two particles over-
lap, as for example particles 1 and 2 in Fig. 1(a), we assume that
the interparticle conductance is constant and independent of
the degree of overlapping. Between nonoverlapping particles,
instead, we ascribe a tunneling conductance which decays
exponentially with the relative distance between the particles,
as for the pairs of spheres 1,3 and 2,3 in Fig. 1(b). For any two
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given spheres i and j , the interparticle conductance assumes
thus the following form:

gij =
{

gm for rij � D,

gte
−2(rij −D)/ξ for rij > D,

(4)

where rij is the distance between the sphere centers and ξ is the
tunneling decay length. The prefactors gm and gt in Eq. (4) are
in general different: gt is in principle smaller or much smaller
than the conductance of two coalesced particles as the electron
has to cross an interfacial barrier even if two particles are at
contact. Furthermore, for the case of nanosized ferromagnetic
particles, gt depends also on the relative spin polarization [22].

In writing Eq. (4) we assume that particle charging and
Coulomb interaction effects do not appreciably contribute to
the exponential decay for rij > D. Although strictly valid
for infinite temperatures, this approximation is nevertheless
justified for granular metals at room temperature and with
metallic contents not much below φc, as in this case the variable
range hopping characteristic temperature in Eq. (3) is typically
T0 ∼ 100 K [12]. Since we are interested in the φ dependence
of σ at room temperature, we can think of the prefactor gt as to
partially include particle charging and Coulomb interactions.

A. Effective-medium approximation

We proceed to evaluating the composite film conductivity
by using an effective-medium approximation (EMA) previ-
ously applied successfully to a number of different conductor-
insulator composites [21,23–26]. A detailed derivation of
EMA is presented in Ref. [23]. Here we describe a simple
method to derive the EMA equation within the two-site
approximation by considering a system of N metallic spheres
dispersed in a volume V . We then construct a resistor network
whose node positions coincide with the centers of the spherical
particles. The corresponding bond conductances are given by
the set of N (N − 1)/2 conductances of Eq. (4). This network is
complete, which means that to each pair of nodes is associated
a finite conductance gij . The two-point resistance Rij between
any two nodes i and j is thus a well defined quantity, from
which we construct the average resistance of the network:

〈R〉 = 1

N (N − 1)

〈∑
i,j

′Rij

〉
, (5)

where 〈· · · 〉 indicates a configurational average and the prime
symbol means that the term with i = j is omitted from
the summation. We can express Rij as given by the direct
resistance between i and j , i.e., 1/gij , in parallel with the
resistance 1/G′

ij of a network in which gij has been removed
from the system:

Rij = 1

gij + G′
ij

. (6)

Next, we introduce a second (effective) network, with spatial
distribution of nodes identical to the original one, in which
the conductances are all identically equal to ḡ, independently
of the node indexes. This second network is a complete
network whose two-point resistance is simply given by R̄ =
1/Ḡ = 2/Nḡ [27]. We want to find ḡ such that the resistance

difference between the two networks,

〈R〉 − R̄ = 1

N (N − 1)

〈∑
i,j

′
(

1

gij + G′
ij

− 2

Nḡ

)〉
, (7)

vanishes. To this end, we apply the two-site EMA which
amounts to replacing G′

ij by the two-point conductance of
the effective network minus the direct contribution between i

and j :

G′
ij → Ḡ − ḡ = (N/2 − 1)ḡ, (8)

so that Eq. (7) reduces to

〈R〉 − R̄

R̄
= 1

N (N − 1)

〈∑
i,j

′ ḡ − gij

gij + (N/2 − 1)ḡ

〉
. (9)

Imposing 〈R〉 = R̄ to the above expression, after some algebra
and setting N 	 1 we find the following equation for the
effective conductance Ḡ [21,23]:

1

N

〈∑
i,j

′ gij

gij + Ḡ

〉
= 2. (10)

Since the conductances gij in Eq. (4) depend only upon the
relative distances rij , we can replace the summation over i,j

by an integral over the continuous distance r [21,23]. By using
Eq. (4) we thus obtain for three-dimensional systems

Z(φ,D)
gm

Ḡ + gm

+ 4πρ

∫ ∞

D

drr2g2(r)
gte

−2(r−D)/ξ

Ḡ + gte−2(r−D)/ξ
= 2,

(11)
where

g2(r) =
∫

d�

4π

〈
1

Nρ

∑
i,j

′δ(r − rij )

〉
(12)

is the radial distribution function for the conducting
spheres [28], and

Z(φ,D) = 4πρ

∫ D

0
drr2g2(r) (13)

is the coordination number for intersecting spheres, which
measures how many spheres on average overlap a given
sphere for a given concentration [29]. Finally, ρ = N/V is
the particle number density which, depending on the degree
of sphere overlapping, determines the fractional coverage φ of
the metallic phase.

B. EMA dielectric and metallic regimes

Equations (11) and (13) enable us to relate the behavior of
the overall transport with the morphology of the composite
through the radial distribution function g2(r), once this is
known. Detailed knowledge of g2(r) is however not necessary
to extract some important limiting behaviors of Ḡ from the
solution of Eq. (11). For example, the EMA dielectric regime
is obtained by noticing that in the dilute limit φ � 1 the
metallic particles are uncorrelated [g2(r) � 1] and practically
do not overlap [Z(φ,D) � 1]. In this way, the first term in
the left-hand side of Eq. (11) can be neglected and the EMA
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equation reduces to

24φ

D3

∫ ∞

D

drr2 gte
−2(r−D)/ξ

Ḡ + gte−2(r−D)/ξ
= 2, (14)

where we have set φ � πρD3/6. The above integral is
exactly solvable and the left-hand side of Eq. (14), which
we denote by I , can be expressed in terms of polylogarithm
functions. We find it more practical, however, to use for I the
following approximation which is very accurate for all values
of Ḡ:

I = 8φ

{[
1 + ξ

2D
ln

(
gt + Ḡ

Ḡ

)]3

− 1

}
. (15)

From I = 2 we thus find for small φ:

Ḡ � gt exp

{
−2D

ξ

[(
1

4φ
+ 1

)1/3

− 1

]}

−→
φ→0

gt exp

(
−1.26

D

ξφ1/3

)
, (16)

which has the same asymptotic behavior of Eq. (2). Equa-
tion (16) can also be recovered from the method described in
Ref. [21].

To obtain the EMA version for the percolating regime,
we neglect the tunneling contributions in Eq. (11). The EMA
equation reduces to Z(φ,D)gm/(Ḡ + gm) = 2, from which we
find

Ḡ = gm

[
Z(φ,D)

2
− 1

]
. (17)

Since Z(φ,D) increases monotonically with φ, Ḡ is non-
negative only for φ � φc, where φc satisfies Z(φc,D) = 2.
Hence, by expanding Eq. (17) in the vicinity of φc we obtain
for φ − φc � 0

Ḡ � gmZ′(φc,D)

2
(φ − φc), (18)

which is the EMA equivalent of the percolation conductivity
of Eq. (1), in which the transport exponent is unity rather than
t � 2.

III. MINIMAL EMA MODEL FOR
NANOGRANULAR METAL FILMS

From the results of the previous section, we are now in
the position of formulating a minimal, phenomenological
model describing the φ dependence of the conductivity of
nanogranular metal films. The starting point is Eq. (11), which
we modify in the following way. First, motivated by the
observation that the microstructure of the film is expected
to have little influence in the dilute particle limit φ � 1,
where tunneling dominates, we replace the second term in
the left-hand side of (11) with Eq. (15). Next, to keep the
number of independent parameters to an absolute minimum,
we assume a simple linear dependence of the coordination
number: Z(φ,D) = bφ. In this way, the critical volume
fraction is uniquely identified by φc = 2/b, as can be verified
by using Eq. (17). Finally, to recover the correct exponent
in the percolating regime, we follow the phenomenological
approach of Ref. [30] and replace the quantity gm/(Ḡ + gm)

in Eq. (11) with g
1/t
m /(Ḡ1/t + g

1/t
m ), where we set t = 2 for

three-dimensional materials. The resulting EMA equation
reduces thus to

(φ/φc)g1/t
m

Ḡ1/t + g
1/t
m

+ 4φ

{[
1 + ξ

2D
ln

(
gt + Ḡ

Ḡ

)]3

− 1

}
= 1.

(19)
It is easy to see from the above equation that for φ � φc

the EMA conductance reduces to Eq. (16), while for φ � φc

(and for sufficiently small ξ/D) it takes the percolation form
Ḡ ∝ (φ − φc)t . It is worth stressing that while the tunneling
contribution is treated explicitly, the percolation threshold is
used as a parameter of the theory, with no explicit relation
with the specific microstructure. In this respect, compared to
the model of semipenetrable spheres introduced in Sec. II,
Eq. (19) represents a semiphenomenological description of
nanocomposite films.

The φ dependence of Ḡ, obtained by numerical solution
of Eq. (19), is shown in Fig. 2 for different values of ξ/D

and gt/gm, with critical volume fraction fixed at φc = 1/2.
For ξ/D = 0, transport is purely percolative and the EMA
conductance follows Ḡ = (gm/φt

c)(φ − φc)t for φ � φc. In
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FIG. 2. (Color online) EMA conductance Ḡ as a function of the
volume fraction φ of conducting spheres as obtained from numerical
solutions of Eq. (19). The critical volume fraction φc for overlapping
spheres is fixed at φc = 0.5. (a) Ḡ for different values of ξ/D at
fixed gt/gm = 10−5. For ξ/D = 0 the EMA conductance follows the
percolation behavior Ḡ ∝ (φ − φc)t , with t = 2. Dashed lines are the
low density Ḡ of Eq. (16). (b) Ḡ for different values of gt/gm at fixed
ξ/D = 0.05.
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this region, the percolating behavior persists even for ξ/D �=
0, while for φ < φc the tunneling contributions become
dominant and Ḡ asymptotically follows Eq. (16), as shown
in Fig. 2(a). When plotted in a semilogarithmic scale, the
resulting φ dependence of Ḡ shows thus a characteristic double
hump, commonly observed in granular metal films, which
signals the metallic (percolating) and dielectric (tunneling)
regimes. The double hump feature, and the conductance
step at φ � φc, depend however on the ratio gt/gm. For
gt/gm = 1, the EMA conductance decreases gradually as φ

decreases without particular features at φc, while a significant
step becomes visible only for gt/gm � 1, as shown in
Fig. 2(b).

Application to experiments

To assess the relevance of our EMA model for real
nanocomposite films, we solve Eq. (19) so to reproduce
published data of the conductivity of several granular metal
systems. To this end, we rewrite Eq. (19) in terms of the
dimensionless conductance g∗ = Ḡ/gm which, besides φ,
depends on three parameters: φc, ξ/D, and gt/gm. Since g∗
is independent of the system size [23,27], we define the EMA
conductivity simply as σ̄ = 	g∗, where 	 is a fourth fitting
parameter which has the dimension of a conductivity.

To find the values of φc, ξ/D, gt/gm, and 	 which best
fit the experimental data, we apply a nonlinear least-squares
algorithm to the numerical solution of Eq. (19). Results of this
procedure applied to Ni-SiO2 granular thick films are shown
in Fig. 3, where the EMA conductivity (solid lines) is fitted to
the room-temperature conductivity data of Ni-SiO2 taken from
Refs. [1,14] (open circles). The fitted percolation threshold for
the case of Fig. 3(a), φc � 0.52, coincides with the value ex-
tracted in Ref. [14] from a fit with Eq. (1). This correspondence
is not surprising because our EMA model has been constructed
so as to reproduce the power-law behavior (1) with t � 2
in the metallic regime. The value φc � 0.51 extracted from
the data of Ref. [1] indicates that the percolation threshold is
independent of the conditions of the co-sputtering deposition,
while these seem to affect to some extent the conductivity
above φc.

In the φ < φc region, where tunneling dominates, the data
from Ref. [14] are slightly better fitted than those from Ref. [1].
For Ni-SiO2 and other granular metals, the mean size of the
metallic particles decreases as φ is smaller [1], while in our
model we keep D fixed. Hence, the better agreement of EMA
for the case of Ref. [14] could be attributed to a lower rate
of decrease of D than for the film of Ref. [1]. We note
that the resulting ξ/D � 0.045 and ξ/D � 0.052 extracted
respectively from Figs. 3(a) and 3(b) are nevertheless quite
comparable, as also the tunneling to metal conductance ratio
gt/gm which is about ∼10−4 for both materials.

By following the same fitting procedure, we have repro-
duced the conductivity data of several nanogranular films
composed of noble metal [1,15,16,31] or magnetic fillers
[12,32–34] with different dielectric matrices, as shown in
Figs. 4–7. The corresponding fitting parameters are reported
in Table I. Despite the simplicity of Eq. (19), the overall
quality of the fits is remarkable. In particular, EMA captures
well the dielectric regime below φc and the transition to the
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FIG. 3. (Color online) Measured conductivity σ (open circles) as
a function of Ni content for Ni-SiO2 granular films. Data are taken
(a) from Ref. [14] and (b) from Ref. [1]. Solid lines are fitting curves
from solutions of Eq. (19). Dashed lines are least-squares fit results
of the cherry-pit EMA equation of Sec. IV. Values of the fitting
parameters are reported in Table I.

metallic regime in the vicinity of φc. Some deviations from the
experimental data are visible in the large φ region, especially
for Ag-SiO2 in Fig. 4(b), due to the imposed power-law behav-
ior (1) which is expected to be valid only for φ immediately
above φc. Concerning the transition region, we point out that
all films here considered have thicknesses in the micrometer
range, justifying thus the use of the transport exponent value
t = 2 valid for three-dimensional percolating systems. By
using the EMA value t = 1 for the transport exponent, we
obtain that the overall quality of the fits does not change
appreciably: only in the transition region about φc the fitting
curves have occasionally a more abrupt variation, but the fitted
values of φc and ξ/D do not show appreciable variations [35].

From the values of φc reported in Table I we see that
the percolation threshold ranges between 0.3 and 0.62, with
no correlation with the type of insulating phase. This result
confirms earlier observations that the critical volume fraction
depends on the particular combination of metal and insulator
constituting the film [1]. Similarly, also the conductivity step
at about φc, parametrized by gt/gm, does not show any
particular trend. In this respect, we note that depending on the
specific composite gt/gm ranges between ∼10−3 and ∼10−7.
As mentioned previously, we expect gt to be smaller than gm

due to particle interfacial barrier and particle charging and
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FIG. 4. (Color online) Measured conductivity σ (open circles) as
a function of Ag content for (a) Ag-Al2O3 [16], (b) Ag-SiO2 [31], and
(c) Ag-SnO2 [15], granular films. Solid lines are fitting curves from
solutions of Eq. (19). Dashed lines are least-squares fit results of the
cherry-pit EMA equation of Sec. IV. Values of the fitting parameters
are reported in Table I.

Coulomb interaction effects. However, further reduction of
gt can be induced also by nonrandom distributions of metal
particle separations, as reported for example in Ref. [36] where
gaps of the order of one nanometer in the interparticle spacing
have been observed. For a nonzero gap 
, indeed, we can
replace the lowest limit of integration in the second term
of Eq. (11) by D
 = D + 
 [37]. Thus, if we rewrite the
tunneling conductance in (4) as

gt exp

[
−2(r − D)

ξ

]
= g∗

t exp

[
−2(r − D
)

ξ

]
, (20)
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FIG. 5. (Color online) Measured conductivity σ (open circles) as
a function of Au content for (a) Au-Al2O3 [1] and (b) Au-SiO2 [31]
granular films. Solid lines are fitting curves from solutions of Eq. (19).
Dashed lines are least-squares fit results of the cherry-pit EMA
equation of Sec. IV. Values of the fitting parameters are reported
in Table I.

where g∗
t = exp(−2
/ξ ) is a rescaled prefactor, the function

I of Eq. (15) becomes

I ∗ = 8φ

(
D


D

)3{[
1 + ξ

2D


ln

(
g∗

t + Ḡ

Ḡ

)]3

− 1

}
, (21)

which in the dilute limit gives the same asymptotic Ḡ of
Eq. (16) with gt replaced by g∗

t . If we interpret the values
of gt/gm reported in Table I as actually representing g∗

t /gm,
we can easily explain values as small as ∼10−7, as observed
for example for composites with Au. Indeed, even assuming
that gt ∼ gm, from g∗

t /gm ∼ exp(−2
/ξ ) ∼ 10−7 we get

 ∼ 0.8 nm for tunneling decay lengths of about 0.1 nm.

Turning to the dielectric regime of σ identified by the hump
at φ < φc in Figs. 3–7, we note that the tunneling decay length
for a rectangular barrier is ξ = �/

√
2mϕ, where m is the

electron mass and ϕ is the tunnel barrier height. We estimate ϕ

as the difference between the work function of the metal and
the electron affinity of the dielectric. Since the work function
for the metals considered here ranges from about 4.5 eV (Fe)
to about 5.4 eV (Au) [38], while the electron affinities for
Al2O3 and SiO2 are respectively ∼1.35 eV and ∼1 eV [39],
we obtain that the tunneling decay length is ξ � 0.1 nm for
the composites with Al2O3 and SiO2. As the fitted values of
ξ/D range from 0.03 to about 0.1 (see Table I), we infer that
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FIG. 6. (Color online) Measured conductivity σ (open circles) as
a function of Fe content for (a) Fe-Al2O3 [32] and (b) Fe-SiO2 [12]
granular films. Solid lines are fitting curves from solutions of Eq. (19).
Dashed lines are least-squares fit results of the cherry-pit EMA
equation of Sec. IV. Values of the fitting parameters are reported
in Table I.

for this class of composites the mean size of metal particles is
comprised between D ∼ 1 nm and D ∼ 3 nm. This estimate is
in fair accord with the observed particle sizes in these systems,
as shown in Table II where we compare our results of D with
measured values of the mean particle sizes.

For the Ag-SnO2 system, the large electron affinity of the
oxide semiconductor SnO2 (about 4.3–4.5 eV [40]) together
with the work function ∼4.6 eV for Ag [38] gives ξ �
0.4–0.7 nm. From ξ/D = 0.09 we obtain thus D � 4.4–
7.8 nm, which is comparable with D � 3–7 nm measured
in samples with φ < 0.42 [15]. We note that using the point
particle limit of Eq. (1) (with a3 � 1.41) to find ξ/D from
the conductivity data leads to the slightly larger estimate
ξ/D � 0.13 [15].

IV. EMA CHERRY-PIT MODEL

The EMA model discussed in Sec. III treats the transition
between the metallic and dielectric regimes in a phenomeno-
logical way by introducing a critical volume fraction whose
value is found by fitting the experiments. In the model
illustrated in Fig. 1 we have however assumed that the metallic
particles are allowed to overlap to some extent, and that the
degree of overlapping determines the value of φc. Furthermore,
in deriving Eq. (19) we have considered the metallic particles
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FIG. 7. (Color online) Measured conductivity σ (open circles) as
a function of Co content for (a) Co-Al2On [33] and (b) Co-SiO2 [34]
granular films. Solid lines are fitting curves from solutions of Eq. (19).
Dashed lines are least-squares fit results of the cherry-pit EMA
equation of Sec. IV. Values of the fitting parameters are reported
in Table I.

as completely uncorrelated by setting g2(r) = 1 for all particle
contents lower than φc. To include explicitly particle overlaps
and local correlation, we consider a cherry-pit model in
which each metallic sphere of diameter D is composed
by an impenetrable core of diameter λD surrounded by a
penetrable concentric shell of thickness (1 − λ)D/2 [29].
Any two given metallic spheres can thus overlap as long as
their respective hard cores do not. The parameter λ ranges
between 0 and 1, which defines the limits of fully penetrable
and totally impenetrable spheres, respectively. For equilibrium
distributions of cherry-pit spheres, the critical volume fraction
for percolation of overlapping spheres varies thus between
φc � 0.29 for λ = 0 and φc � 0.64 for λ = 1 [29] (see also
Fig. 8) consistently with the range of φc values we have
obtained in Sec. III.

To apply the general EMA equation (11) to the case
of equilibrium cherry-pit spheres, we note that the radial
distribution function g2(r) is that of hard-core spheres of
diameter λD, ghc

2 (r; λD), as the penetrable shell has no effects
on the equilibrium distribution. Furthermore, to relate the
fractional coverage φ of the cherry-pit spheres with the number
density ρ, we use the approximate but accurate formula [29,41]

φ = 1 − (1 − ηλ3) exp

[
− (1 − λ3)η

(1 − ηλ3)3

]
A(η,λ), (22)

214201-7



CLAUDIO GRIMALDI PHYSICAL REVIEW B 89, 214201 (2014)

TABLE I. Values of φc, ξ/D, gt/gm, and 	 that best fit the measured conductivity data of Refs. [1,12,14–16,31–34] obtained using the
EMA semiphenomenological model of Sec. III (model A) and the EMA cherry-pit model of Sec. IV (model B). The values in parentheses are
the fitted values of the impenetrability parameter λ of the EMA cherry-pit model.

φc ξ/D gt/gm 	 (S/cm)

Material Model A Model B Model A Model B Model A Model B Model A Model B

Ni-SiO2 (Ref. [14]) 0.52 0.49 (0.957) 0.045 0.046 2.91 × 10−4 3.43 × 10−3 5.48 × 103 2.78 × 102

Ni-SiO2 (Ref. [1]) 0.51 0.486 (0.954) 0.052 0.051 7.84 × 10−5 1.49 × 10−3 1.31 × 104 6.18 × 102

Ag-Al2O3 (Ref. [16]) 0.3 0.27 (0.58) 0.046 0.047 2.9 × 10−3 2.69 × 10−3 1.46 × 103 6.94 × 102

Ag-SiO2 (Ref. [31]) 0.52 0.50 (0.96) 0.03 0.032 6.26 × 10−6 4.73 × 10−5 1.75 × 104 9.14 × 102

Ag-SnO2 (Ref. [15]) 0.59 0.53 (0.97) 0.091 0.094 4.60 × 10−4 2.03 × 10−2 2.12 × 105 2.91 × 103

Au-Al2O3 (Ref. [1]) 0.38 0.38 (0.862) 0.043 0.045 1.35 × 10−7 6.11 × 10−7 3.02 × 104 7.23 × 103

Au-SiO2 (Ref. [31]) 0.45 0.42 (0.90) 0.048 0.056 7.74 × 10−7 2.45 × 10−6 5.14 × 104 3.97 × 103

Fe-Al2O3 (Ref. [32]) 0.50 0.48 (0.95) 0.061 0.064 1.29 × 10−4 3.14 × 10−3 1.60 × 104 7.74 × 102

Fe-SiO2 (Ref. [12]) 0.41 0.39 (0.878) 0.078 0.078 2.89 × 10−5 2.04 × 10−4 4.03 × 103 5.19 × 102

Co-Al2On (Ref. [33]) 0.62 0.56 (0.98) 0.026 0.026 1.22 × 10−4 3.96 × 10−3 2.18 × 105 2 × 105

Co-SiO2 (Ref. [34]) 0.56 0.53 (0.97) 0.097 0.095 1.02 × 10−5 2.7 × 10−4 1.50 × 104 4.22 × 102

with

A(η,λ) = exp

{
−η2λ3(λ − 1)

2(1 − ηλ3)3
[(7λ2 + 7λ − 2)

− 2ηλ3(7λ2 − 5λ + 1) + η2λ6(5λ2 − 7λ + 2)]

}
.

(23)

where we have introduced the dimensionless density η =
πD3ρ/6 [42]. Equation (11) reduces in this way to

Z(φ,D)g1/t
m

Ḡ1/t + g
1/t
m

+ 24η

D3

∫ ∞

D

drr2 ghc
2 (r; λD)

(Ḡ/gt )e2(r−D)/ξ + 1
= 2,

(24)

TABLE II. Estimated particle sizes D extracted from the ξ/D

values of Table I using ξ = 0.4–0.7 nm for Ag-SnO2 and ξ = 0.1 nm
for all other cases (see main text). Unless otherwise indicated, the
experimentally determined values of D represent the mean particle
sizes extracted from scanning or transmission electron microscopy in
the dielectric regime (i.e., below the percolation threshold). Missing
entries mean that the corresponding publications do not report
measurements of particle sizes for the granular film considered.

D (nm)

Material Theory Experiments

Ni-SiO2 (Ref. [14]) 2.2
Ni-SiO2 (Ref. [1]) 2 2.5–4 (for 0.3 � φ � 0.55)
Ag-Al2O3 (Ref. [16]) 2.2
Ag-SiO2 (Ref. [31]) 3.3 ∼10 (at φ = 0.38)a

Ag-SnO2 (Ref. [15]) 4.4–7.8 3–7 (for φ < 0.42)
Au-Al2O3 (Ref. [1]) 2.3 1.8–3.5 (for 0.15 � φ � 0.35)
Au-SiO2 (Ref. [31]) 2 2–8(?) (for 0.1 � φ � 0.4)
Fe-Al2O3 (Ref. [32]) 1.7 1–3 (at φ = 0.45)b

Fe-SiO2 (Ref. [12]) 1.3 1–2.5 (for φ � 0.3)
Co-Al2On (Ref. [33]) 3.8
Co-SiO2 (Ref. [34]) 1 3.5–4.8 (for 0.2 � φ � 0.35)b

aOur estimate from Fig. 2(b) of Ref. [31].
bFrom fits of magnetization data.

where we have corrected the first term by using the transport
exponent t , as done in Eq. (19). Since ghc

2 (r; λD) = 0 for
r < λD, the coordination number function for overlapping
spheres in Eq. (24) is an integral between λD and D:

Z(φ,D) = 24η

D3

∫ D

λD

drr2ghc
2 (r; λD). (25)

From the above equation we can already determine how
the percolation threshold φc depends on the impenetrability
parameter λ by using the EMA relation Z(φc,D) = 2 derived
in Sec. II B. To this end, we use in Eq. (25) ghs

2 (r; λD) as
given by the accurate expression for the radial distribution
function of hard spheres derived in Ref. [43], and apply
Eqs. (22) and (23) to find φc from the critical density ηc.
The resulting critical volume fraction compares relatively
well with the numerical calculations for λ � 0.5, as seen in
Fig. 8 where the filled squares are the Monte Carlo results
of Ref. [44]. By comparing the values of φc reported in

0 0.2 0.4 0.6 0.8 1
λ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

φ c

FIG. 8. (Color online) Critical volume fraction φc as a function
of the impenetrability parameter λ of the cherry-pit model. Solid line
is the EMA φc obtained from Z(φc,D) = 2. Filled squares are Monte
Carlo results of Ref. [44] in which Eqs. (22) and (23) are used to
relate φc with the critical density ηc.
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Fig. 8 with those listed in Table I, from which we see that
φc > 0.4 with the exception of Ag-Al2O3, we infer that the
percolation thresholds of nanogranular films are reproduced
by the EMA cherry-pit model with λ � 0.85, which means
that the spheres have generally little overlap. We obtain even
(slightly) smaller overlaps if we compare the experimental
percolation thresholds with the Monte Carlo φc of Fig. 8.

Although we do not expect that the detailed morphology
of real granular metal films is fully reproduced by equilibrium
dispersions of cherry-pit spheres, these seem nevertheless to
capture some critical aspects of the microstructure and its
evolution with φ. We note also that other simple microscopic
descriptions, as for example the equilibrium permeable spheres
model for which expressions of g2(r) and of the volume
fraction exist [45], may equally be used though they are of
less practical implementation.

We proceed to apply the EMA cherry-pit model to the
experimental data of Figs. 3–7 by using ξ/D, gt/gm, 	,
and λ as fitting parameters and t = 2 fixed. We first invert
numerically Eqs. (22) and (23) to extract η from the measured
φ values, and subsequently we solve iteratively Eqs. (24)
and (25) by using the model ghs

2 (r; λD) of Ref. [43]. The
results of nonlinear least-squares fits are shown by dashed
lines in Figs. 3–7, and the values of the fitting parameters that
best reproduce the measured σ are reported in Table I. We see
that the cherry-pit model confirms the results obtained in the
previous section. In particular, the two fitting curves (solid
and dashed lines) are practically indistinguishable in both
the dielectric regime and the transition region about φc, and
very similar values of ξ/D and φc are obtained from the two
methods, as shown in Table I. Furthermore, the quantitative
accord with the experimental data for φ � φc confirms our
assumption that local particle correlations are marginal in
the dielectric regime. For metallic contents well above φc,
the conductivity of cherry-pit model is systematically larger
than that of the semiphenomenological approach of Sec. III
and gives occasionally better fits, as seen in Figs. 3(b), 4(b),
and 6(b). We note however that the radial distribution function
of Ref. [43] becomes inaccurate for packing fractions λ3η

of the hard cores larger than ∼0.5. Assuming for example
λ = 0.95, as is the case of Fe-Al2O3, in terms of the fractional
coverage this limitation translates into questionable results for
φ � 0.6.

V. DISCUSSION AND CONCLUSIONS

The central result of this paper is that the two fundamentally
different transport regimes of percolation and tunneling, which
are simultaneously observed in many conducting nanocompos-
ite films, find a natural explanation within a single theoretical
framework. We have shown that quite general considerations
on the nature of the interparticle electrical connectedness
and on the distribution of the metallic phase are sufficient
to describe quantitatively the dc conductivity σ of several
granular metal films. In particular, the semiphenomenological
EMA equation derived in Sec. III represents a simple, yet
efficient, tool to analyze the φ dependence of σ and to estimate
the values of the microscopic parameters that govern the
observed conductivity behaviors.

In formulating the minimal model of Sec. II, we have
made different assumptions with the intent of keeping the
theory as essential as possible. One such assumption concerns
the direct tunneling decay of Eq. (4) in which we neglect
particle charging and Coulomb interaction effects. As dis-
cussed in Sec. II, these become important as the temperature
is lowered below room temperature and/or as the particle
size decreases [10]. For particle sizes of the order of a
few nanometers, and well below the percolation threshold,
Coulomb effects become relevant also at room temperature,
so that they could modify to some extent the ξ/D values
reported in Table I. A generalization of the present EMA
approach as to include Coulomb gap effects would permit
us to study on equal footing both the concentration and
the temperature dependencies of transport, while these two
are generally treated separately. In this respect, measured σ

dependencies on both concentration and temperature, as those
reported for example in Refs. [1,14,15,34], would find a more
complete, and unified, theoretical understanding.

In Sec. II we have also assumed that the metallic particles
are spherical and of fixed diameter. Although we do not
expect that small deviations from sphericity would have any
important effect, metallic inclusions with high aspect ratios
can change appreciably the location of φc and the low-density
tunneling regime. For example, the tunneling conductivity of
dispersions of rod particles of diameter D and length L 	 D

scales approximately as σ ∝ exp(−D2/ξφL) for isotropic
orientation of rods [20]. The effect of elongated particles,
as those observed in some granular films with magnetic
particles, can nevertheless be investigated by applying EMA
to high aspect-ratio fillers, as done for the tunneling case in
Refs. [26,46].

Concerning the assumption of fixed particle size, we note
that some composite films show a more or less pronounced
reduction of the mean particle size D as φ decreases, as
reported for example in Ref. [1] and in Table II. This effect
can be included in Eq. (11) by considering an explicit φ

dependence of D which simulates the observed one. In
principle, it is possible to consider within EMA also the effect
of particle size polydispersity, although this would require
detailed knowledge of the size distribution and its possible
dependence on φ [47]. In the absence of these informations, the
theoretical estimates of Table II can be tentatively interpreted
in terms of effective sizes Deff of polydisperse particles. It
is not difficult to estimate Deff from the solution of Eq. (14)
for asymptotically small Ḡ, which is given by the last line
of Eq. (16) with D replaced by Deff = 3

√
〈D3〉. Particle size

distributions with long tails for large D may thus have Deff

considerably larger than the mean 〈D〉. We note however that
to coherently describe the effect of particle size polydispersity,
charging and Coulomb interactions should be considered as
well, since these become increasingly important as particle
sizes are smaller.

Finally, we point out that although the cherry-pit model of
Sec. IV includes local correlations induced by the particle hard
cores, it ignores possible long-range correlations and is not
suitable to describe particle clustering or aggregation effects.
Although the granular films here considered do not appear
to show long-range correlations, the general two-site EMA
equation (11) allows us to include at least partially these effects
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through suitable choices of the radial distribution function
g2(r). Aggregation induced by effective particle attractions can
be modeled for example by attractive square-well potentials,
for which approximate expressions for g2(r) are available [48].
In the case of tunneling, the resulting EMA conductance is in
excellent overall agreement with numerical simulations for a
wide range of potential profiles, as shown in Ref. [25]. An-
other possible route to simulate phenomenologically particle
aggregation and clustering is to consider simple square-well
models of g2(r) [25,46], whose values for r lower and larger
than some characteristic correlation distance can be adjusted
to fit the measured conductivity.

We conclude by mentioning that even though we have
formulated the theory to describe granular thick films as
three dimensional systems, it is in principle not difficult
to modify EMA to (quasi-)two-dimensional systems, so to
describe transport in thin granular films as those studied for
example in Refs. [17,18].
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