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Material properties controlled by evolving defect structures, such as mechanical response, often involve
processes spanning many length and time scales which can not be modeled using a single approach. We present
a variety of results that demonstrate the ability of phase field crystal (PFC) models to describe complex defect
evolution phenomena on atomistic length scales and over long, diffusive time scales. Primary emphasis is given
to the unification of conservative and nonconservative dislocation creation mechanisms in three-dimensional
fcc and bcc materials. These include Frank-Read–type glide mechanisms involving closed dislocation loops or
grain boundaries as well as Bardeen-Herring–type climb mechanisms involving precipitates, inclusions, and/or
voids. Both source classes are naturally and simultaneously captured at the atomistic level by PFC descriptions,
with arbitrarily complex defect configurations, types, and environments. An unexpected dipole-to-quadrupole
source transformation is identified, as well as various complex geometrical features of loop nucleation via climb
from spherical particles. Results for the strain required to nucleate a dislocation loop from such a particle
are in agreement with analytic continuum theories. Other basic features of fcc and bcc dislocation structure and
dynamics are also outlined, and initial results for dislocation-stacking fault tetrahedron interactions are presented.
These findings together highlight various capabilities of the PFC approach as a coarse-grained atomistic tool for
the study of three-dimensional crystal plasticity.
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I. INTRODUCTION

The macroscopic mechanical properties of crystals and
polycrystals are primarily consequences of complex collective
interactions between atomic level defects. The characteristic
scales of these interaction processes can span many orders of
magnitude in length and time, presenting major fundamental
challenges to the development of a unified modeling approach.
In particular, line defects or dislocations, which are the
central mediators of plasticity in many systems, can evolve
rapidly via conservative mechanisms (e.g., glide and cross
slip) or relatively slowly via nonconservative mechanisms
mediated by interactions with point defects (e.g., climb).
Characteristic length scales of dislocation structures range
from atomic dimensions to micron level and up for collective,
organized arrays. A complete model of dislocation dynamics
would therefore ideally include the fundamental physics
of dislocation creation, interaction, annihilation/absorption,
etc., via both conservative and nonconservative mechanisms,
accessible across all relevant length and time scales. This is
not feasible with any presently available model. Other classes
of defects (point, planar, and bulk) should also be considered
in a more general model of crystalline materials subjected to
driving forces.

Elements of conservative dislocation processes are often
quite readily modeled at the atomic level using approaches
such as molecular dynamics (MD) [1,2]. These conservative
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mechanisms have also been built into larger length-scale
mesoscopic modeling approaches such as discrete dislocation
dynamics (DDD) [1,3,4] and continuum phase field (PF)
dislocation models [1,5,6]. Basic conservative processes are
generally implemented in DDD with detailed rule-based
formulations that consider some number of the innumerable
possible defect interaction scenarios. PF models avoid this
complexity by treating select dislocation lines as interfaces in
a continuum field description. These interfaces interact and
evolve automatically in response to local driving forces. The
cost is greater computational demand since the PF equations
must be solved throughout the entire system, not only at
localized dislocation positions.

Nonconservative dislocation processes present another set
of challenges to plasticity models, as these motions are medi-
ated by vacancy diffusion and are therefore inherently difficult
to access on conventional atomistic simulation time scales.
Climb becomes relevant and often dominant at high temper-
atures or large vacancy concentrations, and is fundamental
to such phenomena as creep, annealing, recrystallization, and
irradiation damage. Elements of climb have been built into
DDD [7–10] and PF [11,12] models, although this issue is still
in many ways under development. Meaningful coarse-grained
input parameters and their values, for example, which would
ideally be extracted from microscopic simulations, are lacking.

No atomistic modeling approach has yet proven capable of
consistently describing both conservative and nonconservative
dislocation processes over both nanoscales and mesoscales.
In this work, we present results for a method that unifies
both types of dislocation motion on atomistic length scales.
Phase field crystal (PFC) models [13–15] describe diffusive

1098-0121/2014/89(21)/214117(13) 214117-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.214117


BERRY, PROVATAS, ROTTLER, AND SINCLAIR PHYSICAL REVIEW B 89, 214117 (2014)

dynamics in condensed matter systems with atomistic
resolution, and are therefore potentially capable of bridging
the gap between fast glide plasticity and slow climb
plasticity at the nanoscale. Defect superstructures of arbitrary
complexity can be studied, including polycrystals with nearly
any variation/combination of dislocation, grain boundary,
precipitate, and stacking fault configurations, for example.
The ability to naturally describe arbitrary defect structures is a
feature of atomistic approaches that is inherently absent from
mesoscale approaches. The larger length scales described
by DDD and PF models can not currently be reached by
PFC, although one may imagine using PFC simulations to
generate input parameters for such models or numerically
coupling PFC with DDD or PF. Coarse-grained complex
amplitude PFC models also provide an interesting means of
self-consistently reaching larger length scales [16–21].

The goals of this work are to demonstrate that simple
PFC models naturally capture well-established conservative
dislocation creation mechanisms as well as central elements of
the relatively poorly understood nonconservative dislocation
creation mechanisms, which can not be easily studied with
other methods. These goals are part of a larger effort to exploit
the novel features of the PFC approach within traditional areas
of materials science, including crystal plasticity, structural
phase transformations, and microstructure evolution [21–26].
Some initial groundwork covering fundamental dislocation
properties in fcc materials was reported by the present authors
in Ref. [25]. Perfect dislocations and simple grain boundaries
in two-dimensional (2D) triangular and three-dimensional
(3D) bcc crystals have also been examined in various contexts
[14,15,27–38].

The rest of this paper is organized as follows. In Sec. II,
the basic model equations, numerical solution methods, and
strain application procedures are outlined. In Sec. III, some
qualitative and quantitative features of the specific dislocations
relevant to fcc and bcc plasticity are surveyed in the PFC
framework. In Sec. IV, conservative Frank-Read–type dislo-
cation sources in fcc materials are studied in two contexts.
The first considers controlled nucleation of dislocation loop
dipoles, and an alternate mechanism whereby a dipole source
transforms into a quadrupole source is reported. The second
context considers uncontrolled nucleation of partial and perfect
dislocations from grain boundaries in nanopolycrystalline
samples. In Sec. V, nonconservative Bardeen-Herring–type
dislocation sources in bcc materials are studied. The case
of uniform loop nucleation from spherical inclusions or
precipitates is considered. A range of complex nucleation
behaviors caused by nontrivial interactions between interface
structure, strain orientation, and dislocation energetics are
examined. Selected results are compared with earlier analytic
predictions and shown to agree well when the analytic theories
are adapted to the scenario considered in our simulations.
Finally, a brief presentation of stacking fault tetrahedron
(SFT) formation and SFT-dislocation interactions is provided
in Sec. VI.

II. MODEL AND METHODS

The standard PFC free-energy functional, modified to
stabilize fcc stacking faults as described in Ref. [25], is used for

all fcc systems studied in the following sections. It is written
as

F̃ =
∫

d�r
[

1

2
n2(�r) − w

6
n3(�r) + u

12
n4(�r)

]

− 1

2

∫∫
d�r d�r2n(�r)C2(|�r − �r2|)n(�r2), (1)

where F̃ = F/(kBTρ�), ρ� is a constant reference density,
n(�r) = ρ(�r)/ρ� − 1 is the rescaled atomic density field, ρ(�r)
is the unscaled atomic number density field, w and u are
coefficients treated as free parameters to provide additional
model flexibility, and C2(|�r − �r2|) is the two-point direct
correlation function of the fluid, assumed isotropic. The
modified standard PFC kernel [which approximates the full
C2(|�r − �r2|)] after Fourier transformation reads as

Ĉ2(k) = −r + 1 − Bx(1 − k̃2)2 − H0e
−(k−k0)2/(2α2

0 ), (2)

where r is a constant proportional to temperature, Bx is
a constant proportional to the solid-phase elastic moduli,
k̃ = k/(2π ) is the normalized wave number, H0 is a constant
related to stacking fault energy γISF, k0 = 2π

√
41/12/a, a

is the equilibrium lattice constant, and α0 is an additional
constant related to γISF. n(�r) will be allowed to assume nonzero
average values n0, and it will be implied that w = 0 and u = 3
for all fcc simulations.

The structural or XPFC free-energy functional class
[22–24] is used for all bcc systems studied in the following
sections. It is written as Eq. (1) with the Fourier transformed
kernel

Ĉ2(k)i = e−(k−ki )2/(2α2
i )e−σ 2k2

i /(2ρiβi ), (3)

where i denotes a family of lattice planes at wave number ki ,
and σ is a temperature parameter. The constants αi , ρi , and
βi are the Gaussian width (which sets the elastic constants),
planar atomic density, and number of planes, respectively,
associated with the ith family of lattice planes. The envelope
of all selected Gaussians i composes the final Ĉ2(k). Only
one reflection at k1 = 2

√
2π/a where a = √

2/3 will be used
here, as this is all that is necessary to produce equilibrium bcc
structures.

Two dynamic equations for n(�r) will be considered. The
first is a purely diffusive Model B form

∂n(�r)

∂t
= ∇2 δF̃

δn(�r)
, (4)

where t is dimensionless time. The second equation of motion
introduces a faster inertial, quasiphonon dynamic component
in addition to diffusive dynamics [28]

∂2n(�r)

∂t2
+ β

∂n(�r)

∂t
= α2∇2 δF̃

δn(�r)
, (5)

where α and β are constants related to sound speed and
damping rate, respectively. All simulations were performed in
3D using a pseudospectral algorithm with semi-implicit time
stepping and periodic boundary conditions. Deformation was
applied via strain-controlled methods for both simple shear and
uniaxial tension or compression simulations. Constant strain
rates were employed for both deformation types.
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III. SOME FUNDAMENTAL ELEMENTS OF fcc AND bcc
CRYSTAL PLASTICITY

Many aspects of the distinct plastic response of fcc and bcc
crystals can be understood in terms of structural and dynamic
differences between the dominant carriers of plasticity in
either lattice. The primary dislocation type in fcc materials
is that with total Burgers vector a/2〈110〉, dissociated into
two a/6〈112〉 Shockley partials connected by a stacking
fault. Such dissociated dislocations provide fcc crystals with
12 active primary slip systems, all of type {111}〈110〉. The
very small Peierls stress of the Shockley partials can explain
the low yield stress of fcc materials, and the subsequent
formation of large numbers of dislocation junctions and
stacking faults can explain their excellent work-hardening
properties, ductility, and the commonly observed formation
of mesoscale dislocation patterns [39].

The primary dislocation type in bcc materials is that with
Burgers vector a/2〈111〉. This dislocation is glissile within 48
potential primary slip systems of type {110}〈111〉, {112}〈111〉,
or {123}〈111〉. The nonplanar core structure of the a/2〈111〉
screw dislocation in particular at low temperatures leads to
a much smaller glide mobility than that in edge orientation.
The a/2〈111〉 screw dislocation therefore controls plastic flow
in bcc crystals at T � 0.15Tmelt. Its high Peierls stress can
explain the large yield and flow stresses of bcc crystals, as
well as the absence of mesoscale dislocation patterning at low
to moderate stresses [39].

It can therefore be argued that these dislocation types
must be stabilized and their basic core features reproduced
if one wishes to perform atomistic PFC simulations of
fcc and bcc plasticity. We have found that it is indeed
possible to stabilize both of these dislocation types within
a given PFC model. Dissociated a/2〈110〉 fcc dislocations
were previously studied by the current authors [25]. With
proper selection of the model parameters, static properties
(dissociation width, Peierls strains, etc.) and glide dynamics
of these dislocations were found to be in good agreement with
other atomistic calculations and continuum elastic theories.
For the primary bcc a/2〈111〉 screw dislocation, we have found
that the PFC model used in this study reproduces the same
nondegenerate nonpolarized core configuration obtained from
density functional theory calculations and MD simulations
employing various empirical potentials [40] (see Fig. 1). The
central core features of the primary dislocation types in both
fcc and bcc crystals can therefore be well captured by PFC
models. This level of accuracy in terms of core structure
should not always be expected, especially for more complex,
directionally bonded materials such as diamond cubic Si or Ge
crystals. Nonetheless, when sufficient accuracy is achieved,
we find as a general consequence that the correct slip systems
naturally emerge during simulations of plastic flow, and that
atomistically detailed plasticity mechanisms also often follow.

For example, we have confirmed that the glide mobility
of the bcc a/2〈111〉 dislocation in screw orientation is
significantly lower than that in edge orientation, as expected
based on the nonplanar screw core structure. This mobility
difference was inferred from zero-strain simulations of glide-
mediated dipole annihilation, in which it was observed that
screw dislocation dipoles take roughly one to two orders of

◦•
[112̄]

[1̄10]

[111]

FIG. 1. (Color online) The bcc a/2〈111〉 screw dislocation from
a single-peaked XPFC model. A cross section of n(�r) is shown on
the left, and the differential displacement map [41] around the core
is shown on the right. Results were generated using Eqs. (1), (3), and
(4) with model parameters w = 1.4, u = 1, n0 = 0.05, α1 = 0.25,
σ = 0.12, ρ1 = 1, and β1 = 8. Nearly identical results are obtained
at α1 = 1 and 2.

magnitude longer to annihilate than edge dipoles at equal initial
separations.

These same basic structural and energetic features also
influence climb processes. For example, compressive and
tensile strains along the axis of the dislocation Burgers vector
induce the correct positive and negative climb directions in
PFC simulations. Jogged dislocations subjected to the same
type of strain climb in the expected fashion in which jogs
diffusively translate along the line direction. The result is a net
motion in the climb direction perpendicular to the glide plane
(see Supplemental Material [42] for animations). If no jogs
are present, climb proceeds by a more uniform simultaneous
translation of larger line segments or of the entire line, although
the energy barrier for this type of climb is larger than that of
diffusive jog translation.

As shown previously for 2D triangular crystals in PFC
[27,28], we find in 3D that uniform climb velocities of
undissociated dislocations in the limit of low dislocation
density (ρd � 1013 m−2) follow a power law as a function
of applied stress, v ∼ σm, with m ∼ 1 for both dynamic
equations (4) and (5). Apparent exponents m as large as 4 can
appear at higher dislocation densities. Qualitatively similar
behaviors as a function of ρd have been observed in kinetic
Monte Carlo simulations [43].

We also note that screw dislocation cross slip readily occurs
in 3D PFC simulations, and we find that the cross-slip barrier
for dissociated fcc screw dislocations increases strongly with
dissociation width and therefore with inverse stacking fault
energy (see Supplemental Material [42] for animations). Such
results, although far from a complete survey, demonstrate that
relatively simple PFC models are capable of capturing many
of the central atomistic features of plasticity in fcc and bcc
materials over diffusive time scales.

IV. FRANK-READ–TYPE GLIDE SOURCES

The Frank-Read dislocation multiplication mechanism is
an important element of crystal plasticity that has been widely
observed and studied both experimentally and via computer
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simulations [44–47]. In the most commonly discussed sce-
nario, a dislocation line pinned at two points within its glide
plane bows out under stress until it meets itself on the opposite
side of the pinning points. The contacting segments annihilate,
resulting in a single loop and the original pinned segment,
which then repeats the process if sufficient strain energy is
still available. The many possible manifestations of this basic
mechanism, including pinning of existing dislocation lines
and emission of new line segments from grain boundaries
(which act as pinning centers), contribute centrally to the
large increases in dislocation density that occur during plastic
deformation.

Although Frank-Read mechanisms occur via conservative
dislocation motion and are therefore readily studied with
conventional MD [44] and/or mesoscale continuum methods
[46,47], we consider them here because of their general
importance in plastic deformation processes, to demonstrate
that the basic physics of such sources is well captured by PFC
models. Nonconservative dislocation creation methods are
separately considered in the following section. Unless noted
otherwise, all simulations presented in this section describe
fcc materials and employ Eqs. (1), (2), and (5).

A. Prismatic sources

We first examine a Frank-Read dipole source consisting of
a single rectangular, prismatic edge dislocation loop in which
the a/2〈110〉 lines along the [11̄1] direction are relatively
immobile (sessile), while the dissociated lines along the [1̄12]
direction are mobile (glissile) [see Figs. 2 and 3(a)]. The [11̄1]
lines act as pinning points, such that under applied shear strain
εzy the glissile lines bow out via glide in opposite directions.
This setup was used in the MD simulations of Ref. [44]. Such
a loop could in principle be formed, for example, by vacancy
agglomeration following plastic deformation or irradiation, but
it more generally provides a convenient source configuration
that is entirely analogous to that of a longer jogged or locally
pinned line segment.

To allow application of simple shear strain εzy, the standard
penalty function approach was used [28]. The penalty function
is written as an additional free-energy term of the form
M(�r)[n(�r) − np(�r)]2, where M(�r) controls the strength of the
penalty field and np(�r) is the configuration of the penalty field.

Quasi-Liquid Penalty

L
Lp

L
Lp

FCC Penalty FCC Bulk

Lx

Lz

x = [1̄12]

y = [110]

z = [11̄1]

FIG. 2. (Color online) Schematic of the simulation setup used for
Frank-Read source operation.

)b()a(

zy

zy

x = [1̄12]

y = [110]

z = [11̄1]

SF

x = [1̄12]

y = [110]

(c) (d)

(e) (f)

FIG. 3. (Color online) Operation of a Frank-Read dipole source
under shear strain εzy. (a) A dislocation loop composed of four
a/2〈110〉 edge dislocations. The two mobile horizontal segments
are dissociated in the (11̄1) plane, the two vertical segments are
relatively immobile. (b) 3D view of the source near pinch off at
560t . (c), (d), (e), and (f) show xy-plane views at t = 375, 500, 595,
and 625, respectively. For analysis and visualization purposes, local
peaks in n(�r), which represent the most probable atomic positions,
are taken to correspond to atomic sites. Density peaks with hcp
coordination (stacking faults) are shown in orange (light) or red
(dark) depending on position along the out-of-plane z axis. Those
with irregular coordination (dislocation core) are shown in gray. See
Supplemental Material [42] for the associated animation.

We specify

M(�r),np(�r) =
⎧⎨
⎩

M�,n0 if z ∈ L�,

MP ,n
EQ
fcc (�r) if z ∈ LP ,

0,0 otherwise,
(6)

where M�, MP , L�, and LP are constants (see Fig. 2) and
n

EQ
fcc (�r) is the commensurate equilibrium fcc n(�r). The resulting

system is a thin infinite slab of fcc bounded in the z direction
by a homogeneous quasiliquid phase of width 2L�. The
quasiliquid layer simply circumvents any unphysical strains
that would otherwise be caused by the large shear disregistry
at the periodic z boundary. Simple shear strain εzy can then be
applied to the crystalline slab by translating the upper pinned
region Lp along +�y and the lower pinned region Lp along
−�y at some constant velocity. When Eq. (5) is employed to
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(a)

x = [1̄12]

y = [110] (b)

(c) (d)

(e)

(f) (g) (h)

FIG. 4. (Color online) Operation of a Frank-Read dipole-to-
quadrupole source. The initial loop is shorter in the x direction and
longer in the z direction than that of Fig. 3. (a), (b), (c), (d), (e), (f),
and (g) show xy-plane views at t = 450, 520, 580, 680, 750, 840, and
1030, respectively. A 3D view at t = 750 is also shown in (e). The
source emits two initial loops near 520t , then reorients and converts
into a quadrupole source before being restored to a closed-loop
form near 1030t . Density peaks with hcp coordination (stacking
faults) are shown in white, yellow (light gray), orange (gray), or
red-orange (dark gray), depending on position along the out-of-plane
z axis. Those with irregular coordination (dislocation cores) are
shown in gray. (h) An unzipped stacking fault tetrahedron acting
as a Frank-Read–type source. Density peaks with hcp coordination
(stacking faults) are shown in red (dark gray), those with irregular
coordination (dislocation cores) are shown in gray. See Supplemental
Material [42] for the associated animations.

allow rapid elastic relaxations, a nearly uniform shear profile
is produced across the sample.

Various initial loop sizes and stacking fault energies were
considered, with two representative results shown in Figs. 3
and 4 (see Supplemental Material [42] for the associated
animations). In both cases, model parameters n0 = −0.48,
r = −0.63, Bx = 1, α0 = 1/2, k0 = 6.2653, H0 = 0.025,
β = 0.01, and α = 1 were used. Additional simulation details
are given here [48]. To estimate simulation time scales,
we match the numerically measured fcc vacancy diffusion
constant Dv 	 1.0a2/t to that of Cu at 1063 ◦C (Dv 	
10−13 m2/s, a 	 0.36 nm) [27]. The time unit t is then found
to correspond to ∼1.3 μs, and the shear rate 0.000235/t

converts to ∼180/s, which is roughly five orders of magnitude
lower than that of a typical and comparable MD simulation
(applying 1.8% strain in 1 ns produces a rate of 1.8 × 107/s
or see, e.g., Ref. [49]). Other fcc shear rates used in this study
range from ∼10/s–800/s.

The operation of the dipole source shown in Fig. 3
closely follows the basic Frank-Read mechanism, with slight
asymmetries in loop shape caused by image stresses in the z

direction and interactions between opposing loops. Also, the
[11̄1] line segments, though sessile, do not respond purely
rigidly to local stresses, they are not perfectly pinned to their
initial lattice locations. As the shear strain εzy increases and
the Frank-Read loops begin to bow out, the growing forces
exerted on the [11̄1] segments stretch these lines such that their
angle from vertical θ becomes larger than that of the applied
shear θA = tan εzy . These small strain relief mechanisms also
contribute to the asymmetric shape of the growing loops, and
can lead to more complex effects when the prismatic loop
dimensions and strain rate are varied.

One such effect is shown in Fig. 4. Here, the initial [1̄12]
line segments are shorter and the initial [11̄1] segments are
longer. When the [11̄1] segments stretch under the influence
of the loop bow-out stresses, they begin to approach alignment
with the nearest of the four {111} planes. They are then
able to lower their energy by taking a periodically jogged
configuration with dissociated glissile segments in adjacent
{111} planes, each connected by a single jog where the
lines are locally constricted. After the maximum bow-out
stress has been overcome and the growing loops become
nearly circular [Fig. 4(a)], the now jogged pinning lines
begin to hinge back toward vertical. Rather than returning to
their original undissociated, unjogged configuration, the most
highly strained segments near the loop ends cross slip at their
constricted jog sites onto the (11̄1) glide plane normal to the
z direction. These segments can not easily cross slip back to
the original configuration, they instead begin to bow out on
the (11̄1) plane with the same jog sites now serving as pinning
points for the new sources.

Depending on Lz and ε̇zy , the number of new intermediate
loops nucleated can vary. In the case of Fig. 4, two additional
loops are formed and the dipole is converted into a quadrupole.
The stresses exerted by the new loops cause the [11̄1] lines
to reorient such that all segment pairs align with the shear
direction and the bow-out direction becomes perpendicular
to the shear direction [Figs. 4(d) and 4(e)[. Once all four
loops are pinched off, the initial loop configuration is restored
[Fig. 4(g)].

If the maximum or activation stress of the initial source
is low, then the [11̄1] segments may never reach the angle
required to attain a stepped configuration or may attain a
stepped configuration with only very short glissile segments. In
such a case, no additional sources are formed. As the maximum
or activation stress of the initial source increases, the length of
the resulting glissile segments in the stepped configuration also
increases. If the length of any of these segments becomes large
enough to activate its operation as a new source for a given
stress, then it will bow out and begin forming a new loop.
This type of transformation is therefore most likely to occur
when such sources have a large activation stress, which for
Frank-Read [45] sources ∼1/Lx , corresponding to small Lx .

214117-5



BERRY, PROVATAS, ROTTLER, AND SINCLAIR PHYSICAL REVIEW B 89, 214117 (2014)

Greater potential segmentation lengths (large Lz) also favor
this behavior. These expectations are in agreement with our
results.

Such a transformation from dipole to multidipole also
requires that the pinning points have some small, nonzero
mobility, i.e., the pinning is not absolute. This condition is
perhaps more applicable to soft crystalline materials such as
colloidal crystals than to metals, for example, but similar
imperfect pinning behaviors have been reported in MD and
atomistic quasicontinuum studies of metallic crystals [50–52].
Such transformations may therefore be observable in MD
simulations. Analogous situations should also become more
probable, for example, following a rapid quench or at high
temperatures where vacancy concentrations are large and
climb is active.

The general behaviors discussed in these two examples
exhibit some dependence on stacking fault energy γISF. When
γISF is small, the strain required to operate the source tends
to be lowest, and the pinning segments remain relatively
immobile throughout operation. When γISF is large, the strain
required to operate the source increases, and the forces exerted
on the pinning segments by the bowing loops increase such
that the pinning segments may be dragged through the crystal,
effectively destroying the source.

It was also observed that stacking fault tetrahedra, created
under low γISF conditions, can act somewhat similarly as
multipolar Frank-Read–type sources at high strains [42]. The
a/6〈011〉 Lomer-Cottrell (LC) stair-rod junctions that make up
the SFT edges are sessile, but under sufficient stress they may
unzip and emit a/6〈112〉 Shockley partials that are pinned to
neighboring vertices of the tetrahedron. The emitted segments
bow out and can eventually form new, freely growing loops
[see Fig. 4(h)]. The observed critical strain for unzipping and
activation of the leading Shockley partial bow out (∼μ/25
where μ is the shear modulus) was found to decrease as either
γISF or the SFT size is increased.

B. Grain-boundary sources

Dislocations can also be emitted from or absorbed into
grain boundaries during plastic deformation. The initiation of
this type of nucleation process is more structurally complex
than those already discussed due to the disordered nature of
high-angle grain boundaries, but the basic elements of the
Frank-Read mechanism are still present. If stress builds up
near or within a grain boundary, it may be relieved by grain-
boundary sliding or migration, for example, but in many cases
strain is most readily relieved by spontaneously nucleating
new dislocation lines which are then translated into the grain
interior. These lines may begin as small half-loops pinned to
the boundary at either end, which then bow out much like a
Frank-Read source. Rather than sweeping around the pinning
points and pinching off a complete loop (the grain boundary
generally prevents this), the pinning points are more likely to
migrate along the grain boundary as the half-loop grows.

Examples of such grain-boundary nucleation processes
in fcc nanopolycrystals are shown in Figs. 5(a)–5(d) (see
Supplemental Material [42] for the associated animation).
This system has the same model parameters as those of
Figs. 3 and 4, and the grain structures were formed using
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FIG. 5. (Color online) Emission of dissociated a/2〈110〉 dis-
locations and a/6〈121〉 partials from grain boundaries. (a)–(d)
Nanopolycrystalline fcc sample with average grain size d̄ 	 46a

under tensile strain εzz = 0.082, 0.086, 0.092, and 0.1, respectively.
Both full dislocations [leading and trailing partials with stacking
faults, two of which are tracked by green (light gray) arrows] and
leading partials with stacking faults are emitted from or absorbed
into grain boundaries, beginning near the yield point. Density peaks
with hcp (stacking faults), irregular (dislocation cores), and fcc
coordination are shown in red (dark gray), gray, and green (light
gray), respectively. (e) Stress-strain curves for fcc polycrystals with
various average grain sizes d̄ and applied strain rates (constant strain
rate tensile deformation). Model parameters are the same as those
of Figs. 3 and 4. (f) As (e), but for bcc polycrystals with model
parameters identical to those reported in Sec. V, except α1 = 2,
and Eq. 5 was employed with β = 0.01, α = 1. See Supplemental
Material [42] for the associated animations.

Voronoi tessellation. Tensile strain εzz was then applied at
a constant rate under constant volume conditions, such that
εxx = εyy = (εzz + 1)−1/2 − 1. Shear strain εzy was found to

214117-6



PHASE FIELD CRYSTAL MODELING AS A UNIFIED . . . PHYSICAL REVIEW B 89, 214117 (2014)

produce similar results. As a point of reference, the simulation
shown, which contains ∼1.15 × 106 atoms or density peaks,
required 57 hours of wall-clock time to execute 2.4 × 104 time
steps (or ∼3 ms estimated duration for Cu at 1063 ◦C) using
48 CPU cores. A direct comparison with LAMMPS benchmark
data for Cu with an EAM potential [53] indicates that the same
computation of ∼1.15 × 106 atoms for 3 ms on 48 CPU cores
would require ∼1.25 × 108 h of wall-clock time, more than
six orders of magnitude greater than the PFC time.

Examples of the spontaneous nucleation of complete
dissociated a/2〈110〉 dislocations are highlighted with green
arrows in Fig. 5. These half-loops traverse the grain and are
eventually absorbed into the opposite grain boundary as no
fixed obstacles are present. Numerous examples of leading
partial nucleation and heavy faulting are also apparent. Each
grain has four available {111} planes in which the partials may
glide, resulting in faulting in some or all of these planes
within a given grain. The complex interactions of the various
partials and stacking faults lead to varying intragrain textures
and structures with results very similar to those produced by
MD simulations and consistent with experimental observations
[54,55].

The stress-strain curves shown in Fig. 5(e) also confirm this
qualitative agreement. Stresses σij were periodically quantified
by measuring the rate of change in average free energy of an
instantaneous n(�r) configuration as the appropriate deforma-
tion is statically applied. For example, σzz was measured by
varying the grid spacing in the z direction and quantifying
σzz = δF̄ /δεzz in the small strain limit every 10 time steps.
Upper and lower yield points are observed for fcc systems
with both yield stresses decreasing with decreasing rate,
as observed in MD studies [54]. The upper yield point is
associated with initiation of plastic flow/dislocation nucleation
within the initial clean grains, while the lower yield point is
associated with steady-state dislocation and grain-boundary
driven plasticity within the resulting dislocated systems.
Larger grain sizes produce higher yield points, indicating that
these systems are in the reverse Hall-Petch regime [56]. This
dominance of dislocation nucleation, glide, and annihilation,
and a lack of visible pileups suggests that this reverse Hall-
Petch behavior is associated with an absence of pileup-induced
hardening at these small grain sizes. Other mechanisms such as
grain-boundary sliding and dislocation source starvation may
contribute to this behavior as well, but we have not quantified
the contributions of such effects. We only note that they are
visually less evident than the described dislocation activity.

Analogous simulations of bcc polycrystals produced the
results shown in Fig. 5(f) (see Supplemental Material [42]
for the associated animation). A simpler yielding behavior
is observed in this case, as the bcc nanopolycrystals within
this parameter range deform plastically via grain-boundary
migration. Very little dislocation nucleation occurs, leaving
essentially a network of sliding and creeping grain boundaries.
Grain-boundary mechanisms therefore appear to be entirely
responsible for the inverse Hall-Petch behavior in these sys-
tems. Such behavior is consistent with intermediate- and high-
temperature experiments on nanopolycrystalline bcc metals
in which grain-boundary mechanisms are found to dominate
plasticity [55]. The greater dependence of bcc stress-strain
behavior on strain rate also indicates a larger diffusive creep

component than in fcc. This is in agreement with general
observations of higher creep rates in bcc materials, an effect
ascribed to the higher self-diffusivity of non-close-packed
structures [57]. These simulations of fcc and bcc polycrystals
demonstrate that the qualitative features of conservative
dislocation emission from grain boundaries and of overall
stress-strain response in elastic and plastic regimes can be
well captured by PFC models.

V. BARDEEN-HERRING–TYPE CLIMB SOURCES

Climb-mediated or Bardeen-Herring–type sources can be-
come active at high temperatures or following rapid quenches
when the excess vacancy concentration is large. The basic
principles are in many ways analogous to those of Frank-Read
sources, except that the dislocation motion is mediated by
vacancy diffusion rather than by glide. Nonetheless, such
sources are not as well understood as Frank-Read sources,
at least partly because they are not easily modeled at the
atomistic level using conventional approaches, and because
mesoscale models must account for the often complex nature
of vacancy diffusion around dislocation cores and among
other heterogeneous strain fields. We show here that PFC
simulations permit the study of such sources with atomistic
resolution, and reveal a range of complex nucleation behaviors
caused by nontrivial interactions between interface structure,
strain orientation, and dislocation energetics.

A. Critical strain for loop nucleation

The specific phenomenon considered in this section is
nucleation of dislocation loops from spherical objects such as
precipitates, inclusions, or voids in bcc crystals under uniaxial
tension or compression εii . The case of loop nucleation and co-
herency loss at precipitates has been studied in early theoretical
and experimental work [58–61], as precipitate coherency can
have a significant impact on the mechanical properties of metal
alloys. Concentric dislocation loops centered on precipitates or
impurities have also been observed in various metals [62–66].
These may be formed by Bardeen-Herring–type mechanisms
similar to those described here. To our knowledge, this problem
has not been examined via numerical simulations nor at the
atomistic level due to the long, diffusive time scales involved.

As strain is applied to a system containing a spherical
precipitate, the free energy eventually becomes higher than that
of the same system with a dislocation loop that is able to grow
and relieve strain energy. An energy barrier for the nucleation
of such a loop will generally exist such that its appearance
in a dynamic simulation may be delayed to higher strains.
Nonetheless, a loop eventually appears at the sphere-matrix
interface, and when the applied strain is purely uniaxial,
the nucleation and growth of the loop is largely mediated
by climb. Other strain types can lead to different, relatively
well-characterized conservative loop formation processes such
as prismatic punching [67–69].

In a linear elastic isotropic continuum, the critical strain ε∗
ii

at which loop nucleation becomes favorable is approximately

ε∗
ii = b

8π (1 − ν)
(

BS

BM
− 1

)
R0

[
ln

8R0

b
+ 2ν − 1

4(1 − ν)

]
, (7)
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where b is the magnitude of the dislocation Burgers vector, ν

is the Poisson’s ratio of the matrix, BS and BM are the bulk
moduli of the sphere and matrix phases, respectively, and R0

is the sphere radius [58,61]. We note that anisotropy may play
a role in the bcc system studied here.

Homogeneous spherical inclusions were introduced into the
present simulations by adding a uniform penalty function over
some predefined spherical volume in the center of a simulation
cell with initially perfect bcc crystal structure (see Fig. 7).
The resulting spherical body has a larger elastic modulus than
that of the bulk crystal, but since n(�r) within the sphere is
uniform rather than periodic, the issue of coherent versus
incoherent interface structure is not relevant. After the system
was equilibrated, uniaxial strain εii was applied at a constant
rate by uniformly increasing or decreasing the numerical grid
spacing along one axis of the periodic simulation cell by a
small amount at every time step.

Equations (1), (3), and (4) were employed in all simulations
discussed in this section. Parameter values used were w = 1.4,
u = 1, n0 = 0, α1 = 1, σ = 0.1, ρ1 = 1, and β1 = 8. Other
simulation details are given here [70]. Following the procedure
used for fcc simulations, if we match the numerically measured
bcc vacancy diffusion constant Dv 	 1.5a2/t to that of
vanadium at 1842 ◦C (Dv 	 1.36 × 10−13 m2/s, a 	 0.302
nm), then the time unit t is found to correspond to ∼1 μs.
The range of shear rates used in bcc simulations then converts
to ∼20/s–2500/s, values again roughly four to six orders of
magnitude lower than those of typical and comparable MD
simulations.

Compiled results for the critical nucleation strain ε∗
ii at all

sphere sizes and strain orientations are shown in Fig. 6. The
agreement between the low strain rate results and the static
energy minimization results indicates that any rate dependence
is minimal at the slower rate considered. The general trend is
a decrease in ε∗

ii as R0 increases. The form of the decrease is
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FIG. 6. (Color online) Critical strain ε∗
ii for Bardeen-Herring

climb source activation vs sphere radius R0. The points represent
simulation data at different effective strain rates, and the lines are
predictions of the theory of Brown et al. [58], without and with
a finite minimum critical strain. The fits employ fixed parameters
b = 1/

√
2 and ν = 1

3 , and adjustable parameters εmin
ii and BS/BM ,

which are in all cases close to 0.016 and 4, respectively.

well described by Eq. (7) after an additional constant strain
εmin
ii is added to the right-hand side. This constant is discussed

further in the following paragraph. The adjustable parameters
in the fits shown are therefore εmin

ii and BS , as there are some
ambiguities in the effective value of the bulk modulus of the
sphere as modeled. Nonetheless, the fits are quite good for
BS/BM 	 4, which seems to be a reasonable estimate of the
ratio produced by our simulations.

It is not conclusive whether ε∗
ii will continue to slowly

decrease as R0 becomes very large or whether it levels off to
some minimum value. Our expectation is that ε∗

ii will plateau
in the PFC simulations due to finite-size effects as well as
the existence of a threshold Eckhaus-type strain for activation
of the wavelength selection or climb “instability” [71]. Both
of these effects are driven by lattice periodicity. An integer
number of unit cells must fit into the simulation box, such
that the energy of a perfect crystal will not be reduced by the
addition or removal of a plane of atoms or density peaks until
εii > 1/(2Ni), where Ni is the number of unit cells in the i

direction. Furthermore, there will be an energy barrier for this

(a) (b) (c)

xx

— x = [11̄1]

y = [1̄12]

z = [110]

(d) (e) (f)

FIG. 7. (Color online) Operation of a Bardeen-Herring–type
spherical climb source with R0 = 11.3a in a bcc crystal under uniaxial
compression εxx. Time evolution shown at (a) t = 110, (b) t = 126,
(c) t = 135, (d) t = 145, (e) t = 160, and (f) t = 180. Only density
peaks with irregular coordination (interface and dislocation core sites)
are displayed. Those at the sphere-matrix interface are shown in gray
(dark), those inside the dislocation core are shown in blue-green
(light) depending on position along the y axis. See Supplemental
Material [42] for the associated animation.
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removal process associated with an Eckhaus-type instability
strain, which quantifies the strain at which this barrier goes
to zero [71]. Thus, without thermal fluctuations we expect to
observe ε∗

ii > 1/(2Ni) 	 0.009 for the system size used in this
study. As the elastic moduli become large, ε∗

ii → 1/(2Ni) since
the perfect crystal Eckhaus strain is roughly proportional to αi .
The single data point at α1 = 1

5 , R0 = 15.8b is consistent with
this expectation.

B. Loop geometry and evolution

The critical strain for nucleation is therefore in general
agreement with continuum elastic predictions, but it is worth-
while to examine the nucleation and growth process in greater
detail. A typical result from the dynamic simulations is shown
in Fig. 7 (see Supplemental Material [42] for the associated
animation). The sphere radius in this case is R0 = 11.3a,
and the strain is compressive along the x axis εxx. A loop
first begins to form at the sphere-matrix interface with a
slightly serpentine shape due to the variations in local line
energy around the surface of the sphere. Essentially, the
nature in which the spherical surface intersects the various
crystallographic planes of the matrix creates a quasi-2D energy
landscape on the spherical surface which the dislocation loop
must navigate to minimize its total energy with the constraint of
fixed total Burgers vector. Certain planes and line directions
will be preferred over others. This effect involves not only
crystallographically dependent dislocation energies, but also
atomic-level core structure effects as well as elastic anisotropy,
which together are beyond the scope of continuum elastic
theories. The impact on initial loop shape tends to be small for
small R0 but increases considerably for larger R0 values, as
will be shown.

The initial loop nucleation and its subsequent growth both
require vacancy diffusion to or away from the surface of the
sphere. In the PFC approach, this process is mediated by local
diffusive modes of the density wave amplitudes. After the
loop detaches from the sphere, its shape continues to evolve as
the effective local energy landscape changes with loop radius.
Nonplanar, noncircular shapes are common as the competition
between minimum static energy and lowest-energy pathway
to continued growth can be delicate and nontrivial. This is
somewhat analogous to the cross slip of dissociated screw
dislocations, during which local segments must constrict at
large energy cost to permit cross slip into the next local energy
minimum. Any instantaneous configuration may not be the
lowest-energy static configuration for the given loop radius,
but it should facilitate evolution toward an even lower-energy
state with larger radius.

A more complex loop nucleation process is shown in Fig. 8
(see Supplemental Material [42] for the associated animation).
The only difference from Fig. 7 is the increased sphere size of
R0 = 28.3a. The result is a much more pronounced serpentine
shape due to the larger areas on the surface of the sphere
that nearly coincide with low-energy lattice planes of the
matrix. Within the (110) plane, for example, the preferred
line direction for the nucleated a/2[11̄1] dislocation is along
the nearest 〈001〉 vector rather than the [1̄12] vector normal to
the strain axis. The dislocation therefore forms with mixed
edge-screw character along the [001] direction within the

xx
— x = [11̄1]

y = [1̄12]

z = [110]

(a) (b)

(c) (d)

FIG. 8. (Color online) Operation of a Bardeen-Herring–type
spherical climb source with R0 = 28.3a in a bcc crystal under uniaxial
compression εxx. Time evolution shown at (a) t = 110, (b) t = 138,
(c) t = 150, and (d) t = 162. Only density peaks with irregular
coordination (interface and dislocation core sites) are displayed.
Those at the sphere-matrix interface are shown in gray (dark), those
inside the dislocation core are shown in blue-green (light) depending
on position along the y axis. See Supplemental Material [42] for the
associated animation.

uppermost (110) plane, for example, taking the loop locally
out of alignment with the strain-normal (11̄1) plane. The
line must then wind back toward the strain-normal plane in
the areas where it curves out of the top and bottom (110)
planes.

The same arguments hold as the line crosses through the
other intersecting {110} planes. The a/2[11̄1](011) segments,
for example, prefer alignment with the [1̄00] direction. The
a/2[11̄1](1̄12) segments on the other hand prefer alignment
with the [110] direction (pure edge character). Thus, a
serpentine winding pattern is produced as a result of the
dynamic competition between loop energy minimization,
which tends to promote a certain degree of winding, and
strain relief maximization, which tends to suppress wind-
ing in favor of maximizing the outward growth (climb)
velocity.

Detachment and growth away from the sphere occur first
in regions that do not align with any low-energy dislocation
slip planes. Segments in low-energy {110} planes are observed
to detach last, as these have the lowest local energy and the
highest barrier for out-of-plane motion. Terrace sites at the
edges of faceted low-energy planes in particular appear to
have the maximum detachment barrier. The extra half-loops
protruding from the sphere in Fig. 8 are a dynamic effect that
disappears at low applied strain rates.
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FIG. 9. (Color online) Examples of various other Bardeen-
Herring–type climb sources in bcc crystals. (a) Linked, concentric, bi-
planar loop pairs under εzz with R0 = 11.3a. (b) Offset nonconcentric
loop pairs under εyy with R0 = 28.3a. (c) Offset concentric loop pairs
under εxx with R0 = 9a and α = 2. (d) Dislocation network/tangle
formation from an array of 10 sources with R0 = 9a in a bicrystal
under constant volume tension εzz. Only density peaks with irregular
coordination (interface and dislocation core sites) are shown. Those
at the sphere-matrix interface are shown in gray (dark), those inside
the dislocation core are shown in blue-green (light) depending on
position along the out-of-plane axis. See Supplemental Material [42]
for the associated animations.

Other variations of climb-mediated loop nucleation pro-
cesses are shown in Fig. 9 (see Supplemental Material [42]
for the associated animations). Uniaxial strain along a 〈110〉
direction produces two disjointed a/2〈111〉 half-loops that
grow symmetrically at a 12.5◦ angle to the strain-normal (110)
plane [Fig. 9(a)]. An a〈100〉 edge line segment appears at the
intersection of these half-loops, and can link to a second,
concentric inner pair of half-loops that allows complete
detachment from the sphere. Uniaxial strain along a 〈112〉
direction produces two separate a/2〈111〉 edge dislocation
half-loops, as displayed in Fig. 9(b). These half-loops climb
until their terminal ends meet and merge into a single, nearly
circular loop. Dual loop nucleation as shown in Fig. 9(c) is also
possible for certain R0, elastic moduli, and strain rates. Finally,
arrays of spheres simultaneously nucleate complex networks
of dislocation lines via mixed climb-glide processes. Effects
from dislocation-dislocation, dislocation-grain boundary, and
dislocation-inclusion interactions, for example, are naturally
incorporated into the evolution of such networks in PFC
simulations.

VI. DISLOCATION-SFT INTERACTIONS

Impediments to dislocation motion, including other disloca-
tions, planar faults, and 3D obstacles, play a central role in the

mechanical response and work-hardening properties of metals.
The dominant irradiation-induced defect in fcc materials is the
SFT, and dislocation-SFT interactions are therefore believed
to largely control the mechanical response of fcc materials in
nuclear applications [72]. Such interactions have been widely
studied in MD (and DDD) simulations [49,72,73] providing
for our purposes a potentially useful body of benchmark results
with which PFC simulations can be compared. A few selected
results are presented in this section.

SFTs were formed in the present simulations via the Silcox-
Hirsch mechanism [74]. A triangular Frank loop is initiated
on a {111} plane, after which it spontaneously relaxes into the
local energy minimum corresponding to a perfect SFT with
base prescribed by the initial Frank loop (see Supplemental
Material [42] for the associated animation). Dissociated
a/2〈110〉 edge or screw dislocations were equilibrated some
lateral distance away from the SFT and some vertical distance
relative to the SFT base. Shear strain εzx was then applied at
a constant rate to cause the dislocation to glide toward and
through the SFT (see Fig. 10).

Only two cases will be reported here, given in the
notation of Ref. [49] as (ED/Down,4/13,0.0001/t) and
(SD/Edge,4/13,0.0001/t). In the first case, this notation
indicates that an edge dislocation (ED) intersects a SFT with
apex oriented in the [1̄11̄] direction (Down), at the fourth
{111} plane from the base of the SFT which is 13 {111} planes
tall (4/13), and with shear rate 0.0001/t . The second case
is the same except that it considers a screw dislocation (SD)
intersecting a SFT with one edge oriented along the SD line
direction (Edge). Additional simulations details are given here
[75]. Results from the (ED/Down,4/13,0.0001/t) simulation
are shown in Fig. 10. The accompanying animation, along with
that of the SFT-screw dislocation interaction, can be found in
the Supplemental Material [42].

The general sequence of events includes dislocation pinning
at SFT Lomer-Cottrell stair rod junctions, bow out of the
gliding dislocation line between the image SFTs, Orowan
looping of the SFT by the leading partial, and damage of the
SFT after the trailing partial has passed through. The pinning
and bow-out effects are of course expected. The Orowan loop
created by the leading partial is also consistent with MD
simulations of individual Shockley partial-SFT interactions
[73]. In the present simulations, the trailing partial eventually
shears the SFT as well, clearing the Orowan loop and leaving
either one or two ledges on the SFT faces. The ledge structures
appear to be consistent with those observed in MD [49]. The
height of the SFT apex above is also reduced by one {111}
interplanar distance in the ED case.

We have not yet observed other possible outcomes reported
in MD simulations, such as partial SFT absorption and jog
formation, but we have considered only a very small subset
of the conditions examined via MD. We therefore argue that
these results provide partial but strong qualitative evidence
that PFC simulations can correctly reproduce complex defect
phenomena of this type.

VII. CONCLUSIONS

Basic dislocation properties in fcc and bcc crystals have
been examined in the context of phase field crystal models, and
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FIG. 10. (Color online) Interaction between a SFT and
a gliding dissociated edge dislocation in a fcc crystal,
(ED/Down,4/13,0.0001/t). Perspective views of the SFT and
dislocation are shown in (a). The upper image shows both at
t = 10 100, while the lower left and right images show the SFT
at t = 15 800 and 20 100, respectively. Only the leading partial
has passed the SFT at t = 15 800, both partials have passed by
t = 20 100. xy-plane views are shown in (b), (c), (d), (e), and (f) at
t = 12 100, 15 100, 16 600, 18 600, and 19 600, respectively. (g) The
damaged SFT following the (SD/Edge,4/13,0.0001/t) interaction.
Density peaks with hcp coordination (stacking faults) are shown
in blue (dark gray), those with irregular coordination (dislocation
cores) are shown in gray (light gray). See Supplemental Material
[42] for the associated animations.

extended into simulations of conservative and nonconservative
dislocation creation mechanisms and obstacle flow processes.
Core structures of dissociated a/2〈110〉 fcc dislocations and
a/2〈111〉 bcc dislocations have now been reproduced in PFC
with sufficient accuracy to capture many aspects of plastic
flow that derive from such structures. These include the
known anisotropy in bcc screw-edge glide mobility as well
as the effect of fcc dissociation width on cross-slip and
climb barriers. Classical Frank-Read–type sources have been
simulated with such models, and a new mechanism by which
dislocation lines or superjogs under strain can segment onto
multiple glide planes, converting local monopole or dipole

sources into multipole sources, has been identified. Stacking
fault tetrahedra under high strain have also been shown
to reconstruct and emit dislocations via a Frank-Read–type
mechanism. Basic features of 3D polycrystal plasticity and
dislocation emission from grain boundaries have also been
examined and shown to be consistent with MD simulation
results.

Nonconservative dislocation creation mechanisms associ-
ated with spherical precipitates, inclusions, or voids have been
studied using atomistic simulations. Results for the critical
strain to nucleate a loop from a spherical body are in agreement
with predictions of continuum elastic theory after accounting
for finite-size effects and moduli-dependent climb barriers
present in our simulations. A range of complex nucleation
behaviors caused by nontrivial interactions between interface
structure, strain orientation, and dislocation energetics have
been revealed. Observed loop geometries have been ratio-
nalized for a few select cases, but the results in general
highlight the sometimes unexpected complexity that can
emerge when atomistic effects associated with crystal struc-
ture, dislocation cores, and climb dynamics are simultaneously
considered.

The Silcox-Hirsch SFT formation mechanism has also
been reproduced, as well as qualitative features of SFT-
dislocation interactions observed in MD and DDD simulations.
Such processes will require further study to gain a fuller
understanding of the similarities and differences between PFC
and other atomistic simulation methods. But, there appears
to be promise in the possibility of simulating features of
obstacle flow involving, for example, climb bypass mech-
anisms that can not be accessed with other conventional
methods.

In a wider sense, it is hoped that these results convey
the potential of the PFC approach as applied to solid-state
materials phenomena in three dimensions. This type of
description unifies conservative and nonconservative plastic
flow mechanisms with atomistic resolution, enabling the study
of complex high-temperature diffusive evolution processes in
the nanoscale-size regime. Many such processes are inac-
cessible to conventional atomistic approaches. Applications
to pure or multicomponent systems and phenomena such
as creep, recovery, recrystallization, grain growth, structural
phase transformations, and strain-hardening have already been
reported or are currently underway. The additional, coupled
effect of solute diffusion in alloy materials is naturally
incorporated into PFC-type descriptions. Issues that we believe
require further development or should be kept in mind include
choice of ensemble, control of stress-strain-volume relations,
quantification of vacancy concentration, and its connection to
climb rates.
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