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Role of the mesoscale in migration kinetics of flat grain boundaries
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Classical molecular dynamics simulations of bicrystalline systems are a commonly used tool for exploring
the migration of grain boundaries. Most simulation work to date has focused on measuring the mobility of grain
boundaries, assuming it to be an intrinsic property of a boundary of a given geometry. Here we present results
from simulations of the migration of a typical high-angle grain boundary that show that the concept of intrinsic
mobility fails for defect-free, flat boundaries of the type frequently simulated and that key assumptions often
made in analyzing the kinetics of migration do not hold. Our dynamical simulations of grain boundary migration
show that the grain boundary velocity is not simply proportional to the driving force for grain boundary motion, as
commonly assumed, and shows a strong and complex dependence on the system size. By analyzing the migration
mechanism at the larger mesoscale we show that defect-free, flat boundaries must migrate via the homogeneous
nucleation and growth of islands of transformed crystal volume on the grain boundary surface. We present a
detailed analysis of the kinetics of this process, which only emerges in simulations of large grain boundary areas.
An island-based mesoscale mechanism implies an energy barrier for migration that is inversely proportional to
the driving force for migration—in the experimental (zero-force) limit such boundaries must be immobile. This
calls into question the concept of an intrinsic mobility for defect-free, flat grain boundaries and suggests that
mobility of real boundaries at low temperatures is rather a function of their morphology and defect content and
at high temperatures is a result of thermal roughening.
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I. INTRODUCTION

The pattern of grain boundaries in a polycrystalline ma-
terial, embodied in the texture, grain size distribution, and
grain misorientation distribution, is a major determinant of that
material’s properties. The migration of grain boundaries thus
plays a major role in the evolution of mechanical properties
during recrystallization and mechanical processing and in
application. A detailed understanding of the process of grain
boundary migration is thus of great value.

Extensive experimental studies of bicrystals and polycrys-
tals over the last sixty years [1] have established a detailed
picture of the variation of grain boundary mobility with
the five macroscopic degrees of freedom of grain boundary
structure [2,3], with boundary shape [4], with temperature
and driving force [5,6], and with impurity content [7].
More recently, computational studies have also played a role
[8–21]. Simulations of grain boundary motion are easier to
control than experiments and yield detailed information about
the migration process down to the atomistic length scale.
However, constraints on computational expense in classical
molecular dynamics (MD) mean that simulations are restricted
to relatively small system sizes (typically 104–106 atoms) and
must use unrealistically high driving forces (typically between
10 and 250 MPa, compared with realistic forces between 10−4

and 1 MPa [22,23]) to achieve grain boundary migration on
accessible time scales.

A key grain boundary property measured in migration
simulations is the mobility m, defined as the rate of change of
the steady state grain boundary velocity v with driving force
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P in the low force limit m = dv/dP |P=0 [22]. This mobility is
assumed to be an intrinsic property of a given grain boundary
geometry (i.e., for a given point in the five-dimensional
configuration space of the macroscopic degrees of freedom
of grain boundary geometry [23]). In order to study the grain
boundary mobility for a fixed geometry, flat, as opposed
to curved, boundaries are commonly simulated. To extract
the mobility from a simulated grain boundary trajectory, a
simple barrier hopping model of the migration kinetics is used.
This model is frequently further simplified by making certain
assumptions, which we will discuss in detail in Sec. II A.

Previous simulations have largely focused on relatively

small simulation cells with grain boundary areas ∼ 103 Å
2

(containing ∼ 103 grain boundary atoms). These simulations
have shed much light on the variation of the grain boundary
mobility and activation energy for migration as a function of
grain boundary geometry [13,19]. They have also permitted
detailed studies of the atomistic migration mechanisms of
selected boundaries [18,20].

The mechanism of boundary migration on larger length
scales has not been studied in detail. At the mesoscale, which
we define here as a length scale on which the grain boundary
can be regarded as a two-dimensional dividing surface between
regions of crystal with different orientations, a plausible
mechanism, proposed by Mott [24] (and developed further
by Smoluchowski [25]), involves the formation of islands
of migrated crystal volume. No definitive evidence for this
process has previously been presented, although several results
from experiment [26,27] and simulation [11,28] support the
suggestion. Simulations of shear-coupled migration have been
used to study a related process involving the nucleation of pairs
of disconnections [29].

In this paper, we present the results of classical MD
simulations of the migration of a [111] �7 symmetric tilt
boundary, a boundary much studied in previous simulations
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and experiments [7,10,13,16,21]. We have focused on a flat
grain boundary of the type often used to determine intrinsic
mobilities in simulations and in experiments. In particular,
we have analyzed the behavior of a defect-free (smooth)
flat boundary, i.e., a boundary that is below its roughening
transition temperature [12] and that contains no structural
defects (such as secondary grain boundary dislocations)
inherent to its relaxed configuration. Based on these results we
show that a process of homogeneous nucleation and growth
determines the kinetics of grain boundary migration, but that
this behavior only emerges when large supercells are used.
We further show that the nucleation process implies that the
energy barrier for migration increases rapidly as the driving
force decreases; in the experimental limit of low driving force
smooth boundaries are strictly immobile. Crucially, we find
that the size of the simulation cell has a strong effect on
the grain boundary velocity and can change the nature of
the migration mechanism. To guarantee converged behavior
we require unexpectedly large three-dimensional simulation
cells.

In Sec. II A we briefly review the commonly employed
barrier model of migration kinetics. We question some of
the simplifying assumptions that are often made and show
how different assumptions lead to an alternative approach to
deriving grain boundary kinetic parameters, which is perhaps
more generally applicable. In Sec. II B we briefly outline the
computational approach that we have used.

Section III presents our results. In Sec. III A we show
that the migration velocities measured in our simulations
violate the commonly made assumptions about migration
kinetics. Section III B considers the migration mechanism at
the mesoscale. We show that defect-free, flat grain boundaries
of the type that we have simulated move via the nucleation
and growth of islands of transformed crystal volume on
the grain boundary surface. The rate determining step for
boundary migration is thus the formation of a stable island
nucleus—a process that entails a migration barrier inversely
dependent on the driving force. We further show in detail how
an analytical model of island-based migration kinetics can
account quantitatively for the unexpected results presented
in Sec. III A. In Sec. IV we consider the implication of our
findings for future studies of grain boundary migration.

II. METHODS

A. A model of migration kinetics

A commonly used model of the kinetics of grain boundary
migration considers a migration event as a thermally activated
reaction, at temperature T , over an energy barrier of height EA

between two states representing the grain boundary in stable
positions a distance d apart [22]. This model is illustrated
schematically in Fig. 1, in which we also mark the energy of
the grain boundary in its stable state E0 and the energy in
the activated state in the barrier configuration E1, such that
EA = E1 − E0. With no driving force, in this simple model,
the grain boundary will execute a one-dimensional random
walk of forward and backward hops.

The application of a thermodynamic driving force for grain
boundary migration can be incorporated as an energy penalty

FIG. 1. A schematic illustration of a simple barrier hopping
model of grain boundary migration. The labeled energies are
discussed in detail in Sec. II A.

ε applied to one of the two stable states such that its energy
is raised to E∗

0 . In general, this would also alter (and likely
increase) the energy of the activated state, say to E∗

1 . We define
e = E∗

1 − E1 as the shift in the energy of the activated state.
The progress of the grain boundary is now a biased competition
between forward and backward hops of length d, implying a
velocity of

v(ε,T ) = f (ε)d[exp(−(EA − ε + e)/kBT )

− exp(−(EA + e)/kBT )]

= f (ε)d exp(−EA/kBT ) exp(−e/kBT )

× [
exp(ε/kBT ) − 1

]
, (1)

where the frequency f (ε) = f0 exp(SA(ε)/kB) is a function of
the driving force ε and depends on an “attempt frequency” f0

and the activation entropy SA [22].
At this stage in most analyses it is implicitly assumed that

the application of a driving force does not affect the height
of the barrier for forward hops, but makes reverse hops less
likely, i.e., e = ε [30]. It is also usual to assume that ε � kBT ,
so that exp(ε/kBT ) ≈ 1 + ε/kBT and the velocity becomes

v(ε,T ) ≈ f (ε)d[1/kBT ] exp(−EA/kBT )ε, (2)

linear in the driving force [31]. This then leads to the definition
of an intrinsic mobility m(T ) for a given boundary,

m(T ) ≡ lim
ε→0

v(ε,T )/ε. (3)

The two assumptions used to obtain Eq. (2) require that
we are in the low driving force limit ε � EA, and ε � kBT .
While these assumptions are reasonable for migrating grain
boundaries in real materials, MD simulations employ very
large driving forces. We must also be careful about the meaning
of the energies in the above discussion: They refer not to
a single atom, but to the unit of our system taking part in
the rate determining step, which will involve multiple, say n,
atoms, where n might be quite large. Writing our driving force
either as an excess energy ε per atom or a pressure (energy
per unit volume) P then gives us ε = nε = nP�, where �

is the volume per atom. n may well be ∼ 10–100 (we do not
know, a priori), and ε ∼ 0.01 eV/atom which gives an energy
shift ε ∼ 0.1–1 eV. This is exactly in the range of activation
energies EA measured in many simulations and similar to
typical values of kBT ∼ 0.05–0.1 eV.

The driving force in typical simulations is thus quite high
and the linear relation in Eq. (2) cannot be relied upon.
However, alternative assumptions may be made in order to
simplify Eq. (1). While the motion of a grain boundary can
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be considered as a one-dimensional random walk, typical
trajectories (from our own simulations and from the literature)
tend to show grain boundaries hopping in the forward direction
only, at a rate dependent on the driving force. Reverse
jumps are effectively frozen out because (EA + e) � kBT

(remembering that e depends on ε). Making the assumption
of a high driving force limit ε � kBT allows us to write
exp(ε/kBT ) − 1 ≈ exp(ε/kBT ) and so

v(ε,T ) = f (ε)d exp[−E∗
A(ε)/kBT ], (4)

where E∗
A(ε) ≡ EA + e − ε is the effective energy barrier for a

one way hopping process. We will make use of this expression
in analyzing the results of our simulations in Sec. III A.

B. Migration simulations

We have carried out a series of classical MD simulations
of a pair of moving grain boundaries across a range of driving
forces and temperatures using the Lammps software package
[32]. Our chosen grain boundary is the [111] �7 symmetric
tilt boundary with {321} boundary planes. We have selected
this boundary because it is typical of low-period high-angle
CSL boundaries and because it has been observed to be
highly mobile in previous work [13], so that the computational
expense of our detailed studies is reduced.

We used simulation cells of between 1500 and 1.2 million
atoms (giving grain boundary areas of between 13 × 14 and

425 × 340 Å
2
) containing a pair of grain boundaries and with

periodic boundary conditions in all three directions. The cell
size was held constant in the two directions parallel to the grain
boundary plane and a zero-pressure Nosé-Hoover barostat
was applied to the third direction (parallel to the direction of
motion of the grain boundaries). These boundary conditions
were a compromise: We needed to hold two dimensions
fixed because MD simulations always contain an unrealistic
area of grain boundary per unit volume and so the surface
tension in the grain boundary would otherwise have tended
to distort the cell [33]. The third dimension was allowed to
relax because the driving force that we used was such that an
excess pressure would otherwise have built up as the boundary
migrated, changing the effective driving force over time. We
applied a Nosé-Hoover thermostat to the system, since the
conversion of crystal volume from the disfavored to the favored
orientation released a significant amount of energy, which
would otherwise have raised the temperature and progressively
altered the grain boundary mobility.

Our use of periodic boundary conditions in the direction
normal to the grain boundary plane will prohibit any shear-
coupled grain boundary migration of the type proposed for
high angle boundaries by Cahn et al. [34] and extensively
studied in the theoretical [35,36], computational [29,37,38],
and experimental [6,39,40] literature. However, simulations
that we have carried out in cells containing a single boundary
and with free ends reveal that shear-coupled migration of
our chosen boundary does not spontaneously occur (though it
might be enforced if an appropriate shear stress were applied
to the ends of the simulation cell) and so must involve a
mechanism (probably also nucleation mediated [40]) with a
significantly higher energy barrier than those we explore here.

The interatomic forces in our simulations were calculated
using an embedded atom model (EAM) potential fitted to
properties of aluminium derived from experiment and density
functional theory calculations [41]. The migration of our
grain boundaries was driven using an artificial force derived
from a potential that added an energy penalty to each atom
based on the positions of its nearest neighbors [10]. This form
of driving force (along with other similar forces [14,21]) has
been used extensively in previous studies [8–10,13,14,21].
It offers the advantage of being equally easy to apply to any
boundary geometry.

We have analyzed the forces on individual atoms and found
that at the temperatures we study the artificial driving force
makes a contribution of only a few percent to the typical
force on an atom due to thermal fluctuations; it is thus acting
correctly as a thermodynamic bias to the underlying motion of
the grain boundary (i.e., it should not significantly impact the
paths taken by atoms during the migration events).

We initialized our simulation cells with atomic velocities
distributed according to our chosen temperature and then
allowed at least 20 ps for equilibration before switching on the
driving force. We then ran the simulations for up to a further
5 ns (with a time step of 1 fs) to allow the boundaries to traverse
the length of the cell (each boundary moved up to 100 Å). We
determined the position of the grain boundary, on average and
as a function of position across the grain boundary surface,
by examining the atomic order parameter used to calculate
the artificial driving potential. We then calculated the average
velocity from the position-time data with an estimate of the
error given by bootstrap resampling of the trajectory [42]. This
approach exploits the fact that even a single trajectory consists
of multiple migration events and so contains information about
the random nature of grain boundary migration. A sufficiently
long trajectory can therefore yield the same statistical data
as multiple shorter simulations if treated correctly. Due to
thermal fluctuations in the favoured grain, the true driving
force was slightly reduced from the nominal value in the
artificial potential. We calculated the necessary adjustments
via thermodynamic integration as in Ref. [13].

III. RESULTS AND DISCUSSION

A. Kinetic properties from migration simulations

Most analyses of grain boundary mobility, in both simu-
lation and experiment, proceed by calculating a temperature-
dependent mobility from an assumed proportionality between
velocity and driving force [see Eq. (3)]. The behavior of m(T )
with T , assumed to be Arrhenius-like, is then used to calculate
an activation energy for the boundary migration. Critically, in
the case of simulations, the velocity data are typically derived
using supercells of a fixed and quite small size. Here we briefly
present an analysis from small cell simulations of this sort for
our �7 boundary. We do this to highlight some immediate
issues with this approach before presenting size-converged
data from much larger systems.

Figure 2 presents the results of a series of grain boundary
migration simulations across a broad range of temperatures
(400–800 K) and driving forces in a fixed system size
(containing 24 thousand atoms and with a grain boundary area
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FIG. 2. (Color online) Results of grain boundary migration sim-
ulations showing velocity as a function of driving force over a range
of temperatures. The error bars show an estimate of one standard
deviation in the measured velocity [derived using bootstrap resam-
pling (Ref. [42])]. The horizontal arrows indicate the adjustments to
the nominal driving force strength required to account for thermal
fluctuations. The inset shows the nominal mobility (see main text for
a definition) as a function of driving force (in eV/atom) up to very
high driving forces.

of 53 × 57 Å
2
, with ∼ 1000 boundary atoms). Typical studies

in the literature use forces up to ε = 25 meV/atom (P ∼
240 MPa), but we have also simulated migration at even more
unrealistic forces (up to ε = 100 meV/atom, P ∼ 1 GPa) in
order to explore impact of the driving force on the behavior of
the system. Thermal disorder in the positions of atoms reduces
the free energy difference between the favored and disfavored
grains below the nominal value of the applied artificial driving
force for grain boundary migration. Adjustments to take into
account this effect are indicated in Fig. 2. We immediately see
from the behavior of our sample boundary that the commonly
assumed v ∝ ε relationship does not hold in general. The
inset to Fig. 2 shows the nominal mobility, defined as v/ε,
as a function of driving force. This is normally assumed to
be a constant, but it clearly is not. At lower temperatures
there appears to be a minimum threshold driving force, below
which no motion of the grain boundary is observed. At a
high temperature, around 700 K here, the behavior is closer
to that expected. At higher temperatures still, the velocity
remains approximately proportional to the driving force, but
the mobility decreases with increasing temperature. At all
temperatures the asymptotic limit at high driving forces is
a constant nominal mobility (v/ε).

Nonlinear behavior is also presented and discussed by Deng
and Schuh [9] though, as we discuss below, the origin of the
behavior in our case differs significantly from that in Ref. [9].
The complex results derived here are also consistent with
recent experimental findings by Kang et al. [43], who have
reported a nonlinear relationship between interface mobility
and driving force and a threshold driving force for migration
in experiments on BaTiO3.
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FIG. 3. (Color online) Results derived from fitting to Arrhenius
plots of the data in Fig. 2 as a function of driving force. Main figure:
activation energy—the solid (red) line is a guide for the eye. Inset:
the compensation effect—the dashed (blue) line is a linear fit to the
data as a guide for the eye.

For the above results an intrinsic mobility m(T ) is clearly
ill defined, at least below 700 K. This means that we cannot
follow the usual procedure of determining an energy barrier
for migration EA from an Arrhenius relationship,

m(T ) = m0 exp(−EA/kBT ). (5)

To analyze our data, instead of the usual linear relation, Eq. (2),
we will adopt the high driving force limit in Eq. (4). Taking
the logarithm, we thus have

ln(v) = ln(f ) −
(

E∗
A

kB

)
1

T
, (6)

and we can use an Arrhenius plot of ln v against 1/T for each
value of the driving force [44] ε to obtain the effective energy
barrier E∗

A = EA + e − ε, and prefactor f as a function of ε. A
strong decrease in energy barrier for migration with increasing
driving force can be seen in Fig. 3, from which we can also
see that a clear compensation effect [22,45], a proportionality
between the fitted values of ln f and E∗

A, emerges. Such a
compensation effect has often been reported in the values of
ln f and E∗

A as grain boundary geometry (e.g., misorientation
angle) is varied [5] and might be explained by variations in
the geometrically necessary number of atoms involved in the
migration process. However, it is not immediately clear why
such a compensation effect should exist for a single boundary
as the driving force strength is varied.

Molecular dynamics simulations of grain boundary migra-
tion are often carried out in small supercells, sometimes as

small as 20 × 20 Å
2

and 8000 atoms [13]. This means that the
measured velocities could be influenced by finite system size
effects. To investigate this issue we have carried out a series
of migration simulations at 600 K in simulation cells across a
wide range of sizes (between 1500 and 1.2 million atoms with

grain boundary areas of between 13 × 14 and 425 × 340 Å
2
)

and at several driving forces. As can be seen from Fig. 4 the
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FIG. 4. (Color online) The velocity of a grain boundary in MD
simulations at 600 K as a function of system size (length of simulation
cell in the dimensions in the grain boundary plane) and driving
force. The velocities are normalized to the value in the largest
system at each value of the driving force. Representative error
bars [one standard deviation in the estimated velocity (Ref. [42])]
are shown for a single system size. The colored arrows mark the
approximate minimum system size at which convergence in the
velocity occurs. Corresponding points are marked in Fig. 9. The
inset shows a schematic of the observed trends and is discussed in
Sec. III B.

impact of system size is significant and takes a complicated
form (which we will explain in Sec. III B).

Overall, the results presented above illustrate several
important features of grain boundary migration, all of which
require explanation. They are:

(i) At lower temperatures the relationship of grain boundary
velocity to the driving force is strongly nonlinear, i.e. it does
not follow the normally assumed relationship in Eq. (2).

(ii) At high temperature a linear relationship appears.
(iii) The velocity increases with temperature up to 700 K

(which is the roughening temperature for our boundary), after
which it begins to decrease.

(iv) At very high driving forces a constant nominal mobility
(v/ε) emerges.

(v) The energy barrier for grain boundary migration
decreases strongly with increasing driving force. This rela-
tionship is nonlinear.

(vi) The kinetic prefactor f in Arrhenius fits to the
migration data shows a compensation effect with varying
driving force.

(vii) The measured grain boundary migration velocity
varies with system size in a complex manner, which in turn is
dependent on the driving force.

(viii) The velocity of the moving grain boundary does
not converge to a stable value until the system size
is very large compared with typical simulations in the
literature.

In the following sections we will show that all of the above
behavior can be understood by analyzing the mechanisms of
grain boundary migration at the mesoscale.

B. Mesoscale migration mechanism

Several previous studies have investigated in detail the
migration mechanisms of example grain boundaries at the
atomistic scale, in terms of the pattern and timing of atomic
rearrangements [20,46]. We have undertaken similar studies
for our �7 boundary and find that at the atomistic level the
boundary moves by the ordered shuffling of groups of 21
atoms (three times the unit of the CSL). These results will
be presented in detail elsewhere. Much less information is
available in the literature about how migration takes place
on a larger mesoscale, on which the grain boundary can be
regarded as a dividing surface between crystal grains with
different orientations. It is the behavior of the boundary at this
larger length scale that explains the complex size-dependent
behavior in our results. Various studies [12] have shown
that, particularly at low temperature and driving force, grain
boundaries commonly move rapidly between positions of
particular stability, with periods of relative immobility between
such jumps. The separation between the stable positions is
determined by the grain boundary geometry and is typically
of the order of several angstrom.

By studying the evolving shape of the grain boundary
surface as it migrates in our simulations, we have observed
that the mesoscale migration process is one whereby islands
of crystal volume in the favored orientation form at the grain
boundary surface. These islands grow until they coalesce to
give grain boundary motion. This island-based mechanism can
be seen in the data shown in Fig. 5. In the larger system we
can clearly see that migration takes place via the formation
and growth of four islands of migrated material. This type
of boundary propagation is well known in surface epitaxy
as layer by layer growth [47], but has, to our knowledge,
not been reported in the context of grain boundary migration
simulations.

The island-based mesoscale mechanism, which must be
accommodated in order to obtain size-converged migration

FIG. 5. (Color online) Snapshots of a migrating grain boundary
surface. The contours show the edges of (white) islands of migrated
grain boundary area at different times for a large system (340 ×
420 Å

2
, left) and a smaller system (170 × 210 Å

2 ≈ 4rcrit, where rcrit

is the radius of a critically stable island nucleus), both with a driving
force of 5 meV/atom at 600 K.
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FIG. 6. (Color online) A schematic illustration of the island
nucleation and growth model of grain boundary migration. The solid
volume represents crystal volume in the favored orientation. The
upper half of the bicrystal, in the disfavored orientation, is not shown.
(a) Islands (blue) form on the surface of the flat boundary (red) due
to thermal fluctuations. (b) Double kinks (yellow) form in the island
edges and (c) migrate and coalesce to give growth of the islands.
(d) The islands grow until they coalesce, at which point the grain
boundary has migrated by the edge height.

velocities, is illustrated schematically in Fig. 6. The rate
limiting step is a homogeneous nucleation event, and we will
now present an analytical model of this mechanism. Consider
an island of radius r forming on a flat grain boundary surface.
The formation of this island is penalized by the excess free
energy density, φ(T ) = γ − T σ , associated with the island
edge, where γ and σ are the internal energy and entropy per
unit length of the island edge. When a driving force, P = ε/�,
is present the island volume will be stabilized so that the excess
free energy of the island can be written:

Fisland(r,P,T ) = 2πrφ(T ) − πr2Pd, (7)

where d is the edge height (the distance between stable
grain boundary positions). We have calculated the energies of
relaxed circular island structures in a cell of 265 × 283 × 77 Å
(336 000 atoms) using the identical EAM potential as for the
dynamic simulations. The points in Fig. 7 show the results.
By fitting a straight line to the energies relaxed in the absence
of any driving force (which correspond to T = 0 K) we can
obtain the value of the edge energy density for our system: we

find γ = 31.5 meV Å
−1

. Lines corresponding to the model in
Eq. (7) with this value of γ are shown in Fig. 7 and match the
results of the molecular statics calculations well.

The model in Eq. (7) neglects any entropic effects in the
volume (second) term. As discussed in Sec. III A, at elevated
temperatures the true value of the driving force (a free energy
difference) is reduced from its nominal value, but this effect
is small compared with the effect of the edge entropy density
σ . We have also assumed that γ has a constant value, whereas
at very small values of the island radius the atomistic nature
of the islands would affect their excess free energy. We can
also see that for the largest driving force presented in Fig. 7
the model begins to deviate from the results of the molecular
statics calculations. This is a consequence of the high driving
force causing the island to expand slightly from its original, as
constructed, size meaning that its excess energy is somewhat
reduced.

FIG. 7. (Color online) The excess energies of circular islands in
a grain boundary surface. The symbols show the results of static
atomistic calculations (see inset) using an EAM potential. The curves
are predictions of the analytical model in Eq. (7) (see main text).

Figure 7 reveals the key features of the island-based
migration mechanism. At each driving force there is a critical
radius rcrit(P,T ) beyond which further growth of the island is
thermodynamically favored. The free energy of an island with
this radius then corresponds to the free energy barrier for the
rate limiting step in grain boundary migration: FA(P,T ) ≡
F (rcrit,P ,T ). As the driving force for migration increases,
both the size and the energy of the critically stable islands
decrease. This effect is confirmed in Fig. 8, in which snapshots
of migrating boundaries in dynamical simulations are shown.
At a fixed system size increasing the driving force implies
migration via a denser population of smaller islands.

Since the island-based mesoscale migration mechanism,
rather than the local atomistic shuffle mechanism, determines
the migration barrier it has important implications for the
study of grain boundary migration with molecular dynamics
simulations. A migration mechanism that is based on homo-
geneous nucleation implies that the migration barrier, and thus
the mobility, will depend on driving force. This finding is in
direct contrast to the commonly employed assumption of a
driving-force-independent mobility. It is this dependence on

FIG. 8. (Color online) Snapshots of islands of migrated grain
boundary area at an early stage in the migration process (approxi-
mately the critically stable island population) as a function of driving
force in a system 340 Å × 420 Å.
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the driving force that gives rise to the complicated variation
of the grain boundary velocity with system size evident in
Fig. 4, which we are now in a position to explain. At very
small system sizes the formation of islands is frozen out
and migration takes place via the simultaneous coordinated
shuffling of all the atoms in the vicinity of the boundary. In
these smallest systems an increase in the system size then
implies that more atoms must be involved in the collective
shuffle and so the velocity initially decreases with increasing
system size. Only above some critical system size, which itself
is dependent on the applied driving force, does it become
possible to accommodate the island nuclei that are required in
order to obtain a size-converged velocity.

In systems only just larger than the critical size only a
single island will form and will grow to coalesce with itself
across the periodic boundaries of the simulation cell. This
single-island migration process can be seen in the smaller of
the two systems illustrated in Fig. 5. As the system size is
further increased, the grain boundary area on which the single
island can spontaneously form increases and so the velocity
of the grain boundary increases. Only at relatively large
system sizes can we accommodate the statistically converged
population of critically stable islands (typically 2–3 islands)
at the correct density and so measure a converged grain
boundary velocity. The variation in the migration mechanism
is illustrated schematically in the inset to Fig. 4.

We note that at higher driving forces, size convergence can
occur in relatively small simulation cells. The size-dependent
effects that we observe only appear when sufficiently small
driving forces are included in the analysis, otherwise such
effects may remain hidden.

Figure 9 presents a map of the mesoscale migration
mechanism as a function of driving force and system size.
The figure shows the value of rcrit(P,T = 600 K) and also the

FIG. 9. (Color online) A map of the grain boundary migration
mechanism as a function of driving force and system size. The
solid red line shows the critical radius rcrit from the analytical
model in Eq. (7). Typical parameters [10,13,14,48] of simulations
in the literature are marked. The symbols (and dashed line) mark the
threshold for size convergence of the grain boundary velocity from
Fig. 4.
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FIG. 10. (Color online) Arrhenius plots of the size-converged
velocity of grain boundaries. The lines show the results of fitting the
analytical model of island-based kinetics in Eq. (12), as discussed in
the text. Note that the roughening transition temperature is ∼ 700 K.

minimum system size at which the grain boundary velocity is
converged (based on the data in Fig. 4). We have also marked
the range of system sizes and driving forces used in simulations
of grain boundary migration in the literature. It is important
to note that such simulations are unlikely to be system-size
converged and that studies of mobility are often carried out in
a region of parameter space in which the migration mechanism
changes qualitatively.

We have shown above that the grain boundary velocity
measured in MD simulations is only converged when large
systems are used. To investigate the correct kinetics of flat
boundaries, we have therefore carried out a series of grain
boundary migration simulations across a range of temperatures
and driving forces in large systems with grain boundary areas

up to 425 × 340 Å
2

(containing over a million atoms). An
Arrhenius plot of the results of these simulations is shown
in Fig. 10, which provides a properly converged view of the
behavior of the grain boundary velocity with driving force and
temperature. In contrast, the results shown in Figs. 2 and 3
are derived from simulations carried out in a relatively small
system of fixed size (typical of many similar studies in the
literature) and incorporate the spurious effects of a varying
migration mechanism. The form of these size-converged
results is unexpectedly complex: The activation energy appears
to vary with both driving force and temperature. Strongly
non-Arrhenius behavior, which can be seen in the strong
deviations from linearity in Fig. 10, is however consistent with
the island-based migration mechanism as we show below.

From Eq. (7) we can derive expressions for the critical
island radius and the free energy barrier for grain boundary
migration:

rcrit(P,T ) = φ(T )/Pd, (8)

FA(P,T ) = π [φ(T )]2/Pd. (9)
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We then assume the simplest possible model for the island
edge entropy density, such that σ ∝ γ [49]. This model has a
simple physical interpretation in terms of the grain boundary
roughening transition as follows. Various studies have shown
that above a given temperature, which depends on the boundary
geometry, grain boundaries become “roughened” and exhibit
thermal fluctuations in the shape of the grain boundary surface
[12]. In terms of our model of the island free energy, the
roughening transition corresponds to the temperature, call it Tc,
at which the free energy cost of forming island edge structures
becomes zero, i.e., φ(Tc) = 0. We thus assume

σ = γ /Tc (10)

and obtain Tc ≈ 700 K by studying the thickness [50] of an
undriven grain boundary in an MD simulation as a function of
temperature. We thus have

φ(T ) = γ (1 − T/Tc). (11)

The process of grain boundary migration can be divided
into two components: the nucleation of stable islands and the
growth of those islands. The growth process involves repeated
coordinated shuffles of groups of seven atoms. The barrier for
these shuffles is relatively small (∼ 0.1 eV ) and so, except at
very large driving forces, the rate limiting process will be that
of nucleation, with the barrier FA.

Simple rate theory predicts a grain boundary velocity of
v = λ0d exp(−FA/kBT ), where λ0 is an attempt frequency
and d is the distance moved by the grain boundary in each
migration process (i.e., the height of the island edge). Inserting
our model for FA and taking the logarithm gives a relationship
of the form

ln v = ln v0 − U0

kBT

[
1 +

(
T

Tc

)2]
. (12)

Fitting the velocity and energy parameters v0 and U0 to the data
from our size-converged migration simulations gives the lines
shown in Fig. 10. The accuracy of the fits confirms the
correctness of the island-based model of migration kinetics.
We can go further, because the island model also gives
predictions for v0 and U0:

ln v0 = ln(λ0d) + 2πγ 2/kBTcPd, (13)

U0 = πγ 2/Pd [= FA(P,T = 0)], (14)

in which all the parameters are independently determined: γ

from the molecular statics calculations shown in Fig. 7 and Tc

from MD simulations of the thickness of a stationary boundary.
Figure 11(a) shows the predictions for U0.

The first term in Eq. (13) is small compared to the second,
being of order 1 while ln v0 has values between about 16 and
160. The island model thus predicts that the ratio between the
fitted energy term U0 and logarithmic prefactor ln v0 will be
[from Eqs. (13) and (14)] ln v0/U0 = 2/kBTc = 33.1 eV −1.
Thus for an island-based mesoscale migration mechanism a
compensation effect with varying driving force arises quite
naturally because both the internal energy and the entropy
of a stable island nucleus vary as ∼ 1/P . In Fig. 11(b) the
predicted compensation effect is compared with the data fitted
to the size-converged migration simulations. The quality of the

FIG. 11. (Color online) (a) A comparison of (points) the internal
energy barriers extracted from dynamical simulations and (line) the
analytical predictions of Eq. (14). (b) The compensation effect (a
proportionality between the logarithm of the kinetic prefactor and
the internal energy barrier) arises as a natural consequence of the
island-based migration mechanism. The points are extracted from
dynamical simulations and the line is the prediction of the analytical
model.

fits in Figs. 11(a) and 11(b) confirms the ability of the island-
based mechanism to account quantitatively for the results of
dynamical simulations of grain boundary migration.

A key feature of the island-based migration mechanism
is that it implies that the energy barrier for grain boundary
motion is inversely proportional to the driving force, as
shown in Eq. (9) and illustrated in Fig. 12. Figure 12 also
shows the free energy barrier at an elevated temperature of
600 K at which the effect of the excess entropy of the island
edge significantly reduces the barrier. As the driving force
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FIG. 12. (Color online) The energy barrier for grain boundary
migration as a function of driving force. The points are the internal
energy barrier U0 [equivalently FA(P,T = 0)] extracted from the
dynamical simulations by fitting the data in Fig. 10. The solid (red)
line is the prediction of Eq. (14) [or of Eq. (9) at T = 0 K]. The
dashed (blue) line is the free energy barrier FA at 600 K from Eq. (9).
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approaches experimentally realistic levels, the energy barrier
explodes. Employing our model we find that at a realistic
driving force of 10−2 MPa (10−3 meV/atom) the internal
energy barrier will be several hundred eV with a critical
island radius of several μm. Only at temperatures within a
few degrees of the roughening transition temperature will the
effect of the entropy of the island edge reduce the free energy
barrier for migration to a value that permits migration. Clearly
under realistic conditions defect-free, flat grain boundaries
are strictly immobile. This calls into question the concept of
an intrinsic mobility for such boundaries. Such a mobility
may exist at temperatures above the roughening transition,
when the spontaneous thermal defects that fluctuate in and
out of existence on the boundary at all finite temperatures
can be formed at zero free energy cost (indeed, we see this
behavior in our results at T = 800 K in Fig. 2). But any
experimentally observed motion of grain boundaries below
the roughening transition temperature must be a consequence
of the presence of extended structural defects that remove
the need for a homogeneous nucleation event. In this case,
the mobility becomes a function of the morphology, or defect
content, of the boundary and is no longer an intrinsic property
of a boundary of a given geometry.

In Fig. 2 we also observed a convergence to a fixed nominal
mobility at very high driving force, even at temperatures well
below the roughening temperature. Olmsted et al. [12] have
explained this in terms of a “dynamical roughening” effect.
However, this dynamical roughening is different in character
from the normal thermal roughening: The former is a driven
process, in which small island features are stabilized by very
high driving forces, whereas in the latter case the free energy
cost of the spontaneous formation of small islands becomes
zero. The nominal mobility at high force is also greater than
that at high temperature, at least in part because the thermal
disorder in the thermally roughened boundary will hinder
the ordered atomic shuffling by which the crystal volume
transforms from one orientation to the other.

The island-based mechanism of grain boundary migration
presented above differs qualitatively from models previously
presented in the literature. Although Mott’s originally pro-
posed model [24] involved the transformation of “islands”
of material, he assumed these islands to be of a fixed
characteristic size (of around twenty atoms), leading to a
fixed, i.e., driving-force-independent, energy barrier for grain
boundary migration. An alternative mechanism was proposed
by Gleiter [51], who considered atom-by-atom processes of
grain boundary migration. Neither model is able to explain
driving-force-dependent migration barriers.

The kinetics of thin film growth (or layer-by-layer) growth
have been studied in great detail in the literature [52–54].
Whereas the driving forces for thin film growth can be
very large (a few tenths of an eV per atom), the real-
istic limit for grain boundary migration is the zero-force
limit (10−9–10−4 eV/atom). At realistic driving forces, grain
boundary migration is therefore very firmly in the nucleation-
limited modes discussed by Kashchiev [52] and Avrami
[53,54]. Indeed, even at the highest of the driving forces that
we use in our simulations, the energy needed to form a critical
island nucleus is orders of magnitude larger than the barrier
for its incremental growth.

Kang et al. have recently suggested that the cost of
forming island nuclei would account for their observations of
a critical minimum driving force for grain boundary migration
in BaTiO3 [43]. They suggest that the same principles that are
used to model crystal growth in two phase systems could prof-
itably be applied to single phase solid systems. Our findings
and analytical model nicely explain these experimental results.

Deng and Schuh [8] have presented a modified version
of the interface random walk method [16] for determining
grain boundary mobility even at very low driving forces and
temperatures. Using this approach (the AIRwalk method) they
have identified two regimes of grain boundary migration [9]:
a “diffusional” regime at low driving forces and a “ballistic”
regime at high driving forces (and high temperatures). [9] We
also observe ballistic migration of our boundary at very high
driving forces, but the behavior we discuss here is outside
this ballistic regime. Whereas Deng and Schuh [9] are able to
explain a nonlinear relation between driving force and velocity
in terms of a transition between two different regimes of
migration, the nonlinearity that we observe is not related to
such a transition. The nonlinearity here is a direct result of the
island-based mechanism: As the driving force decreases, the
free energy barrier for migration increases inversely, because
the radius of a stable island nucleus increases.

Using the AIRwalk method [8], Deng and Schuh are
also able to detect residual mobility down to very low
driving forces [9]. This implies that an intrinsic mobility does
exist. In contrast, the island-based mechanism implies that
mobility at zero driving force is strictly zero (in the sense
that limP→0 dV/dP = 0). These different conclusions are, we
believe, a result of the nature of the nuclei which must form
spontaneously in order to effect grain boundary motion. In
a thin-slab system, as studied in Ref. [9], the island nuclei
(effectively disconnection loops) in our systems become a pair
of short line defects (disconnections). The implications for the
kinetics of migration are likely to be significant.

The role of steps (or disconnections) in grain boundary
migration in a small system has previously been reported
in the context of shear-coupled migration and is extensively
discussed by Rajabzadeh et al. [29]. In Ref. [29] the formation
of pairs of short disconnections is driven by the applied shear.
In a larger system the boundary migration would likely require
the nucleation of disconnection loops, bounding islands similar
to those that we find. The interaction of these disconnection
loops with the applied shear would be complex.

Mendelev et al. [55] have studied the migration of a
�5 asymmetric tilt boundary in which the elastic driving
force of Zhang et al. [17] and the modified random walk
method of Deng and Schuh [8] are directly compared. Both
approaches yield the same mobility, and the absence of a
driving force in the random walk method suggests that what
is being measured is indeed an intrinsic mobility. Importantly,
Ref. [55] makes use of a fully three-dimensional and reason-
ably large system (50 Å × 50 Å in the grain boundary plane).
In contrast, the symmetric �7 boundary that we study here
shows no intrinsic mobility, i.e., this boundary is immobile
in the zero-driving-force limit. This apparent contradiction
is related to the nature of the boundaries simulated. In
Ref. [55] an asymmetric boundary is used, which contains
structural features perpendicular to the boundary plane larger
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than the atomic-scale ridges in the symmetric �7 boundary
that we simulate. These features act as nucleation sites for
the formation of the defects required for migration and
so remove the need for a homogeneous nucleation process
(in the symmetric �7 boundary, no preferential sites for
nucleation exist). Song and Hoyt [56,57] have similarly found
that heterogenous nucleation is active in simulations of the
migration of interphase boundaries in iron in the case of certain
boundaries. We have found that grain boundary morphology
and structural defect content can dramatically affect migration
kinetics, and a future paper will address this issue in detail.

Here we have focused our analysis on simulations of a
single low-� boundary, typical of those used in computational
studies. We have, however, also simulated a much longer
period �9183 tilt boundary close to the �7 boundary discussed
here (the misorientation angle is 40.17◦ as opposed to 38.21◦).
For this boundary we find the same type of island-based
migration process and the same complex dependence of
velocity on driving force and temperature. In the case of more
general boundaries, the edge of the island structures will not
be a pure step, but will have some dislocation content with
long range strain fields. While these strain fields will add a
component to the energy of an island nucleus dependent on
its radius, the relevant limit is the low driving force one. At
low force, the critical islands will be very large and the strain
component in the edge energy will likely be negligible.

IV. CONCLUSIONS

We have presented the results of dynamical simulations
of the migration of a typical low-� symmetric tilt boundary
across broad ranges of driving forces and system sizes. To
ensure that our boundary migration simulations were properly
converged we employed larger simulations cells and smaller
driving forces than in typical studies in the literature, i.e.,
we have moved systematically towards the experimental limit
of very large system size and very low driving force. The
grain boundary velocities obtained in our simulations violated
several of the key assumptions concerning grain boundary
kinetics: The velocity was not generally proportional to the
driving force for grain boundary motion, the energy barrier
for migration varied strongly with driving force and with
temperature, and the kinetics of migration showed a strong
and complicated dependence on the size of the system being
simulated.

Since a converged description of grain boundary migration
was only achieved at large system sizes, we carried out a
detailed analysis of the migration mechanism at this length
scale, i.e., the mesoscale. By examining the evolving shape
of migrating grain boundaries in dynamical simulations in
very large systems we were able to identify the rate-limiting
process: an island-based migration mechanism. Flat grain
boundaries move by the nucleation, growth, and coalescence
of islands of transformed material on the grain boundary
surface. We developed an analytical model for this island-
based migration mechanism and derived the key parameters
for the model from calculations of static grain boundaries,

independent of the dynamical simulations. We showed that
the analytical island model accurately reproduces the complex
variation of the grain boundary velocity with driving force
and temperature. We identified several different modes of
grain boundary migration, dependent on driving force and
system size. In artificially small systems the island-based
mechanism is frozen out and the grain boundary migrates via a
simultaneous rearrangement of all grain boundary atoms,
a process with a lower energy barrier. In larger systems
a single island can form, coalescing with itself across the
periodic boundaries of the simulation cell. Only in fully
converged large systems can a multiple-island-based migration
mechanism become operational. The transition between the
different modes of migration explains the complex system
size dependence of the grain boundary velocity. Due to
computational constraints, studies in the literature typically
make use of systems that are substantially smaller than those
that we find to be necessary for size-converged migration
results.

The migration of defect-free, flat grain boundaries via
the formation and growth of islands involves the kinetics of
homogeneous nucleation. Our analytical model for this process
highlights that the energy barrier for grain boundary migration
is inversely proportional to the driving force. This very strong
driving force dependence is verified by the results of our dy-
namical simulations in large systems at low driving force. The
implication is that in the range of experimental driving forces
defect-free, flat grain boundaries become immobile, implying
that the concept of an intrinsic mobility becomes obsolete
for such boundaries. When such boundaries are observed to
move in experiment this is, we suggest, a consequence of
being above the roughening transition temperature or of the
presence of structural defects in the boundary. In the latter case
the mobility will be a property of the defect content rather
than an intrinsic property of the boundary associated with its
geometry.

We have highlighted the important role of the mesoscale in
determining mechanisms of grain boundary migration and how
these mechanisms qualitatively modify the migration kinetics,
i.e., the dependence of migration velocity on driving force
and temperature. For low driving forces and simulation cells
sufficiently large to accommodate the mesoscale features a
migration mechanism based on island nucleation has been
uncovered. This mechanism shows a fundamentally different
asymptotic behavior at zero driving force to previously
discussed mechanisms. It will be interesting to see if even
lower driving forces are associated with further mesoscale
mechanisms, which may have different asymptotic behavior.
The critically important and qualitative implications of size
convergence and dimensionality for deriving grain boundary
mobility data from MD simulations, discovered and analyzed
in this study, should be accounted for in future work and are
likely to further impact our understanding of grain boundary
kinetics.
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