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Thermal spin transition of circularly shaped nanoparticles in a core-shell structure investigated
with an electroelastic model
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The functionalization of spin crossover materials as nanoscopic devices is a big challenge to overcome. It will
entail a detailed exploration of why and how size reduction affects spin crossover behavior. We investigated the
thermal spin transition of a nanoparticle in a core-shell structure as a function of particle size, the intensity of
interactions between molecules, and also the thickness of the shell and its stiffness. The analysis was performed
using an electroelastic model based on Monte Carlo methods on a distortable two-dimensional lattice, the sites
of which are occupied by high-spin or low-spin atoms. Such analysis reflects the crucial influence of size as well
as of the surrounding environment on the behavior of the spin transition, and it provides reliable explanations
based on the elastic properties of the system.
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I. INTRODUCTION

Switchable molecular solids such as spin transition com-
pounds [1] still stimulate a particular interest among scientists
due to their bistable states, which are accessible using different
external stimuli such as temperature, light, pressure, magnetic
field, and more recently electric field [2–10]. Such molecular
flexibility indicates a considerable capability and promising
prospects in highly technological applications. To be integrated
in functional devices, spin crossover compounds should main-
tain their bistability at the nanometer scale. Recently, several
extensive research efforts have been devoted to the study of
the thermodynamic properties of spin crossover compounds
[9,11–21]. However, extrapolation from bulky behaviors to
nanosized systems is a serious challenge for scientists. In fact,
the decreasing size of the materials adds further barriers to
overcome, such as the confinement as well as interface effects.
Although there has been chemical success in reproducing
a spin transition at the nanometer scale, many obstacles
remain. These include a marginal change in the transition
temperature and the partial character of the transition. Several
experimental investigations have focused on the environment
effect [22] as well as the size effect on the thermal spin
transition [9,11–21], however very few theoretical attempts
have been devoted to exploring the physical mechanisms
governing the bistability of spin crossover nanoparticles and
their potential behavior changes through their interaction with
their immediate environment. In this context, the Ising-like
model [23] with forced high-spin (HS) molecules at the
surface (accounting for the weakness of the ligand field at the
surface) and elastic models [24] were introduced to explain the
experimental observations of individual spin crossover (SC)
nanoparticles and those embedded in a matrix, respectively.
Despite the success of these studies, many aspects are still
unclear and need further investigations. In particular, the role
of the lattice symmetry and the shape of the nanoparticles on
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their cooperative character merits closer examination with a
view to identifying new properties.

In this paper, we investigate the thermal spin transition of a
circularly shaped SC nanoparticle with forced HS molecules
at the edge by means of an electroelastic model. To be
general, we considered a nanoparticle in a core-shell structure.
The core-shell system here refers to the inner core with
spin crossover properties, while the outer shell consists of
inactive materials not involved in the spin transition. From
an experimental point of view, usually the shell acts as a
protective layer to strengthen the core performances or to
bring new properties such as fluorescence, which leads to
bifunctional spin crossover/luminescence nanoparticles [25].
The previously used electroelastic model has demonstrated
an ability to investigate the interplay between elastic interac-
tions in a core-shell model for square-shaped spin-crossover
nanoparticles [26]. The added value of this work regarding
the contribution cited previously entails (i) investigating the
thermal spin crossover transition with regard to the different
structural parameters of the particle, and (ii) providing insight
into the effect of the shape on the different laws that govern
thermal behavior. Here, we focus on a systematic investigation
of the different structural parameters of a spin crossover
nanoparticle, while in our previous work [26] we focused
mainly on the size effect of the system. The paper is organized
as follows: In Sec. II, we present the electroelastic Hamiltonian
and we describe the simulation procedure. In Sec. III, we
study the behavior of the thermal spin transition of the circular
nanoparticles as a function of their size, the interaction, the
shell’s stiffness, and the shell’s thickness. In Sec. IV, we
conclude.

II. THE MODEL: CALCULATION DETAILS

We consider a two-dimensional (2D) circularly shaped
lattice with fixed topology and open boundary conditions. The
core-shell structure is described by an inner spin crossover
core, where the spins and positions of each node can be
changed through the usual Monte Carlo procedure. The outer
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FIG. 1. (Color online) (a) Schematic representation of the stud-
ied core-shell system, r is the radius of the nanoparticle and a

represents the thickness of the shell consisted by atoms forced in the
HS state. (b) Topology of bonds between the node i and its nearest
(next-nearest) neighbors jα (kα). At equilibrium, the interaction
length between the nearest (next-nearest) neighbors is R0(Si,Sj )
[R0(Si,Sk)].

layer acts as a shell represented by nodes locked in the HS
state, and only their positions are changed by the Monte Carlo
procedure. The atoms can move only inside the plane. To
justify the choice of the HS shell, we assume that, in the
case of nanoparticles, molecules located on the surface (here
the border) experience a weaker ligand field, which forces
them to stay in the HS state. A schematic representation
of the studied nanoparticle system is reported in Fig. 1(a).
The nodes of the system are placed to establish a square
symmetry, where each node has four nearest neighbors (NNs)
and four next-nearest neighbors (NNNs), as shown in Fig. 1(b).
The nodes of the lattice are considered as spin crossover
molecules and may have two spin states, high-spin (HS) and
low-spin (LS), described by the respective eigenvalues +1
and −1 of an associated fictitious spin S. The distance and
the interactions between the molecules depend on their spin
states. In fact, the interactions between NN and NNN can be
considered through springs whose stiffness depends on the
instantaneous distance between the sites. The total Hamilto-

nian of the system, taking into account electronic and elastic
contributions, reads

H =
∑

i

(� − kBT ln g)Si

2
+

∑
i,j

Aij [rij − R0(Si,Sj )]2

+
∑
i,k

Bik[rik − R′
0(Si,Sk)]2. (1)

This Hamiltonian was introduced earlier in a previous work
[27]. We recall that the first term of Hamiltonian (1) contains
the ligand-field energy, �, and the entropic contribution,
−kBT ln g, arising from the degeneracy g (electronic, orbital,
and vibrational) of the spin states. The second and third terms
account for the elastic interactions between NN and NNN spin
crossover units, respectively. R0(Si,Sj ) is the equilibrium bond
lengths between two nodes i and j depending on the bond type;
R0(+1,+1) = RHH

0 , R0(+1,−1) = R0(−1,+1) = RHL
0 , and

R0(−1,−1) = RLL
0 , where RHH

0 , RHL
0 , and RLL

0 are the
respective equilibrium distances between HS-HS, HS-LS, and
LS-LS sites. It is straightforward to demonstrate that

R0(Si,Sj ) = ρ0 + ρ1(Si + Sj ) + ρ2SiSj , (2)

where ρ0 = (RHH
0 +2RHL

0 +RLL
0 )

4 , ρ1 = (RHH
0 −RLL

0 )
4 , and ρ2 =

(RHH
0 −2RHL

0 +RLL
0 )

4 .
In the Hamiltonian (1), Aij (Si,Sj ) [Bik(Si,Sk)] denotes the

local bond stiffness of NN (NNN) bonds and is written under
the following form so as to decrease the total elastic constant
in the HS spin state: Aij (rij ) = A0 + A1(rij − RHH

0 )2 and
Bik(rik) = B0 + B1(rik − √

2RHH
0 )2. A0 (B0) and A1 (B1) are,

respectively, the harmonic and the anharmonic contributions
to the elastic interaction energy between NN (NNN) neigh-
bors, while rij = ‖�ri − �rj‖ (rik) is the instantaneous distance
between two NN (NNN) sites.

The Monte Carlo procedure was executed on both spin and
position variables. The stochastic algorithm is performed in
the following way: for a site i randomly selected, with spin
(Si = ±1) and position �ri , a new spin value Si (= −Si) will be
set without position change. This spin change is accepted or
rejected by the usual METROPOLIS criterion. Once the new
spin value is accepted, the lattice is relaxed mechanically
by a slight motion of each node selected randomly with a
quantity ‖δ �ri‖ � ‖�ri‖. Afterward, a new site will be selected
randomly, and so on. Once all the nodes of the lattice are
visited for the spin change, we define such a step as the
Monte Carlo step (MCS) unit. The adopted kinetic temperature
is defined as the system is first cooled down from 400 to
0 K and then warmed up until 400 K. In both ways, the
thermal increment is 1 K. For each temperature, 103 MCSs
were required. In the present model, we use (as much as is
possible) realistic parameter values derived from experimental
data. Thus, we take for ligand-field energy � = 1500 K and
for the degeneracy ratio g = 150 [28–30] leading to an entropy
change at the transition �S = NkB ln g = 82 J K−1 Mol−1 and
a transition temperature Teq = �

kB ln g
≈ 300 K.

The equilibrium distances in the LS and HS states
are, respectively, R0(−1,−1) ≈ 1 nm and R0(+1,+1) ≈
1.2 nm, while for the HL state we consider R0(+1,−1) ≈
[R0(+1,+1)+R0(−1,−1)]

2 = 1.1 nm. The lattice parameter between
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NNN HS (LS) atoms is simply given by
√

2R0(+1,+1) ≈ 1.7
nm [

√
2R0(−1,−1) ≈ 1.4 nm].

III. RESULTS AND DISCUSSION

The Hamiltonian as written in Eq. (1) does not express
clearly the connection between the electronic (spin states)
and the elastic (atomic positions) degrees of freedom of the
core-shell particles. Therefore, we reexpress Eq. (1) in terms
of an Ising-like Hamiltonian with space-dependent effective
interaction and field [27]. After simple developments, we
get the expression of Hamiltonian (3), where for simplicity
we show only the harmonic contributions and the elastic
interactions between the first nearest neighbors,

H =
∑
i−j

JijSiSj +
∑

i

hiSi + A0

2

∑
i−j

(rij − ρ0)2 + C. (3)

There, the parameters Jij and hi are the local exchangelike
interactions and the local fieldlike contributions, respectively.
The expressions of Jij and hi are given by

Jij = A0
[
ρ2

1 − ρ2(rij − ρ0)
]

(4)

and

hi = 1

2
(� − kBT ln g) + z

2
A0ρ1ρ2 − A0ρ1

z∑
j=1

(rij − ρ0),

(5)
where the index j runs over the neighbors of a given site i, and
z (=4) is the coordination number. The constant C is given by

C = zN

4
A0

(
2ρ2

1 + ρ2
2

)
, (6)

and it will be omitted hereafter, since it does not play any role
in the thermodynamic properties of the system. The third term
of Eq. (3) is related to the cohesion energy of the lattice, whose
equilibrium distance is given by ρ0. It is interesting to mention
that the general structure of the interaction parameter Jij shows
that the present model allows to generate both short- and long-
range interactions, via the respective two-site contributions,
A0ρ

2
1SiSj and −A0ρ2

(
rij − ρ0

)
SiSj . In addition, the fieldlike

structure shows also an electronic and elastic contribution,
easily identified in Eq. (5).

In the present simulations, we have used RHL
0 = (RHH

0 +RLL
0 )

2 ,
and therefore ρ2 = 0, which leads to the following expressions
of Jij and hi :

Jij = A0ρ
2
1 (7)

and

hi = 1

2
(� − kBT ln g) − A0ρ1

z∑
j=1

(rij − ρ0). (8)

To express the equilibrium temperature as a function of the
different parameters studied above, we introduce a simple
solution based on the working assumption that the equilibrium
temperature of the system results from the average value
of the ligand fields. To express analytically the equilibrium
temperature, we consider only the nearest neighbors in our de-
velopment. In a core-shell structure, the interactions between

molecules are not the same depending on their positions. The
nodes in the core part experience the same kind of interaction
with their four nearest neighbors, unlike those located at the
interface core/shell. For the latter case, we assume that nodes
located at the interface have two nearest neighbors on the
core and two nearest neighbors on the shell. In the case of
a particle whose R is the radius and a the thickness of the
shell, we count π (R − a)(R − a − 2) nodes in the core part
and 2π (R − a)ω nodes on the core/shell interface, where ω

is a unit distance required for dimensional homogeneity. Such
analysis leads to the following expression of the equilibrium
temperature derived from Eq. (8) by setting hi = 0:

Teq = �

kB ln g
+ 4A0ρ1

kB ln g

[ −ρ1ω

(R − a)
− 2(〈r〉Teq − ρ0)

]
. (9)

To assess the enriching contribution of the above elec-
troelastic model and to suggest possible explanations for the
experimental results related to spin crossover nanoparticles
in a core-shell structure, it is necessary to understand how
the thermal hysteresis loop connects to the different structural
parameters. For that, let us make a detailed investigation of
the equilibrium temperature and hysteresis width as a function
of various parameters, such as the particle size, the interaction
strength, the shell’s stiffness, and the shell’s thickness. The
average properties of the system are represented by means of
the HS fraction, nHS, defined as

nHS = (1 + 〈Si〉)
2

, (10)

which represents the probability of occupying the HS state at a
given temperature. The transition temperature (called also the
equilibrium temperature), Teq, and the hysteresis width �T

are estimated numerically as

Teq = T HS→LS + T LS→HS

2
, �T = T HS→LS − T LS→HS,

(11)
where T HS→LS and T LS→HS are the transition temperature in
the cooling and warming processes, respectively.

A. Dependence on the particle size

To analyze the effect of nanoparticle size, we have con-
sidered πR2 molecules (where R is the radius of the particle
comprised in the range 4–20 nm) interacting elastically with
an elastic constant A0 = 105 K/nm2. The thickness of the shell
was fixed to 2 nm. The obtained results are reported in Fig. 2
and they undeniably exhibit a size dependence of the thermal
variation of the HS fraction. Thus, the reduction of the particle
size induces a shift of the hysteresis to lower temperature
as well as a narrowing of the hysteresis aperture, in good
agreement with the experimental observations [15,17,31].
However, and surprisingly, the cooperative behavior of the
transition appears to be less sensitive to the size modification,
since the system maintains the first-order character even at
small particle sizes. According to Eq. (9), the equilibrium
temperature has a rational behavior as a function of the
particle radius in particular when R � a. The fit (red line)
of the simulated results of the equilibrium temperature (open
circles) using the approximated theoretical expression (9)
indicates that for a large system the equilibrium temperature
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FIG. 2. (Color online) (a) Thermal hysteresis for different parti-
cle sizes. (b) Transition temperature vs the particle’s radius, R. Inset:
transition temperature vs 1/(R − a), showing a linear plot. (c) The
hysteresis loop width (�T ) vs R, and in the inset, �T vs of 1/R,
showing a linear plot. The figures were computed using the parameter
values A0 = 105 K/nm2 and a = 2 nm.

becomes rather constant, which corresponds to the bulky
behavior. Furthermore, the equilibrium temperature as well
as the hysteresis width behave linearly as a function of the
inverse of the particle radius, as illustrated in the insets of
Figs. 2(b) and 2(c). At this stage, we should mention that the
intercepts derived from the linear fit of Teq and that of �T as a
function of 1/R correspond to the equilibrium temperature and

hysteresis width of a macroscopic system (R → ∞), and we
find here T R→∞

eq ≈ 278 K and �T R→∞ ≈ 184 K, respectively.
T R→∞

eq could also be evaluated from Eq. (9) as

T R→∞
eq = �

kB ln g
+ 4A0ρ1

kB ln g
[−2(〈r〉Teq − ρ0)] ≈ 272 K,

(12)
a value that agrees quite well with that of the simulation.
To well understand the origin of the small deviation (2%)
between the simulation and the analytical prediction, we
should mention that for a free boundary problem (a spin
crossover system without forced HS atoms on the surface),
the term (〈r〉Teq − ρ0) in Eq. (9) must strictly vanish at the
transition temperature due to the equiproportionality of the
HS and LS fractions, where 〈r〉 = ρ0 = RHL

0 . However, in
the present case the situation is different, especially from the
structural point of view, due to the presence of forced HS atoms
on the surface. Indeed, the shell, whose lattice parameter is
that of the HS state (i.e., quite large), applies a “negative”
stress on the core part of the particle and tends to increase the
lattice parameter of the equilibrium structure, which always
remains larger than ρ0 at equilibrium (i.e., when we have
equipopulation between the HS and the LS of the core).
Therefore, this effect was not accounted for in the analytical
expression (12).

Although the decreasing trend of the equilibrium tempera-
ture as a function of the system’s size has already been reported
in the case of square-shaped nanoparticles [26], it should be
noticed that the rational law of Teq as a function of the size,
found in the present work, deviates from that estimated in [26],
in which Teq behaves as Teq ∝ √

ln (L − L0) , where L denotes
the size of the nanoparticle and L0 is the smallest size from
which the system can convert from LS to HS. This difference
between the two studies is attributed to the difference in
the lattice’s shape (circular and square), thus indicating the
importance of this parameter. Additionally, one can easily
remark that the transition temperatures T HS→LS and T LS→HS

do not behave similarly [see Fig. 2(a)]. Actually, while T HS→LS

remains insensitive to the particle size change, T LS→HS clearly
increases with the radius R. This demonstrates that the LS
state is stabilized when we increase the particle radius, R,
and then the negative stress applied by the shell has less of
an effect on the core part. This feature can be understood by
considering that the effect of the shell is weighted by the ratio
shell/core: R2−(R−a)2

(R−a)2 � 2 a
R

, which straightforwardly vanishes
when R � a.

B. Effect of the stiffness of the shell

Here, we use a radius value R = 12 nm and a shell thickness
a = 3 nm, which are maintained constant in the simulations.
Our first goal was to check how the elastic constant, A0, acts
on the thermal spin transition based on the assumption that
the shell and the core have the same elastic constant, A0. The
corresponding results are summarized in Fig. 3. As expected,
by changing the value of A0, the nature of the transition
could be changed. Indeed, as the interaction becomes weak,
the transition moves from first order to gradual (Boltzmann
distribution). Furthermore, Figs. 3(a) and 3(b) reveal that
when the value of A0 is decreased, the thermal hysteresis loop
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FIG. 3. (Color online) (a) Thermal hysteresis for different in-
teractions between molecules. (b) Evolution of the equilibrium
temperature as a function of the elastic constant A0. (c) Width of
the hysteresis as a function of the elastic constant A0. (Computed for
R = 12 nm and a = 3 nm.)

shifts to a lower temperature [see Fig. 3(b)] with a narrowing
of the hysteresis aperture [see Fig. 3(c)]. This fact agrees
with the previous tendencies reported in the different elastic
models based on a deformable lattice [25,27,32–36]. The
linear behavior of the equilibrium temperature as a function
of the elastic constant, A0, is remarkable in Eq. (9). Such
behavior is a consequence of the contribution of the elastic
field, −A0ρ1

∑z
j=1(rij − ρ0) [see Eq. (8)], to the total ligand

field energy, and this term is one of the most important
contributions of the interactions between the electronic and
the elastic degrees of freedom in this problem. In the case of a
system without a shell, the latter term should be negative in the
HS state and positive in the LS state. This reasoning is quite

general and remains valid as soon as we consider that the shell
has the same elastic properties (i.e., stiffness and equilibrium
distances) as those of the HS state. One can wonder whether the
slope of the Teq(A0), depicted in Fig. 3(b), becomes positive.
For that, the condition −ρ1ω

(R−a) > 2(〈r〉Teq − ρ0) [derived from
Eq. (9)] should be satisfied. This is impossible, since 〈r〉Teq

is always bigger than ρ0 due to the existence of a forced
HS molecules on the surface. The latter contributes to the
negative slope of Teq and promotes the HS state, explaining
the asymmetric shift of the transition temperature T HS→LS and
T LS→HS of the hysteresis loops.

Turning to the effect of shell stiffness, now we study the
general case in which the shell and the core of the particle
do not have the same elastic constants. Hereafter, we keep
unchanged the elastic constant of the core part as A0 =
105 K nm−2 and we tune the elastic constant Z of the shell in
the range 104–106 K nm−2. It is important to mention that for
the sake of simplicity, the equilibrium distances between the
neighboring atoms in the shell have been set equal to those of
the HS state, and they are also kept unchanged when we vary Z.
The corresponding results are summarized in Figs. 4(a)–4(c),
which reveal that a soft shell (Z � A0) leads to a narrow
hysteresis (in contrast to rigid shells, which induce a large
hysteresis width). Moreover, Fig. 4(a) shows that the transition
temperature upon cooling (HS → LS) is less sensitive to the
rise of the shell’s stiffness, unlike that of (LS → HS), which
remarkably increases with Z. To understand these results, one
has to consider that the first-order transition studied here is
accompanied by the volume change of the core part, and so any
pressure effect on the core will delay the transition. This is what
happened when we increased the rigidity of the shell, which
then hinders the volume change of the core. For higher (lower)
Z values, a higher (lower) equilibrium temperature results, as
depicted in Fig. 4(b). However, the evolution of the associated
thermal hysteresis width shows also an increasing behavior
with Z. Such a fact is clearly different from the usual pressure
effect in SC solids that is accompanied by the vanishing of the
first-order character of the transition at high-pressure values.
Consequently, the present situation is much more subtle since
the variation of the stiffness also affects the cooperativity
of the core part. Increasing Z results in an increase of the
effective elastic interaction of the system, which leads to an
increase of the hysteresis width. It is worth mentioning that
this behavior is not trivial and cannot be explained by the
usual Ising-like models, which do not account for the elastic
effects. Furthermore, Fig. 4(b) shows a nonlinear dependence
of the thermal transition regarding the shell stiffness. Indeed,
one can notice the presence of a threshold value Zth � A0 =
105 K/nm2 above which the equilibrium temperature
converges to the limit Teq = 190 K. A similar behavior is
also observed for the thermal hysteresis width. These results
indicate that beyond the elastic constant A0 of the SCO core,
a further increase in the shell’s stiffness does not influence
significantly the core part. It is worth mentioning that the
present case simulates quite well a spin crossover particle
(core part) embedded in a matrix (shell) having different
elastic properties. In Ref. [22], the authors investigated the
magnetic behavior of Fe(pyrazine)Pt(CN)4 spin crossover
nanoparticles within a different matrix, and they found that
a lower cooperative transition was observed in the case
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FIG. 4. (Color online) (a) Thermal hysteresis for different values
of the shell rigidity, Z. Evolution of the equilibrium temperature
(b) and the hysteresis width (c) as a function of Z. (Computed for
R = 12 nm, a = 3 nm, and A0 = 105 K/nm2.)

of a compressible matrix, which is consistent with our
simulations.

C. Dependence on the thickness of the shell

To study the shell’s thickness effect, we have considered
a lattice with a radius R = 20 nm and we have fixed the
elastic constant of the whole system (core and shell) to
A0 = Z = 105 K nm−2. The equilibrium distance of the shell
was taken independent of its size and equal to that of the HS
phase. The analysis was performed by varying the value of a

from 2 to 17 nm and keeping the core’s radius, R, as constant.
The thermal dependence of the HS fraction, given in Fig. 5(a),

FIG. 5. (Color online) (a) Thermal hysteresis as a function of the
thickness of the shell. (b) Evolution of the equilibrium temperature
as a function of the thickness of the shell a. (c) Width of the thermal
hysteresis loop as a function of the thickness of the shell. (Computed
for A0 = Z = 105 K/nm2 and R = 20 nm.)

shows that the thickness of the shell acts simultaneously on the
transition temperature and the hysteresis width [see Figs. 5(b)
and 5(c)]. In fact, as the thickness of the shell increases,
the transition temperature shifts downward and the hysteresis
vanishes. In a first attempt, this behavior may seem surprising,
since usually when the transition temperature decreases, the
hysteresis width increases. However, one can remark that this
behavior resembles that of Fig. 2, showing the variation of the
thermal hysteresis of the nanoparticle as a function of the core’s
size, and it can be described by a rational law as expressed in
Eq. (9). Indeed, when the shell is very thick (see the case in
which a = 17 nm in Fig. 5), the average atomic distances,
〈r〉, increase and may reach the limiting value 〈r〉 � RHH

0 ,

214109-6



THERMAL SPIN TRANSITION OF CIRCULARLY . . . PHYSICAL REVIEW B 89, 214109 (2014)

obtained for an infinite shell. According to Eq. (9), this effect
will lower the equilibrium transition by the quantity

�Teq = 4A0ρ1

kB ln g

( −ρ1ω

(R − a)
− 2(〈r〉Teq − ρ0)

)
, (13)

in good agreement with the results of the numerical simulations
reported in Fig. 5(b). This lowering of the transition tempera-
ture is accompanied by a decrease of the hysteresis loop, i.e.,
of the strength of the elastic interactions responsible for the
spin transition in the system. The hysteresis vanishes as a result
of a weak ratio between the surface of the electroelastically
active core and that of the electronically inert (but elastically
active) shell. So, a thicker shell induces naturally an important
residual HS fraction due the expanded lattice and consequently
hinders the elastic interactions between the spin crossover
units by reducing all the internal pressures and the elastic
stresses that drive the first-order transition. Indeed, in such a
situation, the LS state is no longer rigid and it resembles the
HS state, therefore the internal elastic forces responsible for
the cooperative nature of the transition vanish, which leads to
the gradual spin crossover transitions obtained in Fig. 5(a).
This is particularly true for a > 11 nm as revealed in Fig. 5(c),
a value that can be assigned as the threshold shell thickness
above which the thermal hysteresis loop disappears. These
results agree well with the experimental observations [22],
where the authors observed the presence of a large hysteresis
for nanoparticles of Fe(pyrazine)Pt(CN)4 coated with a thin
silica shell while a very small aperture was observed for a
diluted system, which corresponds to a thick shell.

IV. CONCLUSION

We investigated the thermal spin transition of nanoparticles
in a core-shell structure, where the shell is simulated by forced
HS molecules on the surface, by means of an electroelastic
model. The thermal spin transition was monitored as a function

of the size of the particle, the intensity of the interactions
between the molecules, as well as the stiffness of the shell
and its thickness. Such analysis clearly reveals dependent
behaviors as a function of the latter parameters and highlights
the crucial influence of the core-shell structure on the thermal
transition. Our main conclusions include the following: (i) a
reduction of the size of the particle induces a shift of the
hysteresis loop to a lower temperature with a narrowing of
the hysteresis loop, (ii) the shell could contribute significantly
in the shift of the hysteresis loop toward lower temperatures
by applying a negative stress on the active SCO core of the
particle, and (iii) the presence of a large hysteresis with a
first-order transition is coupled with a thin and stiff shell.
Such behaviors underline the crucial role of the surrounding
environment of the spin crossover core part of the particle.
Our findings not only agree well with the experimental
observations but also provide potential explanations, based
on elastic consideration, of some behaviors of the thermal
spin transition. Furthermore, our study highlights the crucial
impact of the system shape on the behavior law describing the
variation of the equilibrium temperature as a function of the
size of the particle, where a dramatic change was observed
between the circularly shaped and the square-shaped lattices.
It is interesting to mention that the reasoning developed
here (based on the elasticity) that describes the interaction
of the spin crossover part with its immediate surrounding
environment is not limited to the core-shell structure only, but
could be extended to the case of spin crossover nanoparticles
embedded in some matrix.
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