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Quantum-driven phase transition in ice described via an efficient Langevin approach

Yael Bronstein,1,2 Philippe Depondt,1,2 Fabio Finocchi,1,2 and Antonino Marco Saitta3,4
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The phase transition from ice VII to ice X under extreme pressures is an example where quantum proton
delocalization coexists with classical thermal fluctuations. We investigate this transition, including quantum
effects on the nuclear motion through adapted Langevin dynamics. This approach, which allows us to follow
the semiclassical trajectories of protons, provides excellent agreement with experimental vibrational spectra
indicating a transition pressure of about 65 GPa. Furthermore, we map the full dynamical problem onto a
pressure-dependent, one-dimensional mean-field potential for the proton. By solving exactly the corresponding
Schrödinger equation, we disentangle tunneling and quantum delocalization from classical thermal effects and
identify the transition through the topological changes of the proton ground state and its susceptibility. The
process is dominated by quantum effects even at ambient temperature and can be considered to be a paradigmatic
case of a quantum-driven phase transition.
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I. INTRODUCTION

As the thermal wavelength of a proton is far from negligible
with respect to interatomic distances, its quantum nature is cen-
tral to the static and dynamical properties of hydrogen-based
systems. Nuclear quantum effects (NQE) are pivotal in various
phenomena such as proton tunneling, isotopic fractionation,
and phase transitions in hydrogen-bonded systems [1]. They
may also play a role in technologically relevant problems such
as hydrogen storage and influence the performance of batteries
and fuel cells [2]. However, the systematic understanding of
NQE is often lacking in those systems, partly because quantum
effects on nuclear dynamics can be blurred by the structural
complexity and other competing phenomena [2–4].

We revisit here ice under high pressure as a prototypical
system for studying NQE from a quantitative perspective.
Phase VII of ice has a cubic structure, with disordered
hydrogen bonding. As pressure is increased up to 100 GPa,
the oxygen-oxygen distance decreases, and the molecular
phase VII, where the proton tunnels between a covalent
and a hydrogen bond, transforms into the nonmolecular
phase X, where the proton lies midway between the oxygens
in a symmetric configuration. This structural phase transition,
first predicted in 1972 [5], was confirmed by infrared (IR)
and Raman experiments to take place at ambient temperature
and pressures around Pt � 65 GPa [6–10]. These experiments
showed that the OH stretching mode softens at the transition,
resulting in a cascade of Fermi resonances with the other
modes that depend little on pressure [8]. However, the
importance of NQE in the transition remains elusive, and
the classical Landau picture is recovered only through a
phenomenological Hamiltonian where the mode coupling is
fitted to the experimental data [8–10].

On the theoretical side, IR absorption spectra computed
from Car-Parrinello molecular dynamics simulations at 300 K
showed characteristic features at Pc � 100 GPa linked to the
symmetrization of OH bonds and a marked system anhar-
monicity at the transition [11]. More recent density functional
theory (DFT) calculations, in which the proton is treated

as a classical particle [12,13], systematically overestimate
the critical pressure (∼100 GPa) irrespective of temperature.
Quantum effects on the nuclei have been studied through
ab initio path-integral molecular dynamics (PIMD) [14,15],
which allowed a step forward in understanding the relevance
of NQE in the transition [16–18]. These works showed that
the onset of proton delocalization precedes the transition
from ice VII to symmetrical ice X and inferred that zero-
point motion is responsible for shifting down the transition
pressure to 65 GPa. However, because of the purely statistical
treatment of proton delocalization in standard PIMD, nothing
is known about its dynamical trajectories. As a consequence,
not only is a clear-cut definition of the transition pressure
difficult in theoretical calculations, but also little connection
can be made with experimental vibrational spectra, which,
on the contrary, yield a rather precise transition pressure.
Moreover, even within a quantum description of the system,
a quantitative understanding of the respective contributions of
proton tunneling, which is present in phase VII, and of the
zero-point energy is still lacking.

In this paper, we report on a study of the ice-VII–ice-X
transition based on ab initio molecular dynamics with a
semiclassical treatment of NQE. In Sec. II, we will present
this method, which allows us to treat NQE in the system
efficiently, while keeping a fully dynamical description of the
system, which means diffusive properties, vibrational spectra,
and so on. In Sec. III, our results are then compared to existing
PIMD simulations and experimental data in order to validate
the use of semiclassical proton dynamics in this problem.
Then, in Sec. IV, we will conduct a precise analysis of our
results through a one-dimensional phenomenological model.
Therefore, we will be able to clearly describe the quantum
nature of the transition, even at room temperature.

II. COMPUTATIONAL DETAILS

Computing vibrational spectra through PIMD simulations
requires centroid molecular dynamics [19,20] and is therefore
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computationally extremely demanding and most often not
feasible for systems containing more than a few atoms.
Standard PIMD calculations, although less costly, still require
a massive computational workload and, on the other hand,
only provide statistical properties of the system, leaving out
the dynamical aspects of the system. Therefore, as a key to
understanding the role of NQE in this transition, we use here
a semiclassical method, namely, quantum thermal bath (QTB)
molecular dynamics [21,22]. It is based on Langevin dynamics,
tailored to reproduce the correct quantum energy distribution
through the quantum fluctuation-dissipation theorem [23]. The
equation of motion for a degree of freedom xi with mass m

submitted to an external force f (xi) is then of the usual form:

m
d2xi

dt2
= f (xi) − mγ

dxi

dt
+ R(t), (1)

where R(t) is a “colored random noise” instead of a Gaussian
white noise and γ is a dissipation coefficient. The Fourier
transform of the noise R̃(ω) and γ are related via the quantum
fluctuation-dissipation theorem [23]:

|R̃(ω)|2 = 2mγ �ω

[
1

2
+ 1

exp
(

�ω
kT

) − 1

]
, (2)

where k is the Boltzmann constant. This expression yields
the exact quantum energy distribution and vibrational spectra
in the system in the case of a harmonic potential [22].
Despite its inherent semiclassical nature, this approach has
also been successfully applied in anharmonic systems to study
vibrational spectra in molecules [24], Wigner distributions in
model systems [25], and methane under shock compression
[26]. It was also applied in the study of various other problems,
such as isotope effects in crystals [27], mode coupling to the
electromagnetic field in nanoparticles [28], and heat capacity
of carbon nanotubes and polyethylene [29].

For the present study, we implemented the QTB molecular
dynamics into the QUANTUM ESPRESSO package [30]. We
performed simulations of a cell containing 54 water molecules,

initially arranged in the ice-VII geometry. The nuclear dy-
namics is governed by a Langevin equation with coupling to
a QTB [22], while the electronic structure is treated by the
DFT within the generalized gradient approximation (GGA)
approximation [31] to compute the force f in Eq. (1). We
checked that the van der Waals contributions to the functional
[32] have negligible effects in our high-pressure study. Indeed,
discrepancies between the calculated energies and phonon
frequencies with or without those terms are much smaller
than the error bar due to, for example, the finite length of
our trajectories (see the Appendix).

We used ultrasoft pseudopotentials as available in the
QUANTUM ESPRESSO code [30]. The electronic wave functions
were expanded in plane waves up to a kinetic cutoff of
30 Ry, and the convergence of total energy and forces were
accurately checked. Constant-volume simulations were run
at room temperature with damping coefficients [γ in Eq. (1)]
of 333 or 3.33 cm−1 (simulation results differ only in the
widths of the spectra); run lengths after equilibration were
up to 29 ps long, with an integration time step of 0.484 fs.
The lattice parameter was varied from 18 to 14.5 bohrs, thus
spanning a pressure range from 12 to 180 GPa. The pressure
was computed through the stress theorem [33], and the kinetic
contribution is negligible at all volumes considered here.

III. MOLECULAR DYNAMICS RESULTS

A. Static properties of ice

Figure 1 shows the computed OH pair-correlation function
at different pressures (left panel). In both Langevin (without
NQE) and QTB cases, the low-pressure results consist of two
peaks, denoting two different bond lengths: short (∼1.1 Å)
for covalent OH bonds and long (∼1.4 Å) for compressed
hydrogen H-O bonds. In the classical Langevin simulation, for
P � 40 GPa, the proton never switches between the two bonds
as the two peaks are well defined with g(r) = 0 between them.
When pressure increases, these two peaks merge progressively,
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FIG. 1. (Color online) (left) Oxygen-proton pair correlation function g(r) as a function of the OH distance and (right) average proton
distribution function P (x,ROaOb

) (with no configurational average; see text) of the proton position x and the OO distance ROaOb
: comparison

of QTB and classical Langevin simulations at 300 K.
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until the proton is localized in the middle of the bond. In
contrast, with QTB the peaks are broader, thus revealing looser
bonds, and merge at lower pressure.

For the sake of comparison with PIMD simulations [16–18],
we show in Fig. 1 (right panel) the average proton distribution
P (x,ROaOb ) as a function of the proton position along the
OO segment (x corresponds to δ/2 in Ref. [16]), and the
corresponding OO distance ROaOb . One should note that the
distribution function P (x,ROaOb ) is averaged over one trajec-
tory with no configurational averaging. Indeed, in the case of
a double-well potential, one needs to average over trajectories
with different initial conditions in order to obtain the expected
symmetric probability distribution function. Here, we are
interested in the probability of the particle crossing the barrier
at some point along its trajectory. Therefore, at low pressure,
P � 30 GPa, the proton is localized on one site in the classical
frame, which shows explicitly that it never hops from one well
to the other; indeed, thermal fluctuations are not important
enough at this pressure to induce a delocalization of the
classical proton. In contrast, it is delocalized over two sites
with QTB, meaning that during the course of its trajectory,
the proton passes from one well to the other. Within QTB,
the zero-point energy is thus properly accounted for, and the
proton can jump back and forth through the energy barrier for
pressures as low as 30 GPa. The increasing pressure lowers the
energy barrier between the two minima, thus allowing even the
classical proton to hop between the two sites, as revealed by the
P (x,ROaOb ) function at 55 GPa in the classical simulation. At
90 and 140 GPa, both methods show a unimodal distribution
centered at x = 0, corresponding to ice X. The distribution
functions provided by QTB simulations are similar to those
from ab initio PIMD calculations [16], with the onset of
proton tunneling occurring at lower pressure in our simulations
because of the higher temperature (300 K instead of 90 K in
Ref. [16]).

Both the PIMD [16–18] and our QTB results point
out that NQE are significant and must be included for an
accurate description of the transition. However, in both cases,
proton tunneling tends to blur the transition in which the
transformation of the two-peak probability distribution into
a single peak is continuous.

B. Simulated vibrational spectra

In contrast to the progressive change of OH distribution
functions, IR [6–9] and Raman [10] scattering experiments
results display a relatively precise transition pressure at
approximately 65 GPa. Thus, vibrational properties, which
are naturally computed from the semiclassical trajectories,
at variance with PIMD, are a clue to identify the transition
precisely. The simulated spectra are calculated through the
Fourier transform of the nucleus autocorrelation function at
different pressures:

I (ω) ∝
∑

l

∣∣∣∣
∫

rl(t)e
iωt dt

∣∣∣∣
2

, (3)

where rl(t) is the position of the atom l (l = H,O) projected on
the OO segment at time t . Figure 2 shows the spectra obtained
for different pressures: we can clearly see a broadening and
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FIG. 2. (Color online) Vibrational spectra in ice obtained via
QTB simulations for pressures from 20 to 140 GPa (the spectra have
been shifted for clarity).

softening of the high-frequency mode. We then extract the
mode frequencies and widths from these spectra.

First, we compare the overall spectra with experimental raw
data. As shown in Fig. 3, we obtain excellent agreement with
both IR [6–9] and Raman [10] measured frequencies: for P <

50 GPa, the modes obtained through QTB simulations can be
identified with the experimental spectra, and their symmetries
can thus be distinguished. In the 50–100 GPa range, the high-
frequency mode displays considerable broadening, which is
consistent with the mode couplings shown experimentally. For
P > 100 GPa, the proton has one equilibrium position even in
the classical frame. Therefore, a dynamical matrix analysis
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FIG. 3. (Color online) Vibrational frequencies and widths ob-
tained with QTB at ambient temperature up to 180 GPa. Selected
infrared (inverted triangles [9] and solid squares [8]) and Raman
(solid circles [10]) experimental data: νT is the oxygen translational
vibration, νR and ν ′′

R are rotational vibrations of the H2O molecule,
ν2 is the OH bending vibration, ν1 and ν3 are the symmetric and
asymmetric OH stretching vibrations, νD is the deformational mode,
A1g is a symmetric stretching mode, and Eg1,Eg2 are bidimensional
vibrations. The solid triangles are the highest LO frequency estimated
in Ref. [8]. The softening of the OH stretching mode indicates the
transition from phase VII to phase X of ice.

214101-3



BRONSTEIN, DEPONDT, FINOCCHI, AND SAITTA PHYSICAL REVIEW B 89, 214101 (2014)

through DFT yields the same modes as those calculated
from autocorrelation functions in Eq. (3) and allows the
determination of the symmetries of the high-pressure modes.
Thus, the asymmetric OH stretching mode ν3 is responsible for
the symmetrization of H bonds in the transition. As pressure
approaches 65 GPa, ν3 undergoes a significant softening
and broadening. Here, interactions and coupling between the
different vibrations imply this mode never softens to zero as
in the standard Landau picture for second-order transitions but
presents a clear minimum at the transition.

This spectral analysis is in excellent agreement with the
experimental vibrational data [6–10] rendering a transition
pressure in the 60–70 GPa range. However, two questions
remain open: how do NQE shift the transition pressure down
to 60–70 GPa with respect to 100 GPa as predicted for
the classical proton [11–13], and how can the progressive
character of the proton delocalization [16,17] be reconciled
with the singularity of the soft mode in the vibrational
spectra [6–10]? In order to get more insight into this subtle
matter, we analyze the case of a single proton trapped in a
one-dimensional (1D) effective potential and provide below a
clear and simple transition scheme.

IV. STUDY OF A PHENOMENOLOGICAL MODEL

One-dimensional models have been used extensively in
order to show the existence of three distinct regimes for the
proton in ice under pressure [17,18]. Instead, we present here
a mapping between our model and the QTB simulations:
the proton position x is varied along a fixed OO segment,
and for each position, the energy is determined by static
DFT calculations, yielding an effective potential V (x). Indeed,
because of the cubic structure of phase VII, one OO distance is
representative for the whole system. The parameters of V (x)

are then fitted so that the exact density matrix calculated via
the Schrödinger equation is consistent with the distributions
shown in Fig. 1. Such a potential can thus be viewed as
a mean-field approximation for the quantum proton around
the phase transition. The expression of the potential, inspired
from the Landau model of phase transitions, where the role of
temperature is replaced by pressure, is written as

V (x) = ax4 + b(P − Pc)x2 + V0, (4)

where a = 12.2 eV/Å4, b = 1807.9 eV/(Å2 GPa), and Pc =
100 GPa are fitting parameters. As the pressure P increases

towards Pc, the two minima at xeq = ±
√

b
2a

(Pc − P ) move
closer to each other, and the barrier height decreases. At
the classical transition pressure Pc, the barrier vanishes. The
problem thus reduces to a time-independent Schrödinger
equation for a proton in one dimension: a finite differences
method turns it into an eigenproblem which is easily solved
by standard linear algebra procedures.

A. NQE shift the transition pressure

Typical eigenstates are shown in Fig. 4 below the classical
transition, at 50 and 80 GPa, and above the classical transition,
at 110 GPa: the ground-state wave function undergoes a
topological change when its local minimum at x = 0 becomes
a maximum, between 50 and 80 GPa, with no further
modification between 80 and 110 GPa. This phenomenon is
the signature of a quantum phase transition undergone by the
system [34]. Moreover, in order to quantify the quantum
tunneling of the proton, we express the current through the
barrier at x = 0 as J (0) = −(�/m)�1(0)� ′

2(0) [35], where �i

is the wave function of state i, � ′
i is the derivative with respect

to x, and Ei is its eigenenergy. The Schrödinger equation then
provides a relation between J (0) and the hopping rate �12
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between the two wells [36]:

�12 = E2 − E1

�
= − �

2m

�1(0)� ′
2(0)∫ 0

−∞ �1�2 dx
. (5)

Therefore, three regimes are distinguished in Fig. 5:
(I) P � Pt , E1 < V0 (V0 �= 0),
(II) P � Pt , E1 > V0 (V0 �= 0),
(III) V0 = 0.

In regime I, the onset of tunneling leads to the proton hopping
from one well to the other: therefore, �12 increases rapidly.
However, the ground-state energy E1 remains lower than the
barrier, resulting in a wave function with two maxima and a
local minimum at x = 0.

In regime II, the zero-point energy E1 is higher than V0,
leading to a maximum of the density at x = 0: the proton is
mostly localized around the center of the OO distance, even
though the barrier has not yet disappeared (V0 �= 0). Quantum
tunneling is responsible for the delocalization of the proton
over the two potential wells in regime I, but the transition
occurs when the zero-point energy reaches the barrier height.
The increase in �12 is slowed down because tunneling does
not occur anymore in regime II.

In regime III, the barrier has disappeared (V0 = 0), and
the proton confinement is only due to contraction of the OO
distance.

Therefore, the quantum phase transition occurs when
the zero-point energy reaches the height of the barrier at
approximately 70 GPa, at which point the ground-state wave
function shows a change in nature.

B. Thermal fluctuation contribution

The previous analysis, which was done at T = 0 K, can be
extended to finite temperatures through simple arguments. The
thermal energy associated with a temperature of 300 K is about
26 meV, which is half the barrier height at the transition for
T = 0 K (about 54 meV). Thus, taking into account the thermal
fluctuations leads, to a first approximation, to an upward shift
of the energy (see bottom of Fig. 5). The transition pressure,
determined by the point where the energy is equal to the barrier
height, is therefore reduced from 70 to approximately 65 GPa.
First, this is in excellent agreement with the value found
via IR and Raman measurements [6–10] and independently
with our QTB simulations. Second, even at high temperatures,
the contribution from quantum zero-point motion is far from
negligible, inducing a massive change in the value of the
transition pressure (a decrease of about 40%), and is even
dominant compared to the effect of thermal fluctuations (about
5%). This shows the possibility of having quantum-driven
phase transition in a real system at room temperature and
reinforces the importance of correctly treating NQE.

C. Proton delocalization and soft mode

In order to show the connection between the topological
change in the ground state and the mode softening, we
compute the quantum susceptibility from linear response
theory [37]. Kubo’s formalism gives an explicit expression for
the susceptibility in terms of the system’s eigenstates, which
we computed for the one-dimensional system:

χ =
∫ β

0
dλ 〈x̂(−i�λ)x̂〉 − β〈x̂0x̂0〉, (6)

where β = (kBT )−1 and x̂0 is the diagonal part of the position
operator x̂ (〈·〉 indicates the expectation value at equilibrium).
This expression contains both the quantum and the thermal
contributions to the fluctuations of the system. At 300 K,
well below the transition, �1 and �2 are degenerate, and
the first relevant excited state is �3; above the transition, the
degeneracy between states 1 and 2 is lifted, and the first relevant
excited state is �2.

Figure 5 shows the evolution of the inverse susceptibility
with pressure. In the classical picture, χ−1 is proportional to
the square of the soft-mode frequency; quantum fluctuations
of the proton position are maximum at the transition, which
implies a minimum of χ−1. In both the classical and the
quantum cases, χ−1 is linear with P well below and above
the transition, but the transition pressure Pt � 65 GPa is lower
than its classical counterpart, displaying the same behavior
as ν3, the OH stretching mode in ice (Fig. 3). Hence, the
increase in proton tunneling and delocalization translates into
an increase of its fluctuations which corresponds to a decrease
of the frequency of its associated vibration mode. After the
transition, the contraction of the potential leads to a gradual
confinement of the proton, diminishing its fluctuations, which
implies an increase of the frequency of its vibrations. This
formalism also validates our first approximation of the thermal
energy contribution to the transition pressure.
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TABLE I. Relative difference of the energy of the system �E/E

obtained with or without van der Waals contributions to the functional
after relaxation of a cell containing 54 water molecules for different
pressures.

Pressure (GPa) Relative difference of energy �E/E

7 0.00058
20 0.00072
32 0.00073
49 0.00079
71 0.00079
108 0.00078

V. CONCLUSION

To conclude, we performed ab initio simulations on high-
pressure ice including the QTB method for a semiclassical
description of NQE, which allowed a very efficient and com-
putationally undemanding treatment of the quantum nature
of protons. Consistent with PIMD calculations, our results
showed the onset of proton tunneling at pressures as low
as 30 GPa, well below the classical transition pressure Pc =
100 GPa [11–13]. On the other hand, we provide results with
respect to full-fledged PIMD methods: our approach yields
semiclassical proton trajectories from which we calculated the
vibrational spectra, which are in excellent agreement with IR
[6–9] and Raman [10] measurements.

Therefore, the transition from ice VII to ice X was seen
through two different aspects: the continuous modification of
the proton distribution functions, where two peaks merge at
the transition, and the softening of the OH stretching mode
which indicates a clear transition pressure of Pt � 65 GPa.
The QTB simulations then allowed for a simple mapping to
an effective 1D model, for which the exact quantum solution
of the Schrödinger equation can be computed. First, at T =
0 K, a true quantum phase transition occurs when the ground-
state energy reaches the barrier height, well before the barrier
disappears. This leads to an exact and theoretically rigorous
definition of the transition pressure. Then, thermal effects can
be included: to a first approximation, the energy is just shifted
by kBT , but an exact treatment of both quantum and thermal
fluctuations is achieved through the quantum susceptibility.
The final calculations show that quantum zero-point energy
motion is much more important than thermal fluctuations, even
at 300 K. This formalism also provides the direct connection
between the proton delocalization and the soft mode in the
spectra.

Hence, the combination of spectral analysis and 1D map-
ping leads to a well-rounded and fully consistent description of
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a textbook quantum-driven phase transition, while at the same
time showing that semiclassical approaches for NQE are very
efficient and accurate and might thus have a potentially large
impact on the broad community studying real, large systems
at room temperature.
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APPENDIX: DETAILS ON THE VAN DER WAALS
CONTRIBUTIONS TO THE FUNCTIONAL

In order to determine the effects of van der Waals contri-
butions to the functional in our calculations, we performed
simulations on a cell containing 54 water molecules and
compared the energies obtained after relaxation (Table I), as
well as phonon frequencies (Fig. 6), to the results obtained
without van der Waals contributions.

The relative difference of the energy in the system is ap-
proximately 10−3 (Table I), while the relative difference in the
phonon frequencies (Fig. 6) is about 10−5 for high-frequency
modes and 10−4 for low-frequency modes. Therefore, the
effects of the van der Waals contributions to the functional
are negligible in our high-pressure study.

[1] T. Miyazaki, in Atom Tunneling Phenomena in Physics, Chem-
istry and Biology (Springer, Berlin, 2004), p. 263.

[2] K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Chem.
Rev. 104, 4637 (2004).

[3] H. S. Lee and M. E. Tuckerman, J. Phys. Chem. C 112, 9917
(2008).

[4] L. Buannic, F. Blanc, D. S. Middlemiss, and C. P. Grey, J. Am.
Chem. Soc. 134, 14483 (2012).

[5] W. B. Holzapfel, J. Chem. Phys. 56, 712 (1972).
[6] A. F. Goncharov, V. V. Struzhkin, M. S. Somayazulu, R. J.

Hemley, and H. K. Mao, Science 273, 218 (1996).
[7] K. Aoki, H. Yamawaki, and M. Sakashita, Phys. Rev. Lett.

76, 784 (1996); K. Aoki, H. Yamawaki, M. Sakashita, and
H. Fujihisa, Phys. Rev. B 54, 15673 (1996).

[8] V. V. Struzhkin, A. F. Goncharov, R. J. Hemley, and H. K. Mao,
Phys. Rev. Lett. 78, 4446 (1997).

214101-6

http://dx.doi.org/10.1021/cr020715f
http://dx.doi.org/10.1021/cr020715f
http://dx.doi.org/10.1021/cr020715f
http://dx.doi.org/10.1021/cr020715f
http://dx.doi.org/10.1021/jp800342y
http://dx.doi.org/10.1021/jp800342y
http://dx.doi.org/10.1021/jp800342y
http://dx.doi.org/10.1021/jp800342y
http://dx.doi.org/10.1021/ja304712v
http://dx.doi.org/10.1021/ja304712v
http://dx.doi.org/10.1021/ja304712v
http://dx.doi.org/10.1021/ja304712v
http://dx.doi.org/10.1063/1.1677221
http://dx.doi.org/10.1063/1.1677221
http://dx.doi.org/10.1063/1.1677221
http://dx.doi.org/10.1063/1.1677221
http://dx.doi.org/10.1126/science.273.5272.218
http://dx.doi.org/10.1126/science.273.5272.218
http://dx.doi.org/10.1126/science.273.5272.218
http://dx.doi.org/10.1126/science.273.5272.218
http://dx.doi.org/10.1103/PhysRevLett.76.784
http://dx.doi.org/10.1103/PhysRevLett.76.784
http://dx.doi.org/10.1103/PhysRevLett.76.784
http://dx.doi.org/10.1103/PhysRevLett.76.784
http://dx.doi.org/10.1103/PhysRevB.54.15673
http://dx.doi.org/10.1103/PhysRevB.54.15673
http://dx.doi.org/10.1103/PhysRevB.54.15673
http://dx.doi.org/10.1103/PhysRevB.54.15673
http://dx.doi.org/10.1103/PhysRevLett.78.4446
http://dx.doi.org/10.1103/PhysRevLett.78.4446
http://dx.doi.org/10.1103/PhysRevLett.78.4446
http://dx.doi.org/10.1103/PhysRevLett.78.4446


QUANTUM-DRIVEN PHASE TRANSITION IN ICE . . . PHYSICAL REVIEW B 89, 214101 (2014)

[9] M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, and K. Aoki,
Phys. Rev. B 60, 12644 (1999).

[10] A. F. Goncharov, V. V. Struzhkin, H. K. Mao, and R. J. Hemley,
Phys. Rev. Lett. 83, 1998 (1999).

[11] M. Bernasconi, P. L. Silvestrelli, and M. Parrinello, Phys. Rev.
Lett. 81, 1235 (1998).

[12] X. Z. Lu, Y. Zhang, P. Zhao, and S. J. Fang, J. Phys. Chem. B
115, 71 (2011).

[13] L. Tian, A. I. Kolesnikov, and J. Li, J. Chem. Phys. 137, 204507
(2012).

[14] B. J. Berne and D. Thirumalai, Annu. Rev. Phys. Chem. 37, 401
(1986).

[15] D. Marx and M. Parrinello, J. Chem. Phys. 104, 4077
(1996).

[16] M. Benoit, D. Marx, and M. Parrinello, Nature (London) 392,
258 (1998).

[17] J. A. Morrone, L. Lin, and R. Car, J. Chem. Phys. 130, 204511
(2009).

[18] L. Lin, Ph.D. thesis, Princeton University, 2011, https://web.
math.princeton.edu/�linlin/Thesis_LinLin.pdf.

[19] J. Cao and G. A. Voth, J. Chem. Phys. 100, 5093 (1994); ,100,
5106 (1994); ,101, 6157 (1994); ,101, 6168 (1994).

[20] A. Witt, S. D. Ivanov, M. Shiga, H. Forbert, and D. Marx, J.
Chem. Phys. 130, 194510 (2009).

[21] M. Ceriotti, G. Bussi, and M. Parrinello, Phys. Rev. Lett. 103,
030603 (2009).

[22] H. Dammak, Y. Chalopin, M. Laroche, M. Hayoun, and J. J.
Greffet, Phys. Rev. Lett. 103, 190601 (2009).

[23] H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
[24] F. Calvo, N. T. Van-Oanh, P. Parneix, and C. Falvo, Phys. Chem.

Chem. Phys. 14, 10503 (2012).
[25] M. Basire, D. Borgis, and R. Vuilleumier, Phys. Chem. Chem.

Phys. 15, 12591 (2013).
[26] T. T. Qi and E. J. Reed, J. Phys. Chem. A 116, 10451

(2012).
[27] H. Dammak, E. Antoshchenkova, M. Hayoun, and F. Finocchi,

J. Phys. Condens. Matter 24, 435402 (2012).
[28] Y. Chalopin, H. Dammak, M. Laroche, M. Hayoun, and J. J.

Greffet, Phys. Rev. B 84, 224301 (2011).
[29] S. Buyukdagli, A. V. Savin, and B. B. Hu, Phys. Rev. E 78,

066702 (2008).
[30] P. Giannozzi et al., J. Phys. Condens. Matter 21, 395502

(2009).
[31] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[32] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys.

132, 154104 (2010).
[33] O. H. Nielsen and R. M. Martin, Phys. Rev. B 32, 3792

(1985).
[34] D. Schwandt, F. Alet, and S. Capponi, Phys. Rev. Lett. 103,

170501 (2009).
[35] Y. Dakhnovskii, B. Bursulaya, and H. J. Kim, J. Chem. Phys.

102, 7838 (1995).
[36] A. Messiah, in Quantum Mechanics (Dover, New York, 1958),

Chap. IV, p. 121.
[37] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).

214101-7

http://dx.doi.org/10.1103/PhysRevB.60.12644
http://dx.doi.org/10.1103/PhysRevB.60.12644
http://dx.doi.org/10.1103/PhysRevB.60.12644
http://dx.doi.org/10.1103/PhysRevB.60.12644
http://dx.doi.org/10.1103/PhysRevLett.83.1998
http://dx.doi.org/10.1103/PhysRevLett.83.1998
http://dx.doi.org/10.1103/PhysRevLett.83.1998
http://dx.doi.org/10.1103/PhysRevLett.83.1998
http://dx.doi.org/10.1103/PhysRevLett.81.1235
http://dx.doi.org/10.1103/PhysRevLett.81.1235
http://dx.doi.org/10.1103/PhysRevLett.81.1235
http://dx.doi.org/10.1103/PhysRevLett.81.1235
http://dx.doi.org/10.1021/jp1074434
http://dx.doi.org/10.1021/jp1074434
http://dx.doi.org/10.1021/jp1074434
http://dx.doi.org/10.1021/jp1074434
http://dx.doi.org/10.1063/1.4767718
http://dx.doi.org/10.1063/1.4767718
http://dx.doi.org/10.1063/1.4767718
http://dx.doi.org/10.1063/1.4767718
http://dx.doi.org/10.1146/annurev.pc.37.100186.002153
http://dx.doi.org/10.1146/annurev.pc.37.100186.002153
http://dx.doi.org/10.1146/annurev.pc.37.100186.002153
http://dx.doi.org/10.1146/annurev.pc.37.100186.002153
http://dx.doi.org/10.1063/1.471221
http://dx.doi.org/10.1063/1.471221
http://dx.doi.org/10.1063/1.471221
http://dx.doi.org/10.1063/1.471221
http://dx.doi.org/10.1038/32609
http://dx.doi.org/10.1038/32609
http://dx.doi.org/10.1038/32609
http://dx.doi.org/10.1038/32609
http://dx.doi.org/10.1063/1.3142828
http://dx.doi.org/10.1063/1.3142828
http://dx.doi.org/10.1063/1.3142828
http://dx.doi.org/10.1063/1.3142828
https://web.math.princeton.edu/~linlin/Thesis_LinLin.pdf
http://dx.doi.org/10.1063/1.467175
http://dx.doi.org/10.1063/1.467175
http://dx.doi.org/10.1063/1.467175
http://dx.doi.org/10.1063/1.467175
http://dx.doi.org/10.1063/1.467176
http://dx.doi.org/10.1063/1.467176
http://dx.doi.org/10.1063/1.467176
http://dx.doi.org/10.1063/1.468503
http://dx.doi.org/10.1063/1.468503
http://dx.doi.org/10.1063/1.468503
http://dx.doi.org/10.1063/1.468399
http://dx.doi.org/10.1063/1.468399
http://dx.doi.org/10.1063/1.468399
http://dx.doi.org/10.1063/1.3125009
http://dx.doi.org/10.1063/1.3125009
http://dx.doi.org/10.1063/1.3125009
http://dx.doi.org/10.1063/1.3125009
http://dx.doi.org/10.1103/PhysRevLett.103.030603
http://dx.doi.org/10.1103/PhysRevLett.103.030603
http://dx.doi.org/10.1103/PhysRevLett.103.030603
http://dx.doi.org/10.1103/PhysRevLett.103.030603
http://dx.doi.org/10.1103/PhysRevLett.103.190601
http://dx.doi.org/10.1103/PhysRevLett.103.190601
http://dx.doi.org/10.1103/PhysRevLett.103.190601
http://dx.doi.org/10.1103/PhysRevLett.103.190601
http://dx.doi.org/10.1103/PhysRev.83.34
http://dx.doi.org/10.1103/PhysRev.83.34
http://dx.doi.org/10.1103/PhysRev.83.34
http://dx.doi.org/10.1103/PhysRev.83.34
http://dx.doi.org/10.1039/c2cp41663h
http://dx.doi.org/10.1039/c2cp41663h
http://dx.doi.org/10.1039/c2cp41663h
http://dx.doi.org/10.1039/c2cp41663h
http://dx.doi.org/10.1039/c3cp50493j
http://dx.doi.org/10.1039/c3cp50493j
http://dx.doi.org/10.1039/c3cp50493j
http://dx.doi.org/10.1039/c3cp50493j
http://dx.doi.org/10.1021/jp308068c
http://dx.doi.org/10.1021/jp308068c
http://dx.doi.org/10.1021/jp308068c
http://dx.doi.org/10.1021/jp308068c
http://dx.doi.org/10.1088/0953-8984/24/43/435402
http://dx.doi.org/10.1088/0953-8984/24/43/435402
http://dx.doi.org/10.1088/0953-8984/24/43/435402
http://dx.doi.org/10.1088/0953-8984/24/43/435402
http://dx.doi.org/10.1103/PhysRevB.84.224301
http://dx.doi.org/10.1103/PhysRevB.84.224301
http://dx.doi.org/10.1103/PhysRevB.84.224301
http://dx.doi.org/10.1103/PhysRevB.84.224301
http://dx.doi.org/10.1103/PhysRevE.78.066702
http://dx.doi.org/10.1103/PhysRevE.78.066702
http://dx.doi.org/10.1103/PhysRevE.78.066702
http://dx.doi.org/10.1103/PhysRevE.78.066702
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1063/1.3382344
http://dx.doi.org/10.1063/1.3382344
http://dx.doi.org/10.1063/1.3382344
http://dx.doi.org/10.1063/1.3382344
http://dx.doi.org/10.1103/PhysRevB.32.3792
http://dx.doi.org/10.1103/PhysRevB.32.3792
http://dx.doi.org/10.1103/PhysRevB.32.3792
http://dx.doi.org/10.1103/PhysRevB.32.3792
http://dx.doi.org/10.1103/PhysRevLett.103.170501
http://dx.doi.org/10.1103/PhysRevLett.103.170501
http://dx.doi.org/10.1103/PhysRevLett.103.170501
http://dx.doi.org/10.1103/PhysRevLett.103.170501
http://dx.doi.org/10.1063/1.468984
http://dx.doi.org/10.1063/1.468984
http://dx.doi.org/10.1063/1.468984
http://dx.doi.org/10.1063/1.468984
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1088/0034-4885/29/1/306



