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Current-dependent periodicities of Si(553)-Au
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We investigate quasi-one-dimensional atomic chains on Si(553)-Au with a scanning tunneling microscope
(STM). The observed periodicity at the Si step edge can be altered by the STM and depends on the magnitude
of the tunneling current. In a recent report this reversible structural transition was attributed to transient doping
with a characteristic time scale of a few milliseconds [S. Polei et al., Phys. Rev. Lett. 111, 156801 (2013)]. Here
we explore the evolution of the STM topography as a function of the magnitude of the tunneling current for a
wide temperature range. Based on a decomposition of topographic line profiles and a detailed Fourier analysis
we conclude that all observed current-dependent STM topographies can be explained by a time-averaged linear
combination of two fluctuating step-edge structures. These data also reveal the precise relative alignment of the
characteristic STM features for both phases along the step edges. A simple diagram is developed, presenting the
relative contribution of these phases to the STM topography as a function of tunneling current and temperature.
Time- and current-dependent measurements of fluctuations in the tunneling current reveal two different transition
regimes that are related to two specific current injection locations within the surface unit cell. A method based
on spatially resolved I (z) curves is presented that enables a quantitative analysis of contributing phases.
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I. INTRODUCTION

The capability to manipulate surfaces on the atomic level
with a scanning tunneling microscope (STM) has led to new
possibilities to tailor their structural and electronic properties.
This enabled the discovery of exciting phenomena such as
the quantum mirage effect [1], or recently, the construction
of a single atom transistor [2] and spin-logic circuitry [3].
Techniques for surface modification include tip induced
rearrangement [4], diffusion [5,6], or desorption [7–9] of atoms
and molecules. Moreover, the manipulation of even larger
structures such as nanometer-sized islands or carbon nanotubes
can be accomplished via localized injection of excess charge
using a tunneling current [10,11,12].

Recently we have reported on the effect of transient electron
doping on the Si(553)-Au surface structure. In this technique,
electrons tunnel from the tip into the sample and have a finite
probability to briefly stay in the surface electronic system
before eventually draining to the bulk. This transient electron
doping destabilizes the original 1×3 ordered ground state of
the surface structure, which reorganizes into a 1×2 ordered
phase. When the injected charge drains into the bulk, the
system relaxes to its 1×3 ground state, where it remains
until the next doping process occurs. By varying the tunneling
current, the transition rate from the 1×3 to the 1×2 phase could
be controlled. Because the magnitude of the tunneling current
at constant tip height is affected by the transient changes of
the surface structure, recording time-resolved current traces
enabled the extraction of the corresponding lifetimes τ0 and τ1

of 1×3 ground state and 1×2 excited state, respectively [13].
Here the focus is on an alternative analysis based on time-

averaged features, i.e., in the regime where the measurement
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rate is slower than the time scale of the transient fluctuations
of the surface structure. This approach allows us to analyze the
topographic changes due to the phase transition yielding im-
portant information for the development of a structural model
of the excited state. Based on a systematic study of current- and
temperature-dependent topographic periodicities, a qualitative
phase diagram is established that visualizes the evolution of
the one-dimensional surface structure. Spatially resolved I (z)
curves are utilized to reveal intra-unit-cell differences in the
doping efficiency. These differences are attributed to the spatial
distribution of the amplitude of the wave function associated
with the state into which the doping charge is injected.
Finally, a method is presented that quantitatively describes the
current dependence of time-averaged topographic STM data,
and allows for an independent extraction of typical currents
necessary to excite the system.

II. METHODS

Experiments were performed in a commercial low-
temperature STM system equipped with a separate prepa-
ration chamber. In both chambers the base pressure was
<10−10 mbar. The STM was operated at temperatures between
7 and 78 K. Positive tunneling biases correspond to electrons
traveling from tip to sample. The Si(553) substrate (0.01–
0.03 � cm, p type) was first degassed at 650 °C for a few
hours and subsequently flashed several times to 1280 °C. The
optimum Au coverage to obtain a well-ordered Si(553)-Au
surface is �0.5 ML [14]. The best surface quality is obtained
by depositing slightly more than 0.5 ML Au on the substrate
at 650 °C, followed by a brief post anneal at 1060 °C to
desorb excess gold. This resulted in a well-defined Si(553)-Au
reconstruction with low defect density.

Current-distance [I (z)] curves recorded during a linear
z ramp were numerically inverted to yield z(I ). Mea-
surements were performed with Cr and W tips that were
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electrochemically etched in HCl and NaOH solutions, respec-
tively, followed by in vacuo conditioning through heating and
Ar ion self-sputtering. The results presented in the following
were consistent for experiments using Cr and W tips.

III. RESULTS

A. Current-dependent corrugation

In Fig. 1(a) the STM topography of the Si(553)-Au surface
at 60 K is shown. Bright vertical stripes with a perpendicular
spacing of �1.5 nm represent the Si step edges [15]. For
sufficiently low tunneling currents (2 pA) these step edges
exhibit bright protrusions that are equally spaced along the
chains by 3aSi (�1.15 nm), establishing a 1×3 periodicity
characteristic of the low-temperature phase [16–19].

The same sample area imaged at higher current (2 nA)
is presented in Fig. 1(b). A clear change in the periodicity
to a 1×2 structure is observed, showing that the structure is
controlled by the tunneling current.

In a previous publication we have shown that this transition
is accompanied by a fast switching between the 1×3 and 1×2
structures [13]. Recording topographic STM images z(x,y) at
constant current I at a pixel imaging rate slower than the typical
frequency of these fluctuations is then expected to correspond
to a simple linear combination of the 1×3 [z1×3(x,y)] and 1×2
[z1×2(x,y)] phases:

z(x,y,I ) = α(I )z1×3(x,y)

+ [1 − α(I )]z1×2(x,y) + β(I ), (1)

where α(I ) = τ0/(τ0 + τ1) is the (current-dependent) fraction
of time that the surface displays 1×3 order and β(I ) is a
current-dependent offset in z due to the reduced tip-sample
distance when increasing the tunneling current. We assume
here that z1×3(x,y) and z1×2(x,y) are independent of I, justified
a posteriori by the good agreement in Fig. 2(e) (see below).

High-resolution images of a single Si step edge at 60 K are
presented in Figs. 2(a)–2(c) together with the corresponding
line profiles in Figs. 2(d)–2(f) (solid black curves). The 1×3
structure at I = 3 pA consists of a sequence of bright pro-
trusions with alternating apparent height. For a slightly higher
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FIG. 1. (Color online) STM topography (Ugap = 1 V) of Si(553)-
Au taken at 60 K and different tunneling currents. (a) At I = 2 pA
bright protrusions on the step-edge chains form a 1×3 periodicity. (b)
same sample area at I = 2 nA. On the step edges a 1×2 periodicity
is observed.
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FIG. 2. (Color online) STM topography (Ugap =+1 V, T = 60 K)
of a single Si step edge. (a) 3 pA: 1×3 periodicity, (b) 10 pA: 1×6
periodicity, and (c) 2.1 nA: 1×2 periodicity. (d)–(f) Corresponding
line profiles at locations indicated by the black arrows on the right side
of the topography images. The red dashed curve in (e) corresponds
to a linear combination of the 1×3 and 1×2 line profiles in (d) and
(f) with α = 0.55 [see Eq. (1)]. This shows that the 1×6 structure is
a (time-averaged) linear combination of the two other phases. In (d)
a line profile at 78 K and I = 10 pA is added (dashed gray line) to
illustrate that at 60 K and 3 pA the topography already contains an
admixture of the 1×2 phase. The blue arrows refer to data in Fig. 3.

current of I�10 pA [Fig. 2(b)] a 1×6 periodicity appears,
the corrugation of which is dominated by the underlying 1×1
structure. At I = 2.1 nA the 1×2 structure with a characteristic
double-peak feature is fully developed [Fig. 2(c)]. Additionally
the Au chain below the step edge becomes visible in Figs. 2(b)
and 2(c) in the form of a sequence of less intense 1×2 ordered
features. This 1×2 period on the Au chains is consistent with
observations in previous reports [16,18,20].

The red dotted curve in Fig. 2(e) shows the result of a fit
according to Eq. (1), yielding α = 0.55. In this fit a small
constant shift along x for each line profile is included to
account for residual thermal drift between measurements. The
linear combination is in good agreement with the measured
1×6 profile, confirming that the 1×6 periodicity observed in
Figs. 2(b) and 2(e) does not represent an independent structural
phase but is rather formed by a simple superposition of the 1×2
and 1×3 periodicities that fluctuate faster than our STM data
acquisition rate, resulting in a time-averaged 1×6 corrugation
in the STM images.

Note that theoretical investigations have shown that the
ground state for Si(553)-Au has an antiferromagnetic ar-
rangement of magnetic moments on every third silicon atom
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on the Si step edge [15]. The authors predict that this
antiferromagnetic spin polarization should appear as a 1×6
periodicity in spin-resolved STM experiments. Indeed some
of the data presented here have been taken using Cr tips that
have been shown to be suited for spin-resolved measurements
[21]. However, our observations were reproduced using a
conventional W tip incapable of spin-dependent resolution.
Hence the 1×6 structure reported in this work is evidently
not directly caused by antiferromagnetic order, but rather
by a simple linear superposition of 1×3 and 1×2 structural
order regardless of a possible spin structure of either of the
two phases. The observation of a 1×6 periodicity by itself
without a detailed current-dependent analysis is therefore not
sufficient to discriminate between these two different physical
mechanisms.

At 60 K, the dominant peak of the 1×3 line profile
[Fig. 2(d), black solid curve] can be observed to be constituted
of two smaller features. This can be attributed to a slight
admixture of the 1×2 structure even at this low current
(compare Fig. 1 in Ref. [13]). At higher temperatures this
splitting is absent and the dominant peak is narrower, as shown
in Fig. 2(d) (dashed curve) for T = 78 K and I = 10 pA. An
accurate determination of α using Eq. (1) would require the use
of pure 1×2 (α = 0) and pure 1×3 (α = 1) topographies of the
same sample area and at the same temperature. As we will show
below this is a nontrivial requirement due to the wide current
range where structural fluctuations due to transient doping can
be observed. The optimal temperature to perform this analysis
turns out to be 60 K, although even at the lowest currents used
a small admixture of 1×2 still remains in the predominantly
1×3 periodicity. This results in a systematically overestimated
value for α at that temperature [22].

B. Alignment of 1×3 vs 1×2 at the step edge

In order to understand the properties of the 1×2 phase,
and the reversible 1×3-to-1×2 transition, it is imperative
to identify the structure of the 1×2 phase. However, the
transiently doped nature of the 1×2 phase makes this a difficult
proposition. As a starting point, we therefore analyze the
relative location of characteristic 1×2 and 1×3 features. From
the alignment of the 1×2 and 1×3 contributing phases in their
superposition that results in the 1×6 corrugation (see Fig. 2),
we infer that the maxima of the 1×2 phase are offset from the
dominant maxima in the 1×3 phase. To accurately determine
this offset, one possible approach is to find a fixed internal
reference, present in both the 1×3 and the 1×2 topographic
images. Although very faint in low-current images, the 1×2
period of the Au chain located on the terrace adjacent to the
step edge [15] is well suited for that purpose. Its structure is not
directly affected by the phase transition (compare [13]). Line
profiles of the step edge and of the adjacent Au chain [taken
along the directions indicated by the black and blue arrows in
Fig. 2(c)] for the high-current 1×2 phase are extracted from a
single image and compared in Fig. 3(a). It is evident that the
1×2 periods on the step edge and on the Au chain are aligned
in phase.

In a second step low-current line profiles of the step edge
and the Au chain, taken along the directions indicated by the
black and blue arrows in Fig. 2(a), are compared in Fig. 3(b).
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FIG. 3. (Color online) (a) and (b) Line profiles of the step edge
(black) and of the Au chain (blue) extracted from the STM images
shown in Figs. 2(c) and 2(a), respectively. The line profiles were
taken along the directions indicated by the black and blue arrows
in Figs. 2(a) and 2(c). Red lines represent parabolic fits used
to determine the positions of the peak maxima. In (a) the line
profiles of the step edge and the Au chain both exhibit a 1×2
periodicity. The maxima are aligned in phase, whereas in (b) a clear
displacement between dominant maxima of step edge and the Au
chain is evident. An average offset of bmean = 0.17 nm is found.
(c) Schematic structure of the underlying Si lattice of the step edge
on Si(553) to illustrate the distance between atoms directly at the step
edge and atoms one row behind: bmodel = 0.19 nm.

Although barely visible in the topography image, the 1×2
period of the Au chain can be clearly identified in the line
profile. Consistent with our preliminary conclusion above, the
maxima of the Au chain do not coincide with the dominant
bi 1×3 maxima of the step edge at any location. Analyzing
the minimum distance between maxima of the step edge and
of the Au chain reference reveals an average displacement of
bmean = 1

n

∑n
i=1 |bi | = 0.17 nm ± 0.02 nm (see Fig. 3). This

value is consistent with the lateral offset of bmodel = 0.19 nm
between Si atoms directly at a [110] step edge and Si atoms
one row behind the step edge on the same terrace [see Fig. 3(c)
and [15]].

This conclusion is supported by an independent and
complementary analysis based on a measured 1×6 line profile
[Fig. 2(e)]. Here we utilize the fact that the 1×6 line profile
contains information on both structures simultaneously. The
best fit shown in Fig. 2(e) not only yields the fraction of each
component but also their relative alignment by comparing
the location of the maxima of the constituent 1×2 and 1×3
line profiles. We obtain bmean = (0.18 ± 0.03) nm, in good
agreement with the value obtained from a fixed internal
reference.

These results indicate that the high-current 1×2 step-edge
corrugation is located one atomic row behind the low-current
1×3 corrugation [see Fig. 3(c)]. This also implies that the
maxima of the 1×2 phase should be located �0.1 nm away
from those of the 1×3 structure in the direction perpendicular
to the chains. While our data do suggest consistence with
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such an offset (not shown) a quantitative verification is far
more difficult due to the larger effect of drift along the
y direction (slow scanning direction). This uncertainty is
further compounded by the shape of the step-edge features
in the STM images that is generally not circularly symmetric,
which decreases the precision in a quantitative measurement
perpendicular to the step-edge chains.

C. Temperature and current dependence of the transient
phase transition

The strong temperature dependence of the 1×3 to 1×2
structural transition results in the 1×3 phase not being
observable at very low temperatures [13]. Moreover, the
appearance of the transition as a function of tunneling current
is continuous [see Figs. 2(b) and 2(c)] and there is no
obvious well-defined threshold current for the transition. In
the following the temperature and current dependence of the
transition is systematically analyzed. Topographic STM data
were recorded for different tunneling currents in a temperature
range between 7 and 78 K. Despite the lack of a clearly defined
threshold current, we can attempt to describe the progress
of the transition using the Fourier coefficients for the two
different periodicities extracted from line profiles [see Figs.
2(d)–2(f); see also [23] for a related analysis]: We introduce
r being the difference of the Fourier coefficients a1×2 and
a1×3 normalized by their sum, similar to the definition of the
effective polarization P of a spin-polarized tunnel junction
[24]:

r = a1×2 − a1×3

a1×2 + a1×3
. (2)

Note that although r is well suited for comparing the
transition at different temperatures for a given current, it
does not represent the correct ratio of the 1×3 vs the 1×2
occurrence probabilities as a function of current. This is
caused by the normalization and most importantly by the
fact that amax

1×3 �= amax
1×2 (i.e., the corrugation amplitudes of the

pure phases are not equal in magnitude) and amin
1×2 �= amin

1×3 �= 0.
However, at a given current (temperature), the dominance
of 1×3 and 1×2 phases in the topographic STM images at
different temperatures (currents) can be well compared by
evaluating r (see Fig. 4). The experimentally accessible range
of I , indicated by dotted vertical lines, is limited to currents
between 2 pA and 3 nA, due to preamplifier noise at low
currents, and frequent tip changes at high currents.

For 60 K the current dependence is displayed for chain
segments at two different locations on the surface (solid red
circles with dark and light gray stroke colors, respectively) to
illustrate the typical spread of r for a given temperature. Up
to �5 pA the 1×3 structure is found to be stable resulting in
a small and almost constant r as a function of the tunneling
current. Upon further current increase the 1×2 contribution
increases monotonically. This behavior continues up to the
highest applied current of �3 nA. The corresponding large
positive r reflects the dominating 1×2 periodicity for that
current.

For 78 and 50 K this trend is shifted horizontally. At 78 K
higher currents are needed to induce the same degree of 1×2
admixture as compared to 60 K (solid orange circles in Fig. 4).
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FIG. 4. (Color online) Simple phase diagram of the 1 × 3 ↔
1 × 2 transition: normalized ratio r of the Fourier coefficients a1×2 and
a1×3 for different tunneling currents and temperatures (circles). Larger
values of r (i.e., the periodicity is increasingly dominated by 1 × 2
order) are found for increasing current or decreasing temperature.
Colored dashed lines are guides to the eye. The current limits in our
experiments are indicated by vertical dotted lines. A typical Fourier
spectrum for 60 K and �100 pA is displayed in the inset, where peaks
corresponding to different periodicities are indicated. For 7 and 13 K
r is found to be constant because for low temperatures the system is
always excited to the 1 × 2 phase, even at the lowest currents.

The opposite behavior is observed at 50 K (solid dark red
circles), where small currents already result in a substantial
1×2 contribution. We note that the exact current for a specific
value of r and T (i.e., the horizontal location in the diagram
of Fig. 4) is found to vary slightly between experiments. We
attribute this to varying tip conditions or different charge decay
rates. The latter likely depends on the bulk doping profile in the
vicinity of the surface (compare discussion in Ref. [13]) which
can be affected by the sample preparation process [25,26].

By comparing r at 78, 60, and 50 K for similar currents an
interesting temperature dependence is evident: The 1×2 phase
as observed in topographic STM images can be most easily
triggered at low temperatures, in contrast to the typical case
of STM-induced structural changes where low temperatures
usually result in a rigid system that is more difficult to
manipulate [5,27,28]. Joule heating due to energy dissipation
from the tunneling current as a driving force for the structural
transition can thus be excluded.

Measurements at even lower temperatures (13 and 7 K, solid
black circles in Fig. 4) reveal that the excited 1×2 structure is
fully established, almost independent of the applied current.
This shows that for lower temperatures even small currents
are sufficient to induce the structural transition from 1×3
to 1×2. Extrapolating the current necessary for r = 0 (i.e.,
equal 1×3 and 1×2 amplitude) from higher temperatures
down to 7 K results in numbers of the order of some fA
or less, which is far below current experimental detection
limits. An interesting implication is that the ground-state
1×3 structure of the Si(553)-Au surface is in practice not
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FIG. 5. (Color online) (a) Typical I (z) curves (Ugap = 1.3 V, T =
57 K) measured over a bright 1 × 3 protrusion (black; position x1)
and in between (red; position x2), respectively. The dotted line is a
guide to the eye representing a purely exponential behavior. Inset:
topography (Ugap = 1.3 V, I = 10 pA, T = 60 K) of a single Si
step edge showing a 1 × 3 periodicity and the locations of x1 and x2.
Fluctuations on top of bright 1 × 3 protrusions can be seen as dark
horizontal stripes. (b) The relative standard deviation of the tunneling
current as a function of the mean current measured on positions x1

and x2. The curves represent an average over �200 measurements.
The peaks in the relative standard deviation reveal the typical currents
where the 1 × 3 ↔ 1 × 2 structural fluctuations occur and show that
at these currents differ for the two locations x1 and x2.

accessible in a low-temperature STM experiment. Instead,
higher temperatures are required to minimize the effect of
transient electron doping. We note that careful atomic force
measurements may be a possibility to circumvent this fact,
if the tunneling current due to residual potential differences
between tip and sample can be kept sufficiently low.

D. Spatial dependence of the transient doping efficiency

So far we neglected the possibility that the efficiency of
the doping process is inhomogeneously distributed within the
1×6 unit cell which encompasses both phases. However, the
transient doping efficiency, and thus the probability for a 1×3
to 1×2 transition to occur, is expected to be dependent on
the specifics of the electron state where the doping charge is
injected in, such as its spatial distribution, orbital character, and
energy. Since the amplitude of the wave function associated
with that state is not constant across the unit cell, this should
be visible as a varying 1×3 ↔ 1×2 fluctuation rate depending
on the location within the unit cell. A convenient way to
record these fluctuations is to measure the tunneling current
at constant bias while slowly varying the tip-sample distance.
Figure 5(a) shows such I (z) curves measured on top of (x1,
black) and in between (x2, red) bright 1×3 protrusions. At
x1 fluctuations are clearly visible for a current of I�10 pA,
originating from the telegraph signal reported in [13]. To
efficiently map the occurrence of fluctuations, we calculate

the relative standard deviation of the mean current σrel(Ī ) =
σ (Ī )/Ī with σ (Ī ) =

√
1

N−1

∑
(I − Ī )2, where N is the number

of data points within a moving window of width �z = 10
pm. In Fig. 5(b) σrel(Ī ) is plotted as a function of the mean
tunneling current for positions x1 and x2. For better statistics,
the standard deviations of several I (z) curves at equivalent
locations were averaged. At x1 the maximum is located close
to the lowest measurable current (black curve), whereas at
x2 it is found at Ī � 300 pA. Since the current-induced
excitation is a statistical process, an exact threshold current
for the transition does not exist. Nevertheless we can use the
maxima of the standard deviation to define typical transition
currents, as they identify the current where the fluctuations
are most pronounced. We infer that the structural transition
is more easily (i.e., at lower currents) triggered at the bright
protrusions of the 1×3 reconstruction than in between these
protrusions. Hence, the transition current is strongly dependent
on the location of the excitation, confirming a dependence of
the doping efficiency on the spatial distribution of the specific
surface state, and aiding in a possible future identification of
the electronic state that is involved in the transient doping
process here.

In the fitting of the time-averaged line profiles [Fig. 2(e)]we
implicitly assumed that the imaged step edge exhibits a spa-
tially uniform phase transition. Due to the location-dependent
magnitude of the transition current revealed in Fig. 5(b) this
is only approximately correct. Hence small local variations in
how well the linear combination of z1×3(x,y)and z1×2(x,y)
[see Eq. (1)] describes the observed corrugation should be
expected due to the differences in excitation probability as
observed in Fig. 5(b). The prefactor α in Eq. (1) is in truth a
function of position x within a 1×6 unit cell, which is neglected
in our analysis.

E. Quantitative contribution of each phase to the
measured corrugation

In the following we present a method which yields a quan-
tity that is directly proportional to the occurrence probability
of one of the two phases at any current, even if both pure phases
(i.e., without admixture of the respective other phase) are
not accessible. This enables a quantitative comparison of the
contribution of a phase to topographies measured with different
currents. Neither the standard deviation data (Sec. III D) nor
the Fourier analysis in Fig. 4 (Sec. III C) are suited for this
purpose. This is due to the amplitudes of the fluctuations being
dependent on the local differences of the corrugation amplitude
of 1×3 and 1×2 (see Sec. III C). Hence, a more sophisticated
analysis is necessary that does not rely on the availability of the
pure phases and that takes into account the spatial dependence
illustrated in Fig. 5. For this purpose tip-sample displacement
measurements I (z) were inverted to obtain z(I ). This approach
yields information on the change of the apparent height as a
function of the current at a particular location.

In Fig. 6 averaged z(I ) curves taken on two different loca-
tions A (green) and B (black) are presented. The logarithmic
scale of the abscissa results in an almost linear evolution with a
systematic divergence between the curves that is largest for low
tunneling currents. This directly reflects the fact that positions
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FIG. 6. (Color online) Tip displacement z(I ) as a function of
tunneling current for positions A and B (black and green curves, right
y axis) as indicated in the bottom of the inset. The data are calculated
from measured I (z) curves and represent an average over equivalent
locations along the chain. The locations are chosen such that all
contributions from the 1 × 2 phase cancel out in the difference A−B

(gray dots, left y axis; see Appendix A for a detailed description).
The values of A−B are proportional to the fraction of the 1 × 3
contribution. A double-exponential fit of A−B matches the data,
reflecting the saturation behavior of the phase transition induced by
transient doping at increasing current. Two exponential functions
are necessary, one for each location with pronounced fluctuations
(cf. Fig. 4). Within the scaling error indicated by red dashed lines
the absolute amount of 1 × 3 can be read from the red axis (for a
description see text). Inset (top): scheme of inequivalent locations (A
and B) relative to 1 × 3. Inset (bottom): 1 × 3 topography measured
at 3 pA and simultaneously recorded with the I (z) curves. Red and
black circles indicate positions A and B, respectively.

A and B are inequivalent for the low-current 1×3 structure
(for a detailed description, see Appendix A).

The difference between curves A and B (“A−B”, gray
dots in Fig. 6) monotonically decreases as a function of
I and approaches zero for large currents. As explained in
Appendix A, this difference is a measure for the fraction of 1×3
contained in the observed current-dependent structure. A kink
is visible at �30 pA, separating the curve into two sections:
one with a rapid structural change at low currents and one with
a less pronounced change for I > 30 pA. Since the tunneling
current represents the excitation mechanism, an exponential
dependence �z(I ) = �z0exp(−I/κ) is expected from the
transient doping scenario, in close analogy to the optical
excitation of atomic or molecular species [29,30]. The decay
parameter κ is a measure for the typical current necessary to
excite the system, and �z0 is the topographic difference A−B

at zero current. Since two different regions of topographic
fluctuations are identified (see Fig. 5), a double-exponential
function �z(I ) = �z

(a)
0 exp(−I/κa) + �z

(b)
0 exp(−I/κb) is fit-

ted to the data (blue curve in Fig. 6). The good agreement of
the data with this model independently confirms the current
dependence of the time constants τ0 and τ1 in Ref. [13] using
a fundamentally different method. The fit yields κa�10 pA
and κb�250 pA, which are in excellent agreement with the
locations of the maxima in the relative standard deviation for
the fluctuation analysis of the tunneling current in Fig. 5(b). As
mentioned above, the double-exponential curve A-B is directly
proportional to the fraction of the 1×3 phase as a function of

the tunneling current. Note that knowledge of the pure 1×2
phase is not necessary to deduce this proportionality, i.e., the
method is still applicable if only part of the transition is tracked
experimentally. If in addition the pure 1×3 phase is available,
the absolute 1×3 contribution frac1×3(I ) can be obtained by
normalization to the corresponding�z. This is illustrated in
Fig. 6 by a separate axis (red) for the A-B data. The scaling
error (red dashed lines), which consists of a constant scaling
factor for the entire curve, is a result from a slight 1×2
admixture in the step-edge topography image even at 3 pA
(see also inset of Fig. 6 and Sec. III A). Details regarding
the error estimation are provided in Appendix B. The fact
that in Fig. 6 the fraction of the 1×3 phase is quantitatively
described for the entire current range allows us to connect
this analysis to those of the previous sections by considering
one particular point of the frac1×3(I ) curve: At a current of
about 15 pA both phases occur with roughly equal probability.
This is in good agreement with the line profile analysis in
Sec. III A (55% 1×3 at 10 pA), the typical current (10 pA at
x1) obtained from the standard deviation in Sec. III D, and the
parameter κa = 10 pA from the double-exponential fit in this
section. Note that topography measurements and I (z) curves
(i.e., without lateral tip movement) yield the same current value
for equal probability of both phases. Hence the scan speed has
no influence on the phase transition for the scan speeds used
here (<40 nm/s).

IV. DISCUSSION AND CONCLUSION

In conclusion we have presented time-averaged topographic
STM images of the Si(553)-Au surface that show a transition
of the periodicities at the Si step edge. The measured structural
periodicity changes from 1×3 to an apparent 1×6, and finally
to 1×2 with increasing tunneling current or decreasing temper-
ature. From an analysis of line profiles of the topographic cor-
rugation (Fig. 2) we have shown that the gradual appearance of
the transition can be described by a linear superposition of the
two fluctuating contributing phases. One consequence is that
a 1×6 structure is observed that should not be confused with
the antiferromagnetic spin-polarized 1×6 structure predicted
earlier [15]. By analyzing the relative alignment between both
phases we conclude that the STM features observed for the
1×2 structure originate from locations that correspond to one
silicon row behind the step edge, toward the upper terrace. This
finding is an important prerequisite for the development of an
atomic model of the excited phase. Our temperature-dependent
studies of the observed periodicities enable the construction
of a qualitative diagram (Fig. 4) of contributing phases as
a function of tunneling current and temperature. This phase
diagram reveals that the transition to the current-induced 1×2
state systematically shifts to smaller currents when reducing
the temperature. This rather unusual temperature dependence
is fully consistent with the previously proposed scenario of
transient doping by the STM tunneling current [13]. The
analysis of fluctuations in the I (z) data at different locations
reveals that the typical transition current is significantly higher
between two bright 1×3 protrusions than on top of them
(Fig. 5), reflecting a spatially varying excitation probability.
Finally, we present a method based on tip-sample displacement
measurements that yields a quantitative and position-selective
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analysis of the phase transition. An exponential saturation
of the excited state as a function of the tunneling current
is obtained (Fig. 6) and two different transition currents are
found, in perfect agreement with the fluctuation analysis.

The results reported here in principle bear relevance to
any STM study of systems with a low-dimensional electronic
structure. An important finding is that low-temperature STM
experiments do not necessarily relate to the ground state of
the system; instead higher temperatures may be needed to
access the ground-state structure. Indeed, STM or tunneling
current-induced changes similar to those reported here have
been implicated in, for example, the (low-temperature) surface
structures on Sn/Ge(111) and Si(100) [31,32]. However, the
identified mechanism of STM-induced structural changes on
the Si(553)-Au surface is fundamentally different from those
reported for the Sn/Ge and Si(100), as pointed out in [13].
The analysis presented here provides a relation between time-
averaged and dynamic properties for the case of the doping-
induced transition on Si(553)-Au. It is conceivable that this
connection is of relevance for related systems as well.

Finally we would like to note that one-dimensional systems
are notoriously hard to dope as the perturbation imposed
by the dopant atoms onto the structure effectively cuts the
one-dimensional chains into finite sections [33]. The ability
to precisely control a dynamic phase transition via transient
doping as demonstrated here, may open new routes for sys-
tematic manipulation of low-dimensional electronic systems
by accessing parts of a doping-dependent phase diagram that
otherwise remain hidden.
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APPENDIX A

The analysis presented in Fig. 6 is based on a particular
selection of spatial locations that enables extraction of the
occurrence of a single structure, either 1×3 or 1×2, from the
measured composite curves. Here we only extract the low-
current 1×3 structure because it shows a higher corrugation
compared to the 1×2 structure, thus yielding a better signal-
to-noise ratio. In order to cancel out the 1×2 contribution, all
tip displacement curves are extracted on a 1×2 grid along the

chain, such that all curves contain the same 1×2 contribution.
Any differences in individual curves are then not originating
from the 1×2 structure.

Let zi(x) = zi(Tin + x) (with n ∈ N) be the contribution of
the periodic structure i (either 1×2 or 1×3) with period length
Ti to the measured STM corrugation. The total topographic
corrugation is then

z1×6(x) = z1×3(x) + z1×2(x).

Let A = z1×6(T1×6n) and B = z1×6(T1×6n + T1×2) be the
topographic data at the locations A and B, respectively (see
Fig. 6). The difference A − B then yields

A − B = z1×3(T1×6n) − z1×3(T1×6n + T1×2),

which evidently only contains information on the 1×3 phase.
The lateral offset (i.e., the starting point of the 1×2 grid)

is chosen to maximize 1×3 contrast of two subsequent curves
[see inset of Fig. 6(a)]. Due to the existence of two inequivalent
1×2 locations relative to the 1×3 structure two types of curves
exist: one taken on a bright 1×3 location (type “A,” black
circles) and the other with significantly lower z (type “B,” red
circles). All locations are determined using the simultaneously
recorded topography at Ugap = 1.3 V and I = 3 pA where the
1×3 structure is observed [see inset of Fig. 6(a)].

This scheme thus allows us to quantitatively extract the
contribution of one of the two phases to the I (z) curves despite
the fact that all curves contain unknown contributions from
both phases.

APPENDIX B

In Fig. 6 two red dotted lines are added to the �z data,
representing a worst case estimate of the scaling error (see
outermost left axis). To estimate this error, the following
scheme has been used. From the line profile at 3 pA [see
Fig. 2(e)] a variable fraction of a (x-drift corrected) 1×2 line
profile [see Fig. 2(f)] is subtracted. The fraction c is chosen
to minimize the remaining 1×2 component in the Fourier
spectrum, yielding c = 0.3. This means that a maximum 1×2
fraction of 30% is contained in the line profile at 3 pA. This
value is an upper limit since for the analysis it is assumed
that the topography of the pure 1×3 ground state does not
contain any 1×2 Fourier components that match those of the
measured 1×2 line profile (this includes Fourier components
induced by experimental noise). An additional offset of ±2
pm is added to the error of the frac1×3(I ) curve in Fig. 6
to account for drift, nonlinearities, and noise of the z position
during an I (z) scan. This offset is evident at the largest currents
where the data points (gray circles) should ideally approach
zero.
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