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Institut de Fı́sica Interdisciplinària i de Sistemes Complexos IFISC (CSIC-UIB), E-07122 Palma de Mallorca, Spain

and Departament de Fı́sica, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain

Jong Soo Lim
School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea

(Received 29 October 2013; published 19 May 2014)

We discuss the thermoelectrical properties of nanowires hosting Majorana states. For a Majorana nanowire
directly coupled to two normal reservoirs the thermopower always vanishes regardless of the value of the Majorana
overlap parameter εM , due to the particle-hole symmetric nature of the Majorana states. This situation changes
drastically if a quantum dot (QD) is inserted to break the particle-hole symmetry. Then, the Majorana-side-coupled
QD system exhibits a different behavior for the thermopower depending on the value of εM . The thermopower
globally reverses its sign when the half-fermionic nature of the Majorana state is relevant, i.e., for εM � kBTb,
where Tb is the background temperature. For large overlap, εM � kBTb, on the other hand, the Seebeck coefficient
behaves similarly to that in a resonant level system. The sign change of the thermopower and the fact that both
the electrical and thermal conductances reach their half-fermionic value when Majorana physics are maximal
could serve as a proof of the existence of Majorana states in nanowires.
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I. INTRODUCTION

Nowadays there is much interest in the interplay between
heat and charge flows in nanostructures [1,2]. Thermovoltages
generated in response to a temperature gradient have been
shown to be much bigger at the nanoscale due to the peculiar
properties of quantum systems [3–7]. For example, a delta-like
density of states occurring in confined nanostructures such as
quantum wells [3] can alter dramatically their thermolectrical
properties. The main utility of thermoelectrical devices is
the heat-to-electricity conversion processes. From a more
fundamental point of view, however, both thermal and elec-
trical transports reveal information on the intrinsic nature of
a quantum system. One example is the departure from the
Wiedemann-Franz law attributed to non-Fermi-liquid behav-
ior [8]. In addition, thermoelectric transport measurements are
able to distinguish between distinct types of carriers, such as
electrons and holes in Andreev systems [9,10] and molecular
junctions [11].

Our motivation is to address to what extent Majorana
physics can be reflected in the thermoelectrical transport prop-
erties of a system. The unambiguous detection of Majorana
fermions in solid state devices is still an issue under discussion.
Majorana physics, in the low-energy domain, was predicted
to occur as quasiparticle excitations [12]. The first proposals
suggested their observation in quantum Hall states, e.g., the
Moore-Read state at filling factor ν = 5/2 [13]. Then, other
suggestions considered some exotic superconductors such as
Sr2RuO4 or p-wave superconductors [14–17]. Later on, the
pioneering work by Fu and Kane [18] demonstrated that

such quasiparticles could be created in a topological insulator
brought in close proximity to a superconductivity source. How-
ever, the Majorana search has been very prolific in the realm
of quasi-one-dimensional semiconductor nanowires [19–23],
particularly in large g-factor materials such as InAs and InSb.
Most of the experiments designed to detect these elusive
quasipartices have been performed via electrical transport
measurements [24–28] by tunnel spectroscopy. A voltage
shift δV is applied to the nanowire ends, which generates
an electrical current I . The Majorana signature appears as
a zero-bias anomaly in the nonlinear conductance dI/dV

[29–32]. In semiconductor nanowires, Majorana quasiparticles
arise when superconductivity (source of electrons and holes),
strong spin-orbit interaction, and magnetic field work together.
Then, under certain conditions the nanowire enters into the
named topological phase and reveals spinless and chargeless
zero-energy states, i.e., very elusive quasiparticle excitations.
We refer to this as Majorana nanowire. However, the presence
of a zero-bias anomaly in the nonlinear conductance does
not warrant the presence of Majorana quasiparticles. Kondo
physics can be observed in normal superconductor nanowires
as well [33,34]. Furthermore, nearly zero-energy Andreev
states [35,36] or weak antilocalization [37] effects are pos-
sible sources of zero-bias anomaly in normal superconductor
nanowires. There are other suggestions to detect Majorana
zero-energy states in Josephson junctions and rings [38–46].
The Josephson current displays an anomalous periodicity of
4π if Majorana physics takes place. However, so far the
experimental verification is not yet definitive [47].
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FIG. 1. (Color online) (a) Majorana nanowire tunnel-coupled to
two normal contacts by tunneling barriers of probability �. Here,
η1, and η2 denote the two Majorana states formed at the ends of
the nanowire. The left (right) metallic contact is electrically and
thermally biased by VL(R) and θL(R). (b) A quantum dot is inserted
and symmetrically coupled to the metallic reservoirs with tunneling
rate γ . One end of the Majorana nanowire is side-coupled to the dot,
and such coupling is characterized by the parameter ζ .

Our goal consists in utilizing the thermoelectrical properties
as a tool to detect the presence of Majorana states formed
in the ends of topological superconductor nanowires. There
are earlier proposals of using thermopower measurements to
probe the non-Abelian anyons in the Moore-Read state [48,49]
which have been recently tested in the fractional quantized
Hall regime [50]. Then, quite recently, detection of Majorana
zero modes in p-wave superconductors was proposed [51].
Here, we propose a way of detecting Majorana states in
semiconductor nanowires by applying a temperature gradient
(δθ = θL − θR) which in turn generates an induced electrical
shift (δV = VL − VR). We analyze two-terminal devices as
depicted in Fig. 1 and determine both the electrical and energy
currents. In Fig. 1, the Majorana nanowire is contacted to two
normal reservoirs. In general, the linear-response electric I

and energy J currents can be expressed as
(

I

J

)
=

(
G L

M K

)(
δV

δθ

)
. (1)

The 2 × 2 matrix is the Onsager matrix that includes diagonal
elements, the electric G and thermal K conductances, and
nondiagonal coefficients, the thermoelectric L and electrother-
mal M conductances. The two latter are related due to
microreversibility condition [52,53]. More specifically, we are
interested in the determination of the Seebeck coefficient or
thermopower that quantifies the conversion of heat into elec-
tricity in thermoelectrical machines. The Seebeck coefficient is
easily determined from the relation S = −δV/δθ |I=0 = L/G

(derived from the open circuit condition for the charge flow).
Our results for a two-terminal Majorana nanowire [see

Fig. 1(a)] show that both G and K reach their maximum value
only when two Majorana states do not overlap. On the contrary,
the thermoelectrical (electrothermal) response always vanishes
irrespectively of the Majorana overlap strength. As a result, the
Seebeck coefficient vanishes owing to the intrinsic particle-
hole symmetry of the Majorana states. However, this physical

scenario can be dramatically altered by inserting a quantum
dot in between the two normal contacts and side-coupled
to the Majorana nanowire [see Fig. 1(b)] [54–56]. In this
arrangement, the Seebeck coefficient can be tuned by gating
the dot, i.e., S = S(εd ) with εd the dot level position. We find
that the thermopower globally reverses its sign for εM � kBTb,
where Tb is the background temperature. For large overlap,
εM � kBTb, on the other hand, S behaves similarly to that in a
resonant level system as we will discuss later. The sign change
of the thermopower and the fact that both the electrical and
thermal conductances reach their half-fermionic value when
Majorana physics are maximal could serve as a proof of the
existence of Majorana states in nanowires.

II. TWO-TERMINAL MAJORANA JUNCTION

We present our theory for the thermoelectrical transport
by employing the nonequilibrium Keldysh Green function
framework. We consider a semiconductor nanowire with
strong Rashba spin-orbit interaction with proximity induced
s-wave superconductivity, and an applied magnetic field B.
We assume a sufficiently long wire to neglect charging
effects. The magnetic field is such that the wire is in the
topological phase, �Z >

√
�2 + μ2, with �Z = gμBB/2, �

the superconducting gap, and μ the wire chemical potential.
The topological phase in the nanowire can be described
by a low-energy effective model where the two Majorana
zero-energy states are represented by the Majorana operators
η1 = f + f †, and η2 = i(f † − f ) (in terms of a Dirac fermion
operator f ). ηβ follows the Clifford algebra {ηβ,ηβ ′ } = 2δββ ′ ,
where ηβ = η

†
β . Two normal contacts are tunnel-coupled to

the two ends of the wire, respectively, as shown in Fig. 1(a).
The total Hamiltonian describing our system consists of three
contributions: H = HC + HM + HT , where

HC =
∑
α,k

εαkc
†
αkcαk, HM = i

2
εMη1η2,

(2)
HT = HT L + HT R =

∑
α,k,β

[V ∗
αk,βc

†
αkηβ + (H.c.)].

Here, HC describes the two normal leads with cαk being
the conduction-electron operator with wavevector k in lead
α = L,R. HM characterizes the coupling between the two
Majorana states where the overlap amplitude εM depends on
the wire parameters: εM ∼ f (B,�)e−L/ξ0 with L the length
of the wire, ξ0 the superconducting coherence length, and
f (B,�) a complicated function of B and � that determines
εM . For our purpose we assume that εM is a controllable
parameter. The last contribution,HT , corresponds to the tunnel
Hamiltonian between normal leads and the Majorana states. As
a good approximation, we assume that the lead electron only
hybridizes with the nearest Majorana end. It is because the
lead-Majorana tunnel coupling decreases exponentially with
the distance and we can safely neglect the tunnel amplitude
between the lead and the farthermost Majorana state. Then,
assuming that the tunneling is energy independent, the tunnel
amplitude Vαk,β is taken as V0 for α = β and zero for α �= β.
This defines the hybridization amplitude � = πV 2

0 ρ0, with ρ0

the contact density of states.
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It is quite straightforward to express the charge and energy
currents through the wire in the Landauer-Büttiker forms,
respectively,

I = e

h

∫
dωT (ω)[fL(ω) − fR(ω)], (3)

and

J = 1

h

∫
dω ωT (ω)[fL(ω) − fR(ω)], (4)

with a transmission coefficient given by

T (ω) = 4�2
(
ω2 + 4�2 + ε2

M

)
(ω2 + 4�2)2 + ε2

M

[
ε2
M − 2(ω2 − 4�2)

] , (5)

and e (>0) the electron charge. Here fα(ω) = 1/[1 +
exp (ω − (μ − eVα))/kBθα] (kB : Boltzmann constant) is the
Fermi-Dirac distribution function for lead α with VL,R =
±δV/2 and θL,R = Tb ± δθ/2 with Tb as the background
temperature.

In the linear-response limit, the coefficients in Eq. (1) are
obtained by (taking μ = 0)

G = e2

h

∫
dωT (ω)

[
− ∂feq

∂ω

]
, (6a)

L = e

hTb

∫
dω ωT (ω)

[
− ∂feq

∂ε

]
, (6b)

M = e

h

∫
dω ωT (ω)

[
− ∂feq

∂ω

]
, (6c)

K = 1

hTb

∫
dω ω2T (ω)

[
− ∂feq

∂ω

]
, (6d)

where feq is the Fermi-Dirac distribution function in equi-
librium (δθ = 0 and δV = 0). In a Sommerfeld expansion,
at sufficiently low temperatures, the linear response conduc-
tances G and K have the same behavior with the transmission
coefficient up to proportionality factors G0 and K0. Thus,

G = lim
δV →0

dI

dV
= G0

4�2

ε2
M + 4�2

(7)

and

K = lim
δθ→0

dJ

dθ
= K0

4�2

ε2
M + 4�2

, (8)

with G0 = e2/h (quantum electrical conductance) and K0 =
π2k2

BTb/3h (quantum thermal conductance). They take their
maximum values G0 and K0, respectively, when εM = 0 and
they decrease as εM grows. Importantly, the off-diagonal
conductances are always zero, L = L0∂T (ω)/∂ω|ω=0 with
L0 = eπ2k2

BTb/3h (and M = L/Tb). The vanishing of L (M)
has profound consequences in the thermopower or Seebeck
coefficient (we recall that S = L/G). The Seebeck coefficient
vanishes regardless of the value of εM . The reason for this result
lies in the inherent particle-hole symmetry of the Majorana
states. Hence there is no electric response to a thermal gradient.

III. SIDE TUNNEL-COUPLED DOT-MAJORANA SYSTEM

Asymmetry in the particle and hole subspaces can be
brought into the system by inserting a quantum dot between

the two normal contacts and connecting the dot to one
of the Majorana states, as illustrated in Fig. 1(b). The
thermoelectrical transport through the dot-Majorana system
can then exhibit a nonzero value for the off-diagonal Onsager
conductances when the dot is off resonance, giving rise to a
nonzero Seebeck coefficient.

In order to include the quantum dot we need to reformulate
the Hamiltonian as follows. Under strong magnetic field which
is applied to induce the topological phase in the wire, the
quantum dot can be regarded as a spin-polarized (or spinless)
dot with a single dot level εd , being described by the dot
Hamiltonian

Hd = εdd
†d, (9)

where the d operator annihilates an electron with energy εd

on the dot. Our system is then mapped onto a resonant level
model where the resonant state is coupled to two normal-metal
contacts and a Majorana state at one end of the nanowire. The
dot-lead tunneling is described by

HT d =
∑
αk

(Wαkc
†
αkd + H.c.). (10)

For simplicity, we assume a symmetric and energy-
independent dot-lead coupling with a common tunneling
rate, γ = πW 2

0 ρ0, with Wαk = W0. The dot-Majorana side-
coupling Hamiltonian reads

HT M =
∑

β=1,2

ζβ(d†ηβ + H.c.). (11)

Here, we assume that only the closest Majorana state to the
dot is strongly tunnel coupled, say η1: ζ1 = ζ and ζ2 = 0.
The total Hamiltonian is the sum of all these contributions:
H = HC + Hd + HM + HT d + HT M [refer to Eq. (2) for the
contact and Majorana Hamiltonians, HC and HM ]. Now, the
charge and energy flows can be expressed in terms of the dot
transmission (see Ref. [55] for details)

Td (ω) = −2γ ImGr
d (ω), (12)

where Gr
d is the retarded dot Green function

Gr
d (ω) = 1

ω − εd + 2iγ − B(ω)[1 + B̃(ω)]
, (13)

with

B̃(ω) = B(ω)

ω + εd + 2iγ − B(ω)
. (14)

The parameter ζ in Eq. (12) characterizes the dot Majorana
coupling where B(ω) = |ζ |2/(ω − ε2

M/ω) is the dot Majorana
self-energy.

IV. DISCUSSION

Before starting the discussion of the thermoelectrical
properties in the dot Majorana system, it is worth revisiting
the behavior of the dot transmission with respect to the system
parameters, εM , εd , ζ , and γ [55]. Hereafter, we employ D =
50 for the contact bandwidth that determines our energy unit.

Figure 2 illustrates the dependence of Td (ω) on ζ and γ

when the dot is on resonance and no Majorana overlap occurs
(εd = εM = 0). At ζ = 0, the transmission corresponds to the
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FIG. 2. (Color online) Dot transmission Td (ω) (a) for γ = 0.06
and various ζ values as indicated and (b) for different γ values and
ζ = 0.05. Here the values of the other parameters are set to εd = 0
and εM = 0.

resonant level model with unitary transmission. As ζ is turned
on, two peaks at ω = ±ζ appear due to the dot-Majorana
hybridization [see Fig. 2(a)]. Now, keeping ζ fixed and tuning
γ , the dot transmission evolves to a three-peak structure when
γ ≈ ζ , in which the zero-energy peak is the signature of the
presence of Majorana edge states [see Fig. 2(b)]. In all cases,
as long as ζ �= 0, the dot transmission at ω = 0 is always half
fermionic [55,56]. As the Majorana overlap becomes finite
(εM �= 0), Td (ω = 0) becomes unitary, as shown in Fig. 3(a).
For large εM , Td resembles with that for a resonant level model,
with resonances at ω ≈ ±εM due to the coupling of the dot
state with the f Dirac fermions in the wire (resulting from the
large Majorana overlap).

Thermoelectrical effects appear when the transmission
becomes asymmetric as can be inferred in the conductance
expression, Eq. (6b). In order to observe such asymmetric
transmission between positive and negative frequencies the
dot level must be positioned off resonance, i.e., εd �= 0. This
situation is presented in Fig. 3(b) for several values of εM for
εd > 0. The transmission now features quite an asymmetric
structure even for εM = 0. An important feature in Td (ω) is
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FIG. 3. (Color online) Dot transmission Td (ω) for different val-
ues of the Majorana overlap εM (a) for εd = 0 and (b) for εd = 0.12.
Here we have used γ = 0.06 and ζ = 0.15.
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FIG. 4. (Color online) (a) Dot transmission Td (ω) and (b) its
derivative ∂Td (ω)/∂ω for the indicated values of εd and εM = 0.
Here we have set γ = 0.06 and ζ = 0.15.

the shift of the central peak near ω = 0 with increasing εM : At
εM = 0, the peak is at the negative ω side but it moves toward
the positive side as εM increases. This shift can be understood
in terms of the hybridization of the Majorana state (at εM )
and the dot level (at εd ). In the context of the perturbation
theory, the coupling between them repels each other: Since
εM < εd the Majorana level goes lower than the unperturbed
level. It explains the appearance of the peak in the negative side
for εM = 0. As εM increases, the perturbed level also slowly
follows the unperturbed level, eventually going to the positive
side. It should be noted that the shift will be reversed for εd < 0
in a similar way. This shift of the central peak determines the
sign of the thermoelectric conductance L at low temperatures,
which will be discussed later.

The dot gate dependence of Td (ω) for an ideal Majorana
nanowire (εM = 0) is depicted in Fig. 4(a) and its energy
derivative in Fig. 4(b). These curves show that the transmission
at zero energy is always half fermionic as should be for εM = 0,
regardless of the dot gate value. However, it is interesting to
observe that the energy derivative of the transmission at zero
energy acquires some dot gate dependence reflecting the asym-
metry between the particle and hole sectors. This result is im-
portant for the thermoelectrical conductance L: we recall that
at low temperatures L = L0∂Tb(ω)/∂ω|ω=0, implying that L

becomes gate dependent. Whereas the diagonal conductances
are not sensitive to the particle-hole asymmetry introduced
by nonzero εd , the off-diagonal conductances show a dot
gate dependence, affecting significantly the thermoelectrical
transport.

Our previous analysis for the dot transmission explains
the curves for the conductances illustrated in Fig. 5. Both
the electric and thermal conductances, G and K , depend
strongly on εd for finite εM � kBTb. Otherwise, in the ideal
situation where εM = 0, G and K are half fermionic and
immune to εd [55–57]. This important result serves us to detect
the Majorana states in side-coupled dot nanowires systems.
However, the previous results are applicable only for purely
electrical or thermal transport measurements.

Since we are interested more in the thermolectrical signa-
tures of the Majorana states, we analyze how the off-diagonal
conductances behave with the dot gate values. We find that for
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FIG. 5. (Color online) (a) Dot gate dependence of the linear
electric conductance G and thermal conductance K for the annotated
values of εM . Here, G is given in units of the quantum of the
electrical conductance, G0 = e2/h, whereas the thermal conductance
is given in terms of the quantum of the thermal conductance,
K0 = π 2k2

BTb/3h. (b) Thermoelectric conductance L versus εd at
different values of εM . Here we have used γ = 0.06, ζ = 0.15, and
kBTb = 0.0025.

small Majorana overlap in comparison with the background
temperature, i.e., for εM � kBTb, the overall off-diagonal
conductance L(M) changes its sign globally (for all values of
εd ) in comparison with a situation of large Majorana overlap.
Such transition is clearly illustrated in Fig. 5. The sign change
of L can be also understood in terms of the shape of the
transmission. Before, we found that for εd > 0 the central peak
in Td is in the negative ω side at εM = 0 and shifts toward the
positive ω side with increasing εM . It explains the sign change
of L from negative to positive for εd > 0. For εd < 0, the shift
of the peak, starting in the positive side, is reversed so that the
sign of L changes from positive to negative.

To gain more insight, an analytical expression for L can
be obtained within the Sommerfeld approximation (valid at
rather low temperatures). Then, L increases linearly with εd

and depends inversely on the dot Majorana strength with a
negative slope −1/2ζ 2 for zero Majorana overlap. Otherwise,
for a finite Majorana overlap (εM �= 0), L/L0 = [εd/(4ε2

d +
γ 2)2][8γ 2(ε2

M + ζ 2)/ε2
M ] displays two extrema at εd = ±γ /2.

In this case, L behaves similarly to that for resonant level
model. Note that indeed the sharp transition observed in the
Sommerfeld approximation becomes a crossover when εM

varies on a scale of kBTb, as shown in Fig. 5. As long as
the temperature is lowered the crossover becomes more and
more abrupt.

The sign-change behavior found for the gate dependence
of the thermoelectric conductance L is consistent with the
presence of Majorana physics. More importantly, the fact that
L is an odd function of εd for any value of εM is a strong
evidence of the Majorana state since it reflects the particle-hole
symmetric nature of the Majorana states. If one replaces the
side-coupled Majorana state by an ordinary fermionic state,
then L is no longer an odd function and no global change of
sign is observed as εM increases.

Using the previous results, we discuss the gate dependence
of the thermopower S = L/G. Within the range of validity

FIG. 6. (Color online) Thermopower S versus εd for various
values of εM . Here we have used γ = 0.06, ζ = 0.15, and kBTb =
0.0025.

of the Sommerfeld expansion, at very low temperatures, we
can obtain analytical results for the Seebeck coefficient: S =
S0d ln T (ω)/dω|ω=0 is the Mott formula where we have de-
fined S0 = π2k2

BTb/3e. For the dot Majorana uncoupled case
(ζ = 0), the thermopower S/S0 = 8εd/(4εd + γ 2) vanishes
when εd = 0 and follows the resonant level model as expected.
For finite ζ �= 0, remarkably, the thermopower is linear with
εd for εM = 0: S/S0 = −εd/ζ

2. The dot gate dependence
of S is due to the particle-hole asymmetry introduced when
εd is tuned from the on to the off resonance situation. This
result can be understood by considering two effects. First,
the Majorana state contributes to the thermopower in a rigid
way with a constant term −1/ζ 2. Second, the particle-hole
asymmetry grows with increasing |εd |, and it explains why the
thermopower is proportional to εd . Then, both features add up
and produce a linear dependence of the Seebeck coefficient on
the dot gate with a negative slope that depends on the inverse
of the dot Majorana coupling ζ .

Figure 6 plots the Seebeck coefficient S versus εd when
kBTb = 0.0025 by numerically integrating Eqs. (6a) and (6b)
without assuming the Sommerfeld approximation. We observe
that for εM � kBTb the thermopower is positive for negative εd

having δV < 0 by heating up the left contact. On the contrary,
when εd > 0 the thermopower is negative (S < 0) leading to a
negative potential difference by cooling down the left contact.

The thermopower sign dependence with εd is inverted when
the Majorana overlap is sufficiently high. Specifically, for
εM � kbTb, the thermopower corresponds to the one for a res-
onant level model S/S0 = [εd/(4γ 2 + ε2

d )][8(ε2
M + ζ 2)/ε2

M )].
This means that when εd < 0 the heating of the left contact
induces a positive voltage difference whereas for εd < 0 the
same voltage difference is generated, but now by cooling
down the reservoir. Here, the Seebeck coefficient follows the
behavior of a resonant model with two extrema at εd = ±γ /2.
All these differences for S(εd ) depending on the value of εM

could allow us to distinguish situations in which nanowires
host true Majorana edge states or not.

V. CONCLUSION

We have investigated the linear response conductances
to thermal and electrical biases in two-terminal geometries
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with topological superconductor nanowires hosting Majorana
states. Firstly, we have considered a nanowire directly coupled
to two normal reservoirs. Due to the intrinsic particle-hole
symmetry this system exhibits a null thermopower: no voltage
is generated in response to a thermal gradient. Then, we
insert a quantum dot between the two normal contacts and
the Majorana nanowire is side-coupled to the dot. With this
arrangement the detection of the Majorana edge states can be
performed by looking at the sign change of the thermoelectrical
conductance or the thermopower S with respect to εd and
εM . Besides, we show that both the electric and thermal
conductances take their half-fermionic values whenever a true
Majorana fermion state is formed.

We believe that our results could serve as a tool for the
detection of Majorana edge states in semiconductor nanowires.
Interestingly, possible changes of this physical scenario due to
the Coulomb blockade effects or Kondo correlations are very
interesting prospects for analysis in the future.

During the completion of this paper we become aware
of a related work dealing with thermolectric transport
in normal-dot-Majorana nanowires systems. The differ-
ence is that we consider thermal and electrical bias ap-
plied to the normal contacts; in Ref. [58] the thermo-
electrical forces are applied to the normal and Majorana
parts.
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[32] J. S. Lim, R. López, and L. Serra, New J. Phys. 14, 083020
(2012).

[33] W. Chang, V. E. Manucharyan, T. S. Jespersen, J. Nygård, and
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