
PHYSICAL REVIEW B 89, 205415 (2014)

Scattering nonlocality in quantum charge transport: Application to semiconductor nanostructures
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Our primary goal is to provide a rigorous treatment of scattering nonlocality in semiconductor nanostructures.
On the one hand, starting from the conventional density-matrix formulation and employing as ideal instrument
for the study of the semiclassical limit the well-known Wigner-function picture, we shall perform a fully
quantum-mechanical derivation of the space-dependent Boltzmann equation. On the other hand, we shall
examine the validity limits of such semiclassical framework, pointing out, in particular, regimes where
scattering-nonlocality effects may play a relevant role; to this end we shall supplement our analytical
investigation with a number of simulated experiments, discussing and further expanding preliminary studies
of scattering-induced quantum diffusion in GaN-based nanomaterials. As for the case of carrier-carrier relaxation
in photoexcited semiconductors, our analysis will show the failure of simplified dephasing models in describing
phonon-induced scattering nonlocality, pointing out that such limitation is particularly severe for the case of
quasielastic dissipation processes.
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I. INTRODUCTION

Since the seminal paper by Esaki and Tsu [1], artificially
tailored as well as self-assembled semiconducting nanostruc-
tures [2] form the leading edge of semiconductor science and
technology [3–5]. The design of state-of-the-art optoelectronic
devices, in fact, heavily exploits the principles of band-gap
engineering [6], achieved by confining charge carriers in
spatial regions comparable to their de Broglie wavelengths [7].
This, together with the progressive reduction of the typical time
scales involved, pushes device miniaturization toward limits
where the application of the traditional Boltzmann transport
theory [8] becomes questionable, and a comparison with more
rigorous quantum-transport approaches [9–15] is imperative;
the latter can be qualitatively subdivided into two main classes.
On the one hand, so-called double-time approaches based
on the nonequilibrium Green’s function technique have been
proposed and widely employed; an introduction to the theory
of nonequilibrium Green’s functions with applications to many
problems in transport and optics of semiconductors can be
found in the books by Haug and Jauho [16], Bonitz [17],
and Datta [18]; by employing, and further developing and
extending, such nonequilibrium Green’s function formalism,
a number of groups have recently proposed efficient quantum-
transport treatments for the study of various mesoscale and
nanoscale structures as well as of corresponding microelec-
tronic and optoelectronic devices [19–22]. On the other hand,
so-called single-time approaches based on the density-matrix
formalism [23,24] have been proposed (see Sec. II), including
phase-space treatments [9,25] based on the Wigner-function
formalism (see Sec. III).

In spite of the intrinsic validity limits of the semiclassical
theory just recalled, during the last decades a number of
Boltzmann-type Monte Carlo simulation schemes have been
extensively employed for the investigation of new-generation
semiconductor nanodevices [26–37]. Such modeling strate-
gies, based on the neglect of carrier phase coherence, are
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however unable to properly describe space-dependent ultrafast
phenomena. To this aim, the crucial step is to adopt a
quantum-mechanical description of the carrier subsystem;
this can be performed at different levels, ranging from
phenomenological dissipation and decoherence models [38]
to quantum-kinetic treatments [10,12,13]. Indeed, in order to
overcome the intrinsic limitations of the semiclassical picture
in properly describing ultrafast space-dependent phenomena,
e.g., real-space transfer and escape versus capture processes,
Jacoboni and co-workers have proposed a quantum Monte
Carlo technique [39], while Kuhn and co-workers have pro-
posed a quantum-kinetic treatment [40]; however, due to their
high computational cost, these non-Markovian density-matrix
approaches are often unsuitable for the design and optimization
of new-generation nanodevices.

In order to overcome such limitations, a conceptually
simple as well as physically reliable quantum-mechanical
generalization of the conventional Boltzmann theory has
been recently proposed [41]. The latter preserves the power
and flexibility of the semiclassical picture in describing a
large variety of scattering mechanisms; more specifically,
employing a microscopic derivation of generalized scattering
rates based on a recent reformulation of the Markov limit [42],
a density-matrix equation has been derived, able to properly
account for space-dependent ultrafast dynamics in semicon-
ductor nanostructures; indeed, the density-matrix approach
proposed in Ref. [41] has been recently applied to the analysis
of genuine quantum-diffusion phenomena in GaN-based bulk
and nanostructured materials [43], allowing for a preliminary
analysis of free-carrier versus scattering-induced diffusion.

The primary goal of this paper is to provide a rigorous
treatment of scattering nonlocality. On the one hand, starting
from the conventional density-matrix formulation [44,45] and
employing as ideal instrument for the study of the semiclassical
limit the well-known Wigner-function picture [44,46], we
shall perform a fully quantum-mechanical derivation of the
space-dependent Boltzmann equation. On the other hand,
we shall examine the validity limits of such semiclassical
approximation scheme, pointing out, in particular, regimes
where scattering-nonlocality effects may play a relevant role;
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to this end, we shall supplement our analytical investigation
with a number of simulated experiments, discussing and
further expanding the preliminary study of scattering-induced
quantum diffusion in GaN-based nanomaterials recently pre-
sented in Ref. [43]. As for the case of carrier-carrier relaxation
in photoexcited semiconductors [12], our analysis will show
the failure of simplified dephasing models in describing
phonon-induced scattering nonlocality, pointing out that such
limitation is particularly severe for the case of quasielastic
dissipation processes.

The paper is organized as follows: In Sec. II, we shall recall
and discuss the basic concepts and instruments commonly
employed for the microscopic investigation of high-field
transport and/or ultrafast optical excitations in semiconductor
materials in terms of the single-particle density-matrix formal-
ism. In Sec. III, we shall introduce the well-known Wigner-
function picture; the latter, often regarded as a classical-like
phase-space representation of quantum mechanics, allows
us to identify the general approximation scheme needed in
order to derive the conventional space-dependent Boltzmann
equation from the density-matrix formalism. Thanks to a few
prototypical simulated experiments, in Sec. IV we shall be able
to identify conditions where scattering-nonlocality effects,
absent within the semiclassical treatment, may play a crucial
role. Finally, in Sec. V, we shall summarize and draw a few
conclusions.

II. FUNDAMENTALS OF THE DENSITY-MATRIX
FORMALISM

In order to investigate in fully quantum-mechanical terms
the electro-optical response of semiconductor materials and
related devices, it is crucial to study the time evolution of
single-particle quantities, such as the total carrier density, mean
kinetic energy, charge current, and so on. In general, such
quantities are given by a suitable (quantum-plus-statistical)
average of a corresponding (single-particle) operator â, usu-
ally expressed in terms of the single-particle density-matrix
operator ρ̂ as [24]

〈a〉 = tr{âρ̂}. (1)

It follows that within the Schrödinger picture the crucial step
is to analyze the time evolution of the single-particle density-
matrix operator ρ̂, whose equation of motion is always of the
general form [24]

dρ̂

dt
= dρ̂

dt

∣∣∣∣
sp

+ dρ̂

dt

∣∣∣∣
scat

. (2)

Here,

dρ̂

dt

∣∣∣∣
sp

= 1

i�
[Ĥsp, ρ̂ ] (3)

describes the coherent dynamics dictated by the
noninteracting-electron Hamiltonian Ĥsp (including elastic
single-electron scattering processes as well as various
lowest-order renormalization contributions) while, by
neglecting so-called memory effects (see below),

dρ̂

dt

∣∣∣∣
scat

= � (ρ̂) (4)

is, in general, a nonlinear superoperator describing energy
dissipation and decoherence that electrons experience within
the host material.

The above single-particle picture has been applied to a
variety of physical problems [24], ranging from quantum-
transport phenomena to ultrafast electro-optical processes;
however, it is vital to stress that the degree of accuracy of such
density-matrix formalism is intimately related to the choice of
the scattering superoperator � in (4).

The microscopic derivation of suitable scattering super-
operators has been one of the most challenging problems in
solid-state physics. Indeed, For purely atomic and/or photonic
systems, dissipation and decoherence phenomena may be suc-
cessfully described via adiabatic-decoupling procedures [47]
in terms of extremely simplified models via phenomenological
parameters; within such effective treatments, the main goal is
to identify a suitable form of the Liouville superoperator, able
to ensure the positive-definite character of the corresponding
density-matrix operator [48]. This is usually accomplished by
identifying proper Lindblad superoperators [49], expressed in
terms of a few crucial system-environment coupling param-
eters. In contrast, solid-state materials and devices are often
characterized by a complex many-electron quantum evolution,
resulting in a nontrivial interplay between coherent dynamics
and energy-dissipation and decoherence processes [23,24]; it
follows that for a quantitative description of such coherence-
versus-dissipation coupling, the latter needs to be treated via
fully microscopic approaches.

Based on the pioneering works by Van Hove [50], Kohn
and Luttinger [51], and Zwanzig [52], a number of adiabatic-
or Markov-approximation schemes have been developed and
employed for the study of quantum-transport and coherent-
optics phenomena in semiconductor materials and devices; the
latter may be divided into two general categories: approaches
based on semiclassical (i.e., diagonal) scattering superoper-
ators also referred to as Pauli master equations [53–55], and
fully quantum-mechanical (i.e., nondiagonal) dissipation mod-
els [56–60]. Moreover, in order to account for non-Markovian
or memory effects, relevant in the presence of strong couplings
and/or extremely short excitations, a number of quantum-
kinetic approaches have been also considered [61,62].

As far as the Markov treatments are concerned, the latter
depend strongly on the particular problem under investigation,
and therefore the resulting set of kinetic equations describes
a specific subsystem of interest, e.g., a gas of N electrons or
excitons, a single carrier, etc. Moreover, as originally pointed
out by Spohn and co-workers [63], kinetic approaches based
on the conventional Markov limit may lead to the violation of
the positive-definite character of the density-matrix operator,
and therefore to unphysical results; in particular, they clearly
pointed out that the choice of the adiabatic decoupling strategy
is definitely not unique, and only one among the available
possibilities, developed in the pioneering work by Davies [48],
could be shown to preserve positivity: it was the case of
a “small” subsystem of interest interacting with a thermal
environment, and selected through a partial-trace reduction.
Unfortunately, this theory was restricted to finite-dimensional
subsystems only (i.e., N -level atoms), and to the particular
projection scheme of the partial trace.
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To overcome this serious limitation in the study of
solid-state systems, an alternative and more general Markov
procedure has recently been proposed [42]; the latter (i) in
the discrete-spectrum case coincides with the Davies model
just recalled, (ii) in the semiclassical limit (see below) reduces
to the well-known Fermi’s golden rule, and (iii) describes a
genuine Lindblad evolution also in the continuous-spectrum
case, thus providing a reliable and robust treatment of energy-
dissipation and decoherence processes in semiconductor quan-
tum devices. As discussed in Ref. [42], by means of such al-
ternative adiabatic-decoupling approach, different Markovian
approximations are generated by choosing different projection
schemes (corresponding to different subsystems of interest,
e.g., many-electron description, single-particle picture, etc.).
However, we stress that, opposite to standard master-equation
formulations [48,63], in this new adiabatic-decoupling strategy
positivity is intrinsic, and does not depend on the chosen
subsystem of interest.

As discussed in Appendix B, by applying such gen-
eral adiabatic-decoupling scheme together with the usual
mean-field approximation [12], it is possible to perform
a microscopic derivation of the single-particle scattering
superoperator � in (4); in particular, for any single-particle
interaction mechanism it is possible to derive a nonlinear
scattering superoperator of the form

�(ρ̂) =
∑

s

1

2
((Î − ρ̂)Âs ρ̂Âs† − Âs†(Î − ρ̂)Âs ρ̂) + H.c.,

(5)

where Î is the identity operator and “H.c.” denotes the
Hermitian conjugate. As we can see, the nonlinear character
of the above scattering superoperator originates from the
so-called Pauli factors (Î − ρ̂); indeed, by neglecting such
nonlinearities, i.e., Î − ρ̂ → Î, the scattering term in (5)
reduces to the following Lindblad superoperator:

� (ρ̂) =
∑

s

(
Âs ρ̂Âs† − 1

2
{Âs†Âs,ρ̂}

)
. (6)

It follows that, by neglecting such Pauli factors, for each single-
particle interaction mechanism s, one is thus able to perform a
fully microscopic derivation of a corresponding Lindblad su-
peroperator, thereby preserving the positive-definite character
of the single-particle density matrix ρ̂. The main features of
such microscopic treatment are briefly recalled and discussed
in Appendix B, where we report the explicit form of the
Lindblad operators Âs for the relevant case of carrier-phonon
interaction.

We stress that, strictly speaking, these Pauli factors vanish
in the low-density limit only; however, in this limit, the single-
particle density-matrix formalism becomes highly question-
able since in this regime electron-hole Coulomb correlation
dominates. It follows that the use of the Lindblad scattering
superoperator in (6) is well justified in semiconductor bulk
and nanostructured materials characterized by carrier densities
sufficiently high to neglect excitonic effects, and sufficiently
low to neglect the above nonlinear Pauli contributions; as
a matter of fact, such requirements are often fulfilled by
new-generation semiconductor quantum devices.

By denoting with |α〉 the eigenstates of Ĥsp (corresponding
to the energy spectrum εα), the density-matrix equation (2) can
also be written as

dρα1α2

dt
= εα1 − εα2

i�
ρα1α2 + dρα1α2

dt

∣∣∣∣
scat

. (7)

Such set of coupled equations of motion for the density-matrix
elements ρα1α2 are usually referred to as the semiconductor
Bloch equations [23]. In particular, the diagonal elements
(ρα1=α2 ) describe state populations, while nondiagonal con-
tributions (ρα1 �=α2 ), also referred to as interstate polarizations,
describe quantum-mechanical phase coherence between the
single-particle states α1 and α2 [24].

By adopting as scattering superoperator the Lindblad-type
prescription in (6), the corresponding matrix elements can be
conveniently expressed as the difference between so-called in-
and out-scattering terms (see below)

dρα1α2

dt

∣∣∣∣
scat

= F in
α1α2

− F out
α1α2

(8)

with

F in
α1α2

=
∑
α′

1α
′
2

Pα1α2,α
′
1α

′
2
ρα′

1α
′
2

(9)

and

F out
α1α2

= 1

2

∑
α′

1α
′
2

P∗
α′

1α
′
1,α1α

′
2
ρα′

2α2 + H.c. (10)

in terms of the generalized scattering rates

Pα1α2,α
′
1α

′
2
=

∑
s

As
α1α

′
1
As∗

α2α
′
2
. (11)

In order to investigate the space dependence of the
phenomenon under examination, and to compare it to its
semiclassical description (see Sec. III and Appendix A), let
us recall the link between our density matrix ρα1α2 and the
corresponding spatial carrier density, namely,

n(r) =
∑
α1α2

φα1
(r)ρα1α2φ

∗
α2

(r), (12)

where φα(r) = 〈r|α〉 denotes the real-space wave function
corresponding to the eigenstate |α〉. Combining the above
result with the density-matrix equation (7), the time evolution
of the spatial carrier density is given by

∂n(r)

∂t
= ∂n(r)

∂t

∣∣∣∣
sp

+ ∂n(r)

∂t

∣∣∣∣
scat

(13)

with

∂n(r)

∂t

∣∣∣∣
sp

= 1

i�

∑
α1α2

φα1
(r)

(
εα1 − εα2

)
ρα1α2φ

∗
α2

(r) (14)

and

∂n(r)

∂t

∣∣∣∣
scat

=
∑
α1α2

φα1
(r)�(ρ̂)α1α2φ

∗
α2

(r). (15)

In Sec. III, we shall show that, also for the simplest case of
a bulk system, (i) in the presence of a nonparabolic band the
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single-particle evolution in (14) deviates from the diffusion-
plus-drift dynamics of the semiclassical theory, and (ii) the
scattering-induced variation in (15) is in general different from
zero, i.e., the action of the scattering superoperator is spatially
nonlocal, in clear contrast to the Boltzmann collision term (see
also Appendix A).

At this point, a crucial issue is in order, namely, the link be-
tween the semiclassical or Boltzmann theory and the density-
matrix formalism recalled so far. As discussed in the funda-
mental solid-state textbook by Ashcroft and Mermin [64], a
general and rigorous (i.e., quantum-mechanical) derivation of
the standard semiclassical charge-transport theory constitutes
a formidable task. The simplest approach to this tedious
problem, usually referred to as the “diagonal limit,” is
to neglect all nondiagonal density-matrix elements, which
implies to assuming a single-particle density matrix of the
form

ρα1α2 = fα1δα1α2 . (16)

From a physical point of view, this amounts to assuming that
the impact of various energy dissipation versus decoherence
phenomena (described via the scattering superoperator �) is so
strong to suppress at any time all interstate (α1 �= α2) quantum-
mechanical phase coherence. By inserting the diagonal-limit
prescription (16) into Eqs. (7) and (8), it is easy to get the
following equation of motion for the state population fα:

dfα

dt
=

∑
α′

[Pαα′fα′ − Pα′αfα] (17)

with

Pαα′ = Pαα,α′α′ =
∑

s

∣∣As
αα′

∣∣2
. (18)

Equation (17) is Boltzmann-type, i.e., the time evolution of the
carrier population fα is dictated by a standard (in-minus-out)
collision term involving scattering rates Pαα′ given by the
diagonal elements (α1α

′
1 = α2α

′
2) of the generalized scattering

rates in (11). As mentioned previously, by adopting the
alternative Markov procedure proposed in Ref. [42] and briefly
recalled in Appendix B, for any given single-particle interac-
tion mechanism s one is able to perform a fully microscopic
derivation of the corresponding Lindblad operator Âs entering
the scattering superoperator (6). Moreover, according to this
derivation, the diagonal elements of the generalized scattering
rates in (18) are given by the conventional Fermi’s golden rule.
Indeed, the Boltzmann-type equation in (17) can be regarded
as the formal justification and starting point of a wide variety of
Monte Carlo simulations of charge transport in semiconductor
nanostructures, whose main microscopic ingredients are the
carrier wave functions φα(r) as well as the corresponding
scattering rates Pαα′ obtained via the Fermi’s golden rule.

In spite of the success of such Boltzmann-type treatment
applied to the study of the steady-state electro-optical response
of semiconductor nanodevices [26–37], the latter is not able
to describe the time-dependent evolution of the spatial carrier
density. Indeed, by inserting the diagonal prescription (16)
into Eq. (14), the single-particle contribution to the spatial
carrier density is always equal to zero. This implies that such
diagonal approximation does not allow one to account for
the diffusion dynamics of the semiclassical transport theory

(see Appendix A). This can be easily understood noticing that
within the diagonal approximation the spatial carrier density
in (12) reduces to

n(r) =
∑

α

|φα(r)|2fα. (19)

This tells us that for the particular case of a bulk system, the one
considered in the conventional Boltzmann theory, the single-
particle basis states |α〉 are momentum eigenstates, whose
probability density |ψα(r)|2 is space independent. It follows
that for a bulk system, the carrier density n(r) corresponding to
the above diagonal-limit picture is space independent as well.

The obvious conclusion is that the diagonal-approximation
scheme just recalled does not allow one to recover the
space-dependent Boltzmann theory. Nevertheless, as already
stressed, a number of simulation strategies [26–37,53–55]
based on such diagonal-approximation paradigm came out
to be quite successful in describing the steady-state electro-
optical response of various semiconductor nanomaterials and
devices; this is particularly true in the presence of a strong
energy dissipation and decoherence since in this case the latter
dominate over scattering-free carrier diffusion (not properly
described within the diagonal-approximation picture).

In order to perform a derivation of the conventional
Boltzmann transport equation, it is thus vital to replace
the above diagonal-approximation scheme with a genuine
space-dependent description of the problem; this may be
conveniently performed via the well-known Wigner picture.
Indeed, during the last decades the Wigner-function formalism
has been widely employed in the investigation of quantum-
transport phenomena [65–72]; however, as recently pointed
out [73–76], such Wigner-function formalism applied to the
modeling of spatially open quantum devices may lead to
highly unphysical results, mainly ascribed to the failure of
the conventional spatial boundary-condition scheme applied
to the Wigner transport equation. It is, however, imperative to
stress that such limitations do not apply to the Wigner-function
analysis presented below since the latter refers to an infinitely
extended system and not to a quantum device with open spatial
boundaries.

III. WIGNER-FUNCTION PICTURE AND THE
SEMICLASSICAL LIMIT

As anticipated, in order to account for the space-dependent
character of a generic quantum nanodevice and to properly
identify its semiclassical limit, a commonly employed strategy
is the Wigner-function treatment of the problem [9,25].
The Wigner function f W(r,p) associated to a single-particle
density-matrix operator ρ̂ is defined as its Weyl-Wigner
transform

f W(r,p) = tr{Ŵ (r,p)ρ̂}, (20)

corresponding to the quantum-plus-statistical average of the
Wigner operator [24]

Ŵ (r,p) =
∫

dr′
∣∣∣∣r − r′

2

〉
e

p·r′
i�

〈
r + r′

2

∣∣∣∣. (21)

For any physical quantity a, described via the operator â, its
average value in (1) can be rewritten according to the Wigner
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picture just recalled as

〈a〉 = (2π�)−3
∫

dr dp aW(r,p)f W(r,p), (22)

where

aW(r,p) = tr{Ŵ (r,p)â} (23)

is the Weyl-Wigner transform of the operator â. Equation (22)
is formally identical to its semiclassical counterpart, thus
confirming the central role played by the Wigner picture in es-
tablishing a direct link between the fully quantum-mechanical
approach of Sec. II and the semiclassical Boltzmann theory
(see also Appendix A). However, apart from such formal
similarity, the Wigner function in (20) is not positive definite,
and can not be regarded as a classical phase-space distribution
probability [44,46].

The time evolution of the Wigner function in (20) can be
derived from the equation of motion for the density-matrix
operator ρ̂. More specifically, by applying the Weyl-Wigner
transform (20), together with its inverse

ρ̂ = (2π�)−3
∫

dr
∫

dp Ŵ (r,p) f W(r,p), (24)

to the density-matrix equation (2), one gets the equation of
motion for the Wigner function

∂f W(r,p)

∂t
= ∂f W(r,p)

∂t

∣∣∣∣
sp

+ ∂f W(r,p)

∂t

∣∣∣∣
scat

(25)

with

∂f W(r,p)

∂t

∣∣∣∣
sp

=
∫

dr′ dp′ε(r,p; r′,p′)f W(r′,p′) (26)

and

∂f W(r,p)

∂t

∣∣∣∣
scat

=
∫

dr′ dp′ �(r,p; r′,p′)f W(r′,p′), (27)

where

ε(r,p; r′,p′) = − i

(2π )3�4
tr{Ŵ (r,p)[Ĥsp, Ŵ (r′,p′)]} (28)

and

�(r,p; r′,p′) = (2π�)−3 tr{Ŵ (r,p) �(Ŵ (r′,p′))} (29)

are the single-particle and the scattering superoperators written
in the (r,p) Wigner picture, respectively.

In order to evaluate the peculiar features of the single-
particle superoperator in (28), we shall adopt an envelope-
function Hamiltonian [7] of the form

Ĥsp = K(p̂) + V (r̂), (30)

where r̂ and p̂ denote, respectively, the quantum-mechanical
operators associated to the electronic coordinate (r) and
momentum (p).1By inserting the envelope-function Hamilto-
nian (30) into Eq. (28), after a straightforward calculation (not

1According to the usual prescription of the envelope-function
theory, the function K in Eq. (30) describes the bulk electronic band,
while V describes the nanostructure potential profile.

reported here), one gets

∂f W(r,p)

∂t

∣∣∣∣
sp

= ∂f W(r,p)

∂t

∣∣∣∣
K

+ ∂f W(r,p)

∂t

∣∣∣∣
V

, (31)

where

∂f (r,p)

∂t

∣∣∣∣
K

= −
∫

dr′K(r − r′,p)f W(r′,p) (32)

with

K(r′′,p) = i

∫
dp′ e− r′′ ·p′

i�

(2π )3�4

[
K

(
p + p′

2

)
− K

(
p − p′

2

)]
,

(33)

and

∂f (r,p)

∂t

∣∣∣∣
V

= −
∫

dp′V(r,p − p′)f W(r,p′) (34)

with

V(r,p′′) = i

∫
dr′ e

p′′ ·r′
i�

(2π )3�4

[
V

(
r + r′

2

)
− V

(
r − r′

2

)]
.

(35)

A detailed investigation of the nonlocal character of the single-
particle dynamics in (31), induced by the kinetic superoperator
K in (32) as well as by the potential superoperator V in (34),
can be found in Ref. [75].

Let us now discuss the general nonlocal features of the
scattering superoperator in (29). By inserting into Eq. (29) the
explicit form of the Lindblad-type superoperator (6), we get

�(r,p; r′,p′) = (2π�)−3
∑

s

Re[tr{Ŵ (r,p) ÂsŴ (r′,p′)Â†s}

−tr{Ŵ (r,p) Âs†ÂsŴ (r′,p′)}]. (36)

As shown in the following (see also Appendix A), in the so-
called semiclassical limit these two contributions reduce to
the in- and out-scattering terms of the Boltzmann theory [see
Eq. (47)]; however, opposite to the Boltzmann collision term,
the quantum-mechanical scattering superoperator in (36) is
in general spatially nonlocal. Indeed, for a generic Lindblad
operator Âs corresponding to a given interaction mechanism
s, the scattering superoperator is different from zero also for
r �= r′.

In order to better elucidate the spatial nonlocality of the
Wigner-transport theory, it is useful to recall the link between
our Wigner function f W(r,p) and the corresponding spatial
carrier density n(r); according to the general average-value
prescription (22), one gets a result formally identical to the
semiclassical one, namely,

n(r) = (2π�)−3
∫

d3p f W(r,p). (37)

Combining the above result with the Wigner transport equa-
tion (25) and employing the single-particle results in (31)–(35),
the time evolution of the spatial carrier density is again given
by Eq. (13) with

∂n(r)

∂t

∣∣∣∣
sp

= −(2π�)−3
∫

dr′dp′K(r − r′,p′)f W(r′,p′) (38)
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and

∂n(r)

∂t

∣∣∣∣
scat

= (2π�)−3
∫

dr′dp dp′�(r,p; r′,p′)f W(r′,p′).

(39)

It is important to stress that, also within the present quantum-
mechanical treatment, the time evolution of the spatial carrier
density in Eq. (13) can be expressed via the usual charge
continuity equation, i.e.,

∂n(r)

∂t
+ ∇ · J(r) = 0. (40)

To this end, the carrier current density J(r) is defined as the
average value [see Eqs. (22) and (23)] of a corresponding
quantum-mechanical operator Ĵ(r) as

J(r) = (2π�)−3
∫

dr′dp′JW(r; r′,p′)f W(r′,p′), (41)

where

JW(r; r′,p′) = tr{Ŵ (r′,p′)Ĵ(r)} (42)

is the Weyl-Wigner transform of the current-density operator.
Combining Eqs. (13), (38), (39), and (40), after a straightfor-
ward calculation (not reported here) one gets

JW(r; r′,p′) = JW
sp(r; r′,p′) + JW

scat(r; r′,p′) (43)

with

JW
sp(r; r′,p′) = (2π�)−3

∫
dr′′dp′′ e

p′′ ·(r′′−r)
i�

ip′′ K(r′′ − r′,p′)

(44)

and

JW
scat(r; r′,p′) = −(2π�)−3

∫
dr′′dp dp′′ e

p′′ ·(r′′−r)
i�

ip′′ �(r′′,p; r′,p′).

(45)

It follows that the quantum-mechanical current density in (41)
is the sum of a single-particle and of a scattering contribution;
it is worth stressing that the presence of a scattering-induced
current has been clearly pointed out by Gebauer and Car in
Ref. [54].

While for the particular case of a parabolic band the kinetic
term of the Wigner equation reduces to the diffusion term of
the Boltzmann theory (see following) and the single-particle
current is simply given by

Jsp(r) = (2π�)−3
∫

d3p v(p) f W(r,p), (46)

for nonparabolic bands the single-particle current density is al-
ways described in terms of the spatially nonlocal superoperator
in (44) [69,75,77].

The explicit form of the scattering-induced current-density
operator in (45) will depend strongly on the specific form
of the scattering superoperator �. In any case, opposite to
the semiclassical scenario, within a fully quantum-mechanical
description such scattering-induced current is in general
different from zero, which is again a clear fingerprint of the
nonlocal character of our scattering superoperator.

Let us finally discuss the so-called semiclassical limit,
namely, how to recover the Boltzmann transport equation as
the limit of the above Wigner transport theory for � → 0.

As far as the single-particle contribution in (31) is con-
cerned, this limit is well established, and can be straightfor-
wardly performed expressing such single-particle dynamics
in terms of the well-known Moyal brackets [78]; indeed, for
� → 0, the latter reduce to the usual Poisson brackets of
classical mechanics, which in our case correspond to the usual
diffusion-plus-drift terms of the Boltzmann theory.

The most difficult task of the semiclassical limit is to show
that for � → 0, the (spatially nonlocal) scattering superop-
erator in (27) reduces to the (spatially local) collision term
of the Boltzmann theory. Indeed, as shown in Appendix A,
by employing the momentum representation and applying an
adiabatic-decoupling scheme (valid for � → 0) both in the
coordinate and momentum space, one finally gets

∂f W

∂t

∣∣∣∣
scat

=
∫

d3p′[P (p,p′)f W(r,p′) − P (p′,p)f W(r,p)],

(47)

where the semiclassical scattering rates P (p,p′) can easily
be expressed in terms of the matrix elements of the original
Lindblad operators [see Eqs. (A9) and (A10)].

IV. SCATTERING-INDUCED DIFFUSION:
A FEW SIMULATED EXPERIMENTS

The aim of this section is to perform a detailed inves-
tigation of scattering-induced diffusion in homogeneous as
well as in nanostructured semiconductor systems. Based on
the quantum-transport formulation proposed so far, we shall
present and discuss a number of simulated experiments of
ultrafast carrier dynamics in GaN-based materials.

A. Physical model and simulation strategy

As a prototypical physical system, we shall consider an
effective one-dimensional GaN-based nanostructure, whose
main energy-dissipation and decoherence mechanism is
carrier-LO phonon scattering. The latter will be described via
the Lindblad scattering superoperator in (6), whose explicit
form is given in Appendix B.

It is imperative to stress that the choice of considering
a simple one-dimensional model is by no means dictated
by computational limits; indeed, opposite to more refined
quantum-kinetic approaches, the proposed simulation strategy
may be easily applied to realistic nanostructures within a
fully three-dimensional description, as recently realized in
Ref. [79]. We just decided to adopt a one-dimensional system
in order to facilitate the analysis of scattering-induced spatial
nonlocality, and to better elucidate its physical origin and
magnitude.

For the case of a one-dimensional system with coordinate
z and momentum p, the space [see Eq. (12)] and momentum
charge distributions are simply given by

n(z) =
∑
α1α2

φα1
(z)ρα1α2φ

∗
α2

(z) (48)
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and

n(p) =
∑
α1α2

φ̃α1
(p)ρα1α2 φ̃

∗
α2

(p), (49)

where φα(z) ≡ 〈z|α〉 denotes the real-space wave function
corresponding to the eigenstate α, and φ̃α(p) ≡ 〈p|α〉 its
Fourier transform.

Combining the prescription in (48) with the density-matrix
equation (7), the total time evolution of the spatial carrier
density n(z) is described via the one-dimensional versions
(r → z) of Eqs. (13)–(15). As already pointed out in Sec. III,
for the relevant case of the Lindblad superoperator in (8) the
corresponding time evolution can be expressed as the differ-
ence of two terms, which in the semiclassical limit (see also
Appendix A) reduce to the in- minus out-scattering structure
of the conventional Boltzmann theory [see Eq. (47)]. This
suggests to write the one-dimensional version of Eq. (15) as

∂n(z)

∂t

∣∣∣∣
scat

= F in(z) − F out(z) (50)

with

F in/out(z) =
∑
α1α2

φα1
(z)F in/out

α1α2
φ∗

α2
(z). (51)

Our simulation strategy is based on a numerical solution
of the density-matrix equation in (7); this is realized via a
fixed-time-step discretization [24] based on an exact integra-
tion of the single-particle dynamics. More specifically, the
single-particle states α of the structure under examination are
described via the usual envelope-function picture [see Eq. (30)]
within the standard effective-mass approximation [7], in terms
of a plane-wave expansion [24].

In order to mimic the main features of a realistic GaN-
based material, the following parameters have been employed:
effective mass m∗ = 0.2m◦ (m◦ denoting the free-electron
one) and LO-phonon energy εLO = 80 meV; moreover, the
amplitude of the carrier-phonon matrix elements in Eq. (B6)
are chosen such to reproduce an average bulk carrier-LO
phonon scattering rate τLO = 25 fs.

For all the simulated experiments presented in the following
we have chosen as initial condition a single-particle density
matrix ρα1α2

corresponding to a Gaussian carrier distribution
both in space and momentum, namely,

n(z) ∝ e
− z2

2�
2
z√

2π �z

, n(p) ∝ e
− p2

2�
2
p

√
2π �p

, (52)

where �z describes the degree of spatial localization of
our initial state, and �p = √

m∗kBT describes the thermal
fluctuations of our carrier gas.

It is easy to show that such initial condition corresponds to
a one-dimensional Wigner function

f
W

(z,p) ∝ �
e
− z2

2�
2
z e

− p2

2�
2
p

√
2π �z�p

, (53)

and therefore to an initial density matrix

ρα1α2
∝ 1

2π

∫
dz dp Wα1α2 (z,p)

e
− z2

2�
2
z e

− p2

2�
2
p

√
2π �z�p

, (54)

where

Wα1α2 (z,p) =
∫

dz′φ∗
α1

(
z − z′

2

)
e

pz′
i� φα2

(
z + z′

2

)
(55)

are the single-particle matrix elements of the Wigner operator
in (21).2

The primary goal of our simulated experiments is to inves-
tigate the nonlocal character of the Lindblad-type scattering
superoperator in (8), and to compare it with other scatter-
ing models. The simplest parameter-free form of the scattering
term entering our density-matrix equation (7) is given by the
following relaxation-time model [79]:

dρα1α2

dt

∣∣∣∣
scat

= − �α1 + �α2

2

(
ρα1α2 − ρ◦

α1α2

)
. (56)

Here, ρ◦
α1α2

= f ◦
α1

δα1α2 is the equilibrium density matrix
dictated by the host material, and

�α =
∑

s

∑
α′

P s
α′α (57)

is the total scattering rate (i.e., summed over all final states α′
and relevant interaction mechanisms s) corresponding to the
microscopic transition probabilities P s

α′α of the semiclassical
transport theory given by the standard Fermi’s golden rule [8].
Within such relaxation-time paradigm, the diagonal contribu-
tions (α1 = α2) describe population transfer (and thus energy
dissipation) toward the equilibrium carrier distribution f ◦

α1

according to the relaxation rate �α1 , whereas the off-diagonal
contributions (α1 �= α2) describe a decay of the interstate
polarizations according to the decoherence rate (�α1 + �α2 )/2.

In spite of its simple form and straightforward physical
interpretation, the structure of the relaxation-time term (56)
is intrinsically different from the in- minus out-structure of
the Boltzmann collision term as well as of the Lindblad
superoperator in (8), and for this reason it may lead to
a significant overestimation of decoherence processes (see
following).

B. Analysis of homogeneous systems

Our first set of room-temperature simulated experiments
corresponds to an effective (one-dimensional) homogeneous
GaN system (i.e., no confinement potential profile along the z

direction).

1. Scattering nonlocality

Let us start our analysis by investigating the carrier-
LO phonon scattering nonlocality induced by the Lindblad
superoperator in (8). Figure 1 shows the scattering-induced
time derivative of the spatial carrier density [see Eq. (50)] as a
function of the relative coordinate z/�z for three different
values of the localization parameter �z. As we can see,

2We stress that the (mixed-state) density matrix in (54) is not
always physical; indeed, it is possible to show that the uncertainty
principle imposes the following restriction: �z � �

2�p
. Recalling that

�p = √
m∗kBT , it follows that at room temperature and for the GaN

parameters previously recalled, one gets �z � �

2
√

m∗kBT
 2 nm.
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FIG. 1. (Color online) Room-temperature carrier-LO phonon
scattering nonlocality induced by the Lindblad superoperator in
Eq. (8) in a homogeneous GaN system: scattering-induced time
derivative of the spatial carrier density [see Eq. (50)] as a function
of the relative coordinate z/�z for three different values of the
localization parameter: �z = 5 nm (solid curve), �z = 10 nm
(dashed curve), and �z = 50 nm (dashed-dotted curve), together with
the initial spatial density profile in Eq. (52) (thin solid curve) (see
text).

in the presence of an initial nanometric confinement (solid
and dashed curves) the phonon-induced time variation is
significantly different from zero; the latter displays a negative
peak, corresponding to a sort of replica of the initial distribu-
tion, and, more importantly, a positive contribution extending
over a much larger range. This is exactly the signature of
scattering-induced spatial nonlocality we were looking for.
By significantly increasing the value of �z (dashed-dotted
curve), the magnitude and relative spatial extension of such
nonlocality effects is strongly reduced, thus confirming that
in the semiclassical limit �z → ∞ the scattering-induced
time variation tends to zero, as predicted by the conventional
Boltzmann theory (see Appendix A).

In order to better understand the physical origin and relative
magnitude of the positive versus negative regions in Fig. 1, let
us examine separately the impact of in- and out-scattering
terms [see Eq. (50)]. Figure 2 shows in-scattering [Fig. 1(a)]
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FIG. 2. (Color online) Room-temperature carrier-LO phonon
scattering nonlocality induced by the Lindblad superoperator in
Eq. (8) in a homogeneous GaN system: in-scattering (a) and out-
scattering contributions (b) corresponding to the time derivatives of
the spatial carrier density [see Eq. (50)] reported in Fig. 1 (see text).

and out-scattering contributions [Fig. 1(b)] corresponding to
the time derivatives of the spatial carrier density [see Eq. (50)]
reported in Fig. 1. As we can see, in the presence of an
initial nanometric confinement (solid and dashed curves), the
in-scattering contribution [Fig. 1(a)] is significantly larger
than the initial distribution profile (see thin solid curve in
Fig. 1) while, in contrast, the out-scattering contribution
[Fig. 1(b)] comes out to be more localized. It is exactly
such different spatial extension of in- and out-scattering
contributions that gives rise to the density-variation profiles
in Fig. 1; in particular, the significant delocalization of the
in-scattering contribution (compared to the out-scattering
one) is responsible (i) of the negative central peak, and
(ii) of the two positive external regions.3 By significantly
increasing the value of �z (dashed-dotted curves), in- and
out-scattering contributions tend to coincide, which implies
that their difference tends to vanish, in total agreement with
the corresponding result in Fig. 1 (dashed-dotted curve). This
clearly shows that the local character of the Boltzmann theory
[see Eq. (47)] originates from an exact cancellation between
in- and out-scattering contributions, which takes place in the
semiclassical limit (i.e., �z → ∞) only.

Based on the numerical results presented so far, it is
easy to conclude that the impact of scattering nonlocality is
intimately related to the different spatial extension of in- and
out-scattering contributions. In order to better quantify the
phenomenon under examination, it is useful to introduce the
effective nonlocality parameter

ηin/out = 1

�z

√∫
z2|F in/out(z)|dz∫ |F in/out(z)|dz

. (58)

According to its definition, this dimensionless parameter can
be regarded as the standard deviation of the spatial density
variation F in/out(z) [see Eq. (50)] in units of �z. It follows that
when the shape of the density variation F in/out(z) tends to the
initial Gaussian profile (see dashed-dotted curves in Fig. 2), the
nonlocality parameter ηin/out in (58) tends to one; moreover,
for charge variations wider than the initial distribution [see
solid and dashed curves in Fig. 2(a)] the nonlocality parameter
is expected to be greater than one, while for charge variations
sharper than the initial distribution [see solid and dashed curves
in Fig. 2(b)] the latter is expected to be smaller than one.

This scenario is fully confirmed by the numerical results
reported in Fig. 3, where the nonlocality parameter in (58) is
plotted as a function of �z for both in- and out-scattering con-
tributions (here, the two curves have been obtained repeating
our numerical calculation for a large set of �z values). As
we can see, in the presence of a strong spatial confinement
(�z = 5 nm) (see solid curves in Fig. 2), the nonlocality
parameter of the in-scattering term is definitely greater than
one, while for the out-scattering term the latter is significantly
smaller than one. By increasing the value of �z, the difference

3It is worth stressing that, in view of the trace-preserving character
of the Lindblad superoperator (6), the total carrier density (i.e.,
integrated over the spatial coordinate z) is preserved; this implies
that the positive and negative regions in Fig. 1 should cancel each
other out.

205415-8



SCATTERING NONLOCALITY IN QUANTUM CHARGE . . . PHYSICAL REVIEW B 89, 205415 (2014)

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0
η

Δz (nm)

in

out

FIG. 3. Nonlocality parameter in Eq. (58) as a function of �z for
both in- and out-scattering contributions. Here, the 5-, 10-, and 50-nm
values (see symbols) correspond to the in- and out-scattering profiles
of Fig. 2 (see text).

between in and out parameters is progressively reduced, and
for �z = 50 nm (see dashed-dotted curves in Fig. 2) their value
is already very close to unity.

The homogeneous-GaN simulated experiments presented
so far allows one to draw two basic conclusions: (i) in the
presence of a nanometric spatial confinement one deals with
a significant carrier-phonon scattering nonlocality (see solid
curve in Fig. 1); (ii) opposite to other simplified scattering
models (see following), our Lindblad superoperator [see
Eq. (8)] is able to properly reproduce the semiclassical-limit
behavior (see dashed-dotted curve in Fig. 1), thus recovering
the local character of the Boltzmann collision term.

At this point, it is crucial to compare the action of the
Lindblad scattering superoperator (8) (see Fig. 1) with that
of simplified dissipation models, and in particular with the
conventional relaxation-time approximation. Figure 4 shows
the scattering-induced time derivative of the spatial carrier
density corresponding to the relaxation-time model in (56) as
a function of the relative coordinate z/�z for the same three
values of the localization parameter �z considered in Fig. 1. As
we can see, also for the case of the relaxation-time model one
deals with significant nonlocality effects. However, comparing
Fig. 4 with Fig. 1, it is easy to recognize strong differences
between the Lindblad treatment and the relaxation-time ap-
proximation: opposite to the Lindblad-superoperator results
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FIG. 4. (Color online) Same as in Fig. 1 but for the relaxation-
time model in Eq. (56) (see text).

of Fig. 1, here the shape and amplitude of the charge-density
variation is not strongly influenced by the value of �z; more
importantly, while in Fig. 1 the positive regions are spatially
localized (i.e., they display a maximum and then vanish at large
distances), here the charge variation tends to a constant and �z-
independent value. This constitutes an unambiguous proof of
the intrinsic limitations of the relaxation-time approximation;
indeed, opposite to the Lindblad-superoperator treatment, the
latter (i) comes out to be totally nonlocal (as confirmed by its
nearly constant values at large coordinate values),4 and (ii) in
the semiclassical limit (�z → ∞) it is intrinsically unable to
reproduce the local character of the Boltzmann collision term.

As we shall see, the totally nonlocal character of the
relaxation-time model may give rise to a strong overestimation
of the scattering-induced quantum diffusion (see Figs. 6 and
7).

2. Quantum diffusion: Single-particle versus scattering dynamics

So far, our focus has been devoted to the investigation of the
spatial nonlocality induced by carrier-LO phonon coupling.
However, in order to establish how such scattering-induced
charge redistribution will affect the overall diffusion process,
it is imperative to perform a time-dependent analysis including
single-particle as well as scattering dynamics.

Figure 5 displays the subpicosecond time evolution of
the spatial carrier density corresponding to the initial mixed
state in (54) with �z = 10 nm, obtained in the absence
of carrier-phonon coupling (upper panel), via the Lindblad
scattering superoperator in (8) (central panel), and via the
relaxation-time model in (56) (lower panel). As we can
see, compared to the scattering-free case (upper panel), both
Lindblad and relaxation-time treatments give rise to a speedup
of the diffusion process, and the effect is more pronounced in
the relaxation-time case (lower panel).

Such ultrafast diffusion dynamics is the result of a highly
nontrivial interplay between single-particle and scattering
contributions; indeed, it is well known that also in the presence
of a spatially local (i.e., Boltzmann) scattering model [for
which the contribution in (50) is always equal to zero] any
scattering-induced carrier redistribution tends to speed up the
diffusion process [64]. In order to better evaluate the genuine
diffusion contribution due to scattering nonlocality, it is then
crucial to start our simulated experiments from a thermalized
carrier distribution; this has been realized adopting the initial
state in (54); indeed, for a parabolic-band homogeneous
system (as the one considered here) in the absence of scattering
nonlocality, the time evolution of the spatial carrier density
is described by the following (time-dependent) Gaussian
distribution (see upper panel in Fig. 5):

n(z,t) ∝ e
− z2

2�2
z (t)

√
2π�z(t)

(59)

4Indeed, for the relaxation-time model in (56) it is not possible
to introduce a nonlocality parameter [see Eq. (58)] since the spatial
standard deviation of the charge-density variation in Fig. 4 is always
infinite.
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FIG. 5. (Color online) Room-temperature quantum-diffusion dy-
namics in a homogeneous GaN system obtained in the absence of
carrier-phonon coupling (upper panel), via the Lindblad scattering
superoperator in Eq. (8) (central panel), and via the relaxation-time
model in Eq. (56) (lower panel): subpicosecond time evolution of
the spatial carrier density corresponding to the initial mixed state in
Eq. (54) with �z = 10 nm (see text).

with

�z(t) = �z

√
1 + t2

τ 2
d

, (60)

where

τd = m∗�z

�p

(61)

describes the typical time scale of the scattering-free diffusion
process (for the case of Fig. 5, this is about 70 fs).

The physical origin and relative magnitude of the diffusion
speedup reported in Fig. 5 can be easily understood in terms
of the scattering-induced nonlocality previously investigated.
Indeed, for both the Lindblad (Fig. 1) and the relaxation-time
model (Fig. 4), carrier-phonon scattering induces a progressive
charge transfer from the initial peak toward outer regions,
which results in an overall spatial broadening. As already
pointed out, the impact of such scattering-induced diffusion
is expected to be particularly pronounced in the case of the
relaxation-time model since the latter is totally nonlocal (see
Fig. 4). Such highly nonphysical behavior gives rise to an
increased dissipation and decoherence dynamics, which in turn
results in the significant overestimation of the diffusion process
reported in the lower panel of Fig. 5.

To quantify the amount of extra diffusion reported in Fig. 5,
let us introduce the effective carrier distribution width

λ =
√∫

z2n(z) dz∫
n(z) dz

. (62)
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FIG. 6. (Color online) Effective spatial-distribution width λ in
Eq. (62) as a function of time. Here, the local-scattering result [see
Eq. (59)] (solid curve) is compared to the corresponding results
obtained adopting as scattering models the Lindblad superoperator in
Eq. (8) (dashed curve) as well as the relaxation-time model in Eq. (56)
(dashed-dotted curve) (see text).

Figure 6 shows the time evolution of the above effective
distribution width λ. Here, the local-scattering result λ =
�z(t) (solid curve) is compared to the corresponding re-
sults obtained adopting as scattering models the Lindblad
superoperator (8) (dashed curve) as well as the relaxation-
time model (56) (dashed-dotted curve). As expected, the
relaxation-time model gives rise to a strong overestimation
of the diffusion process (see dashed-dotted curve) compared
to the Lindblad-superoperator treatment (dashed curve).

As anticipated, the relaxation-time model in (56) does not
exhibit the well-established in- minus out-scattering structure
of the Boltzmann collision term as well as of the Lindblad
superoperator in (8); it follows that within such a simplified
model, the decay of the interstate phase coherence (also
referred to as interstate polarization) is not dictated by a
balance between in and out contributions, but is determined by
out-scattering contributions only, leading to an overestimation
of electronic decoherence. In order to elucidate this crucial
point, let us start by analyzing the explicit form of Eq. (7) for
the case of the relaxation-time model in (56). By denoting with

ρ i
α1α2

(t) = ρα1α2
(t)e− (εα1 −εα2 )t

i� (63)

the single-particle density matrix written in the interaction
picture, the time evolution of its nondiagonal (α1 �= α2)
elements is given by

dρ i
α1α2

dt
= − �α1 + �α2

2
ρ i

α1α2
, (64)

which shows that, in addition to the free rotation in (63), the
interstate polarization decays according to the decoherence
rate (�α1 + �α2 )/2. In contrast, by inserting into Eq. (7) the
explicit form of the Lindblad superoperator (8), it is easy to
get

dρ i
α1α2

dt
= (

Lα1α2,α1α2 + Lα2α1,α2α1

)
ρ i

α1α2

+
∑

α′
1α

′
2 �=α1α2

(
e

(ε
α′

1
−ε

α′
2

−εα1 +εα2 )t

i� Lα1α2,α
′
1α

′
2
ρ i

α′
1α

′
2

+ H.c.
)

(65)
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FIG. 7. (Color online) Same as in Fig. 6, but for a reduced value
of the LO-phonon energy (εLO = 20 meV) (see text).

with

Lα1α2,α
′
1α

′
2
= 1

2

∑
s

(
P s

α1α2,α
′
1α

′
2
− δα2α

′
2

∑
α′

P s∗
α′α′,α1α

′
1

)
. (66)

In the presence of strongly nonelastic interaction processes, the
overall impact of the second term in (65) is strongly reduced
thanks to the fast temporal oscillations of the various free-
rotation phase factors; moreover, taking into account that in
such nonelastic-interaction limit P s

αα′,αα′ → 0, one gets

Lαα′,αα′ → −�α/2, (67)

which implies that in this limit the Lindblad-model equation
in (65) reduces to the relaxation-time one in (64). In contrast, in
the presence of quasielastic processes, one deals with a signifi-
cant cancellation between in- and out-scattering contributions,
not accounted for by the relaxation-time equation (64). It is
worth stressing that such intrinsic limitation of relaxation-time
models has been already recognized in the analysis of ultrafast
phenomena in photoexcited semiconductors [12], showing
that the latter becomes particularly severe for the case of
quasielastic processes [80].

To confirm this physical interpretation, we have repeated
the simulated experiments presented so far artificially reducing
the GaN LO-phonon energy by a factor 4 (from 80 to 20 meV),
such to mimic the quasielastic-process limit. The time evolu-
tion of the effective distribution width λ corresponding to these
new simulations is reported in Fig. 7. As expected, compared to
the results reported in Fig. 6, the decoherence overestimation
produced by the relaxation-time model (dashed-dotted curve)
is still increased, while the diffusion speedup induced by the
Lindblad superoperator (dashed curve) is strongly reduced.
Indeed, in spite of the fact that the LO-phonon energy is
still significantly different from zero, the effect of phonon
scattering is already negligible. This is a clear indication that
in the presence of genuine quasielastic processes such as,
e.g., carrier-acoustic phonons or carrier-carrier scattering,
(i) the relaxation-time model is definitely inadequate, and
(ii) quantum diffusion due to scattering nonlocality is expected
to play a minor role.

C. From homogeneous systems to nanostructures

As a final set of simulated experiments aimed at showing the
power and flexibility of the proposed density-matrix approach,
we have extended the homogeneous-system analysis presented
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FIG. 8. (Color online) Room-temperature quantum-diffusion dy-
namics in a GaN-based superlattice (lower panel) (band offset of
0.3 eV and well and barrier widths of 4.5 and 1 nm) obtained in
the absence of carrier-phonon coupling (upper panel) and via the
Lindblad scattering superoperator in Eq. (8) (central panel): subpi-
cosecond time evolution of the spatial carrier density corresponding
to the initial mixed state in Eq. (54) with �z = 2 nm (see text).

so far to the case of a periodic nanostructure. Figure 8 displays
the subpicosecond time evolution of the spatial carrier density
in a GaN-based superlattice (see lower panel) corresponding to
the initial mixed state in (54) with �z = 2 nm, obtained in the
scattering-free case (upper panel) and employing the Lindblad
scattering superoperator in (8) (central panel). Compared to the
corresponding homogeneous-system results of Fig. 5, here the
superlattice structure (see lower panel) gives rise to a nontrivial
interplay between the spatial quantum confinement dictated by
the nanostructure potential profile and the scattering-induced
diffusion, resulting in a superlattice-induced modulation of the
density profile.

In the absence of carrier-phonon scattering (upper panel),
one deals with coherent charge oscillations originating from
the diffusion dynamics of the initial packet through the
superlattice structure. In particular, it is easy to recognize the
typical signature of interwell coherent tunneling, a peculiar
phenomenon in coupled quantum-well structures [27]. To
better elucidate this crucial feature, in Fig. 9 we have reported
the time evolution of the carrier population in the central
well of the superlattice [Fig. 9(a)] as well as in the two
adjacent wells [Fig. 9(b)]. As we can see, in the scattering-free
case (solid curves corresponding to the upper-panel result
of Fig. 8), one deals with a significant charge transfer from
the central well toward the adjacent ones and vice versa, the
so-called coherent-tunneling dynamics. However, compared
to simple two-well systems, here the situation is by far more
complicated: once a fraction of the central-well charge has
reached the adjacent wells, part of it will be transferred back to
the central well, but also to the external nearest-neighbor ones;
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FIG. 9. (Color online) Time evolution of the carrier population
in the central well of the superlattice (panel a) as well as in the
two adjacent wells (panel b) corresponding to the scattering-free
simulation [solid curves (upper panel in Fig. 8)] and to the Lindblad-
scattering simulation [dashed curves (central panel in Fig. 8)] (see
text).

this process will progressively extend to an increasing number
of wells, giving rise to the quantum-mechanical diffusion
process displayed in the upper panel of Fig. 8.

In the presence of carrier-LO phonon scattering (see central
panel in Fig. 8 and dashed curves in Fig. 9), the fully coherent
dynamics just described is strongly suppressed; indeed, the
significant temporal oscillations in Fig. 9 are strongly reduced,
giving rise at long times to a classical-like diffusion scenario
typical of a so-called incoherent-tunneling dynamics [27].

Finally, it is important to point out that in the presence of
energy dissipation, the interplay between single-particle phase
coherence (dictated by the superlattice potential profile) and
phonon-induced decoherence (dictated by the Lindblad scat-
tering superoperator) is highly nontrivial. This is clearly shown
in Fig. 10, where we report the effective spatial-distribution
width λ in (62) corresponding to the two simulated experiments
of Fig. 8 as well as to the scattering-free homogeneous-system
result of Fig. 5.

As we can see, at short times (less than 100 fs) the
scattering-free diffusion dynamics within the superlattice
structure (solid curve) does not differ significantly from the
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FIG. 10. (Color online) Effective spatial-distribution width λ

in Eq. (62) as a function of time. Here, the local-scattering
homogeneous-system result in Eq. (59) (thin solid curve) is compared
to the scattering-free superlattice result (solid curve corresponding to
the upper-panel result of Fig. 8) as well as to the Lindblad-scattering
superlattice result (dashed curve corresponding to the central-panel
result of Fig. 8) (see text).

corresponding homogeneous-system result (thin solid curve).
In contrast, the presence of carrier-LO phonon scattering
(dashed curve) gives rise to a significant diffusion speedup
[compared to the scattering-free result (solid curve)]; at longer
times, the nonlocal action of the scattering superoperator
vanishes, and at the end of the simulation the spatial broad-
ening induced by the Lindblad superoperator comes out to
be similar to the scattering-free one. Such nontrivial behavior
can be explained as follows: at short times, the strong spatial
localization of the initial distribution induces a significant
diffusion speedup due to carrier-phonon nonlocality effects; at
longer times, such scattering-induced nonlocality is strongly
reduced, and, at the same time, energy dissipation tends to
destroy interstate phase coherence, thus limiting the diffusion
process compared to the scattering-free case.

Generally speaking, we finally stress that the ability of
investigating such space-dependent phenomena originating
from the complex interplay between single-particle quantum
coherence and phonon-induced energy dissipation versus de-
coherence, definitely not possible via Boltzmann-type Monte
Carlo simulation schemes, constitutes a distinguished feature
of the proposed quantum-mechanical treatment.

V. SUMMARY AND CONCLUSIONS

In this paper, we have provided a rigorous treatment of
scattering-induced spatial nonlocality in bulk as well as in
nanostructured materials.

On the one hand, starting from the conventional density-
matrix formalism and employing as ideal instrument for the
study of the semiclassical limit the well-known Wigner-
function picture, we have performed a fully quantum-
mechanical derivation of the space-dependent Boltzmann
equation.

On the other hand, we have analyzed the validity limits
of such semiclassical approximation scheme, pointing out, in
particular, regimes where scattering-nonlocality effects may
play a relevant role; to this end, we have supplemented
our analytical investigation with a relevant set of simulated
experiments, discussing and further expanding preliminary
studies of scattering-induced quantum diffusion in GaN-based
nanomaterials recently presented in Ref. [43].

Our numerical investigation of ultrafast space-dependent
phenomena in homogeneous GaN systems allows one to draw
the following conclusions.

In the presence of carrier localization on the nanometric
space scale (see Fig. 1) within the proposed Lindblad treatment
one deals with significant phonon-induced nonlocality effects;
our analysis has shown that such nonlocal character is the
result of a different spatial localization of in- and out-scattering
contributions (see Figs. 2 and 3); these nonlocality effects will
progressively vanish as the carrier delocalization increases,
thus recovering, as expected, the local character of the
Boltzmann collision term.

A detailed comparison of the proposed Lindblad scattering
model (see Fig. 1) with the conventional relaxation-time
approximation (see Fig. 4) has shown that the latter (i) leads to a
significant overestimation of phonon-induced decoherence as
well as scattering nonlocality, and (ii) is intrinsically unable to
reproduce the local character of the Boltzmann collision term.
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Thanks to our time-dependent simulations, we have shown
that in homogeneous GaN systems one deals with a relevant
competition between free-particle diffusion and phonon-
induced nonlocal effects, giving rise to a global diffusion
speedup (see Fig. 5); once again, a comparison between
the proposed Lindblad treatment and the relaxation-time
model has clearly shown that the latter leads to a significant
overestimation of such diffusion speedup (see Fig. 6), and that
this limitation is particularly severe for the case of quasielastic
dissipation processes (see Fig. 7).

Moving from homogeneous systems to periodically modu-
lated nanostructures, the interpretation of the diffusion process
in the presence of phonon-induced dissipation is by far more
complicated. Indeed, compared to the homogeneous-system
results (see Fig. 5), the presence of the superlattice structure
(see Figs. 8 and 9) gives rise to a nontrivial interplay between
the spatial quantum confinement dictated by the nanostructure
potential profile and the scattering-induced diffusion, resulting
in a superlattice-induced modulation of the density profile.

Let us finally stress that in the presence of particularly
strong interaction mechanisms as well as of extremely short
electromagnetic excitations, the application of the Markov
limit becomes questionable [12,13]; however, for a wide range
of nanodevices and operation conditions the proposed Markov
treatment is expected to well reproduce the subpicosecond dy-
namics induced by a large variety of single-particle scattering
mechanisms.
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APPENDIX A: THE SEMICLASSICAL LIMIT:
QUANTUM-MECHANICAL DERIVATION OF THE

BOLTZMANN COLLISION TERM

In order to derive the conventional Boltzmann collision
term, the first step is to rewrite the Wigner scattering
superoperator in (36) within the momentum representation.
More specifically, denoting with

As(p1,p2) = 〈p1|Âs |p2〉 (A1)

the (continuous) matrix elements of the Lindblad operators
in (6) and taking into account that

〈p1|Ŵ (r,p)|p2〉 = e
(p1−p2)·r

i� δ

(
p1 + p2

2
− p

)
, (A2)

the explicit form of the scattering superoperator in (36) comes
out to be

�(r,p; r′,p′) =
(

2

π�

)3 ∑
s

∫
dp1dp2e

2(p1−p2+p′−p)·r
i� As(2p − p1,2p′ − p2)As∗(p1,p2)e− 2(p2−p′)·(r′−r)

i�

−
(

2

π�

)3 ∑
s

Re

{ ∫
dp1dp2e

2(p′−p)·r
i� As∗(p2,2p − p1)As(p2,2p′ − p1)e− 2(p1−p′)·(r′−r)

i�

}
. (A3)

By inserting the above result into Eq. (27), one gets

∂f W(r,p)

∂t

∣∣∣∣
scat

=
(

2

π�

)3 ∑
s

∫
dr′dp′dp1dp2e

2(p1−p2+p′−p)·r
i� As(2p − p1,2p′ − p2)As∗(p1,p2)e− 2(p2−p′)·(r′−r)

i� f W(r′,p′)

−
(

2

π�

)3 ∑
s

Re

{ ∫
dr′dp′dp1dp2e

2(p′−p)·r
i� As∗(p2,2p − p1)As(p2,2p′ − p1)e− 2(p1−p′ )·(r′−r)

i� f W(r′,p′)
}
. (A4)

Let us now analyze the semiclassical limit of the above quantum-mechanical scattering superoperator. From a physical point
of view, in the limit � → 0 the various phase factors entering Eq. (A4) will display infinitely fast oscillations, which allows one
to evaluate some of the above coordinate and momentum integrals via a sort of adiabatic-decoupling procedure. As far as the
coordinate r′ is concerned, for any regular function F (r) we have

lim
�→0

∫
dr′e

p′′ ·(r′−r)
i� F (r′) = (2π�)3δ(p′′)F (r). (A5)

By employing this general property, in the semiclassical limit (� → 0) the scattering superoperator in (A4) simplifies to

∂f W(r,p)

∂t

∣∣∣∣
scat

= 8
∑

s

∫
dp′dp1e

2(p1−p)·r
i� As(2p − p1,p′)As∗(p1,p′)f W(r,p′)

− 8
∑

s

Re

{ ∫
dp′dp2e

2(p′−p)·r
i� As∗(p2,2p − p′)As(p2,p′)f W(r,p′)

}
. (A6)
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In addition to the spatial adiabatic decoupling in (A5), in the
semiclassical limit it is also possible to show that for any
regular function G(r,p):

lim
�→0

∫
dp′′e

(p′′−p)·r
i� G(r,p′′) = (2π�)3

�
G(r,p). (A7)

Here, � denotes a proper crystal normalization volume;
indeed, in order to derive this result it is crucial to perform
a sort of spatial coarse graining, i.e., a spatial average of the
function G over a volume � much larger than the typical carrier
coherence length and much smaller than the macroscopic
spatial variations of our material. By employing the general
property in (A7), the scattering superoperator in (A6) reduces
to

∂f W(r,p)

∂t

∣∣∣∣
scat

= (2π�)3

�

∑
s

∫
dp′[|As(p,p′)|2f W(r,p′)

− |As(p′,p)|2f W(r,p)]. (A8)

This is exactly the Boltzmann collision term of the semiclassi-
cal theory we were looking for; indeed, the latter can be written
in a more compact form according to Eq. (47), where

P (p,p′) =
∑

s

P s(p,p′) (A9)

and

P s(p,p′) = (2π�)3

�
|As(p,p′)|2. (A10)

This shows that the scattering rates of the Boltzmann transport
theory can be easily expressed in terms of the matrix elements
of the various Lindblad operators.

In order to establish a direct link with the conventional
Fermi’s-golden-rule prescription, let us finally move from the
continuous momentum representation employed so far to its
discrete version corresponding to the crystal normalization
volume �; more precisely, employing the usual continuous-
versus-discrete prescription, the scattering rates in (A10) can
also be written as

P s
p,p′ = ∣∣As

p,p′
∣∣2

, (A11)

in total agreement with the diagonal-approximation result
in (18).

APPENDIX B: MICROSCOPIC DERIVATION OF THE
SCATTERING SUPEROPERATOR

The aim of this Appendix is to briefly recall the basic
steps and main results of the alternative adiabatic-decoupling
approach proposed in Ref. [42]. Within the spirit of the usual
perturbation theory, the global semiconductor Hamiltonian
(electrons plus various quasiparticle excitations, e.g., phonons,
plasmons, etc.) may be written as the sum of a so-called
unperturbed contribution Ĥ◦ which can be treated exactly, plus
a perturbation term Ĥ ′ which is typically treated within some
approximation scheme. More specifically, by introducing a
properly designed adiabatic-decoupling prescription (based on
a time symmetrization between microscopic and macroscopic
scales), it is possible to express the second-order (or scattering)

contribution to the time evolution of the global density-matrix
operator ρ̂ in terms of the Lindblad superoperator

dρ̂

dt

∣∣∣∣
scat

= Âρ̂Â† − 1

2
{Â†Â,ρ̂}, (B1)

where

Â = lim
ε→0

(
2ε2

π�6

) 1
4
∫ ∞

−∞
dt ′Ĥ ′i(t ′)e−( εt ′

�
)2

(B2)

and

Ĥ ′i(t) = e
Ĥ◦ t
i� Ĥ ′e− Ĥ◦ t

i� (B3)

is the perturbation Hamiltonian Ĥ ′ written in the interaction
picture.5

We stress that, opposite to standard master-equation formu-
lations [48,63], in this new adiabatic-decoupling strategy posi-
tivity is intrinsic, and does not depend on the chosen subsystem
of interest; moreover, the above Markov prescription is valid
regardless of the specific form of the interaction Hamiltonian
Ĥ ′.

Starting from such global description, it is possible to derive
an effective scattering superoperator within the usual single-
particle picture (see Sec. II). More specifically, by denoting
with

ρα1α2 = 〈α1|ρ̂|α2〉 = tr{ĉ†α2
ĉα1

ρ̂}, (B4)

the single-particle density matrix (ĉ†α and ĉα denoting the usual
creation and destruction operators over the single-particle
states |α〉) and employing the usual mean-field approxima-
tion [12], for any single-particle interaction mechanism it
is possible to derive the nonlinear scattering superoperator
in (5), where the explicit form of the Lindblad operators Âs

depends on the particular form of the interaction Hamiltonian
Ĥ ′; moreover, by neglecting so-called Pauli factors, the latter
reduces to the Lindblad scattering superoperator in (6).

For the case of the carrier-phonon coupling considered in
this paper, the noninteracting Hamiltonian is the sum of the
electron and phonon contributions

Ĥ◦ =
∑

α

εαĉ†αĉα +
∑

q

εqb̂
†
qb̂q (B5)

(b̂†q and b̂q denoting creation and destruction of a phonon
with wave vector q and energy εq), while the interaction
Hamiltonian is given by

Ĥ ′ =
∑
αα′,q

(
g

q−
αα′ ĉ

†
αb̂qĉα′ + g

q+
αα′ ĉ

†
α′ b̂

†
qĉα

)
, (B6)

where g
q±
αα′ = g

q∓∗
α′α are carrier-phonon matrix elements for the

single-particle transition α′ → α induced by the phonon mode
q, whose explicit form depends on the particular interaction
mechanism under examination (for the carrier-LO phonon
coupling considered in our simulated experiments the latter
scale as q−1).

5The energy ε can be regarded as a sort of level broadening
corresponding to a finite collision duration and/or to a finite single-
particle lifetime [24].
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In this case, the generic electron dissipation channel
corresponds to the emission (+) or absorption (−) of a phonon
with wave vector q and energy εq, i.e., s ≡ q±, and the
Lindblad scattering superoperator in (6) comes out to be

� (ρ̂) =
∑
q±

(
Âq±ρ̂Âq±† − 1

2
{Âq±†Âq±,ρ̂}

)
, (B7)

where the matrix elements of the carrier-phonon Lindblad
operators Âq± are given by

A
q±
αα′ =

√
2π

(
Nq + 1

2 ± 1
2

)
�

g
q±
αα′D

q±
αα′ (B8)

with

D
q±
αα′ = lim

ε→0

e−(
εα−ε

α′ ±εq
2ε

)2

(2πε2)
1
4

. (B9)

By inserting the explicit form of the matrix elements in (B8)
into Eq. (11), the explicit form of the generalized carrier-
phonon scattering rates comes out to be

Pα1α2,α
′
1α

′
2
= lim

ε→0

2π

�

∑
q±

(
Nq + 1

2
± 1

2

)
g

q±
α1α

′
1
g

q±∗
α2α

′
2

× e−(
εα1 −ε

α′
1

±εq

2ε
)2
e−(

εα2 −ε
α′

2
±εq

2ε
)2

(2πε2)
1
2

. (B10)
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