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Third-dimension information retrieval from a single convergent-beam transmission electron
diffraction pattern using an artificial neural network
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We have reconstructed third-dimension specimen information from convergent-beam electron diffraction
(CBED) patterns simulated using the stacked-Bloch-wave method. By reformulating the stacked-Bloch-wave
formalism as an artificial neural network and optimizing with resilient back propagation, we demonstrate specimen
orientation reconstructions with depth resolutions down to 5 nm. To show our algorithm’s ability to analyze
realistic data, we also discuss and demonstrate our algorithm reconstructing from noisy data and using a limited
number of CBED disks. Applicability of this reconstruction algorithm to other specimen parameters is discussed.
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I. INTRODUCTION

The transmission electron microscope (TEM) uses a rela-
tivistic electron beam for materials characterization with local
specificity ranging from micrometers to sub-Angstrom, and
can determine chemical composition, crystallographic struc-
ture, electric and magnetic potentials, and morphology [1–3].
However, the beam electrons pass through the entire specimen
before reaching the detector, so they yield two-dimensional
“flat” information about a three-dimensional object. Due to the
strong forward scattering of electrons at these energies (e.g.,
80 keV), specimen properties, including crystal orientation,
thickness, strain state, electronic state, and chemical compo-
sition are projected along the “third dimension” (along the
beam direction), but this projection is highly nonlinear due to
multiple scattering from the strong beam-specimen interaction,
so retrieving these properties from TEM data is a difficult
inverse problem [2,4–6]. Existing techniques for retrieving
third-dimension information, including electron tilt tomogra-
phy or scanning confocal electron microscopy [7–12], typi-
cally only retrieve specimen density. Some third-dimension
atomic-level local structural information is encoded in weak
higher-order-Laue-zone reflections [2]; in this work, we only
consider and simulate strong zero-order-Laue-zone reflections.
To improve third-dimension TEM materials characterization,
we have developed an iterative algorithm for retrieving
any encoded specimen properties from a single elastically
filtered TEM convergent-beam electron diffraction (CBED)
pattern including multiple scattering. Our algorithm combines
forward simulation with efficient optimization tools [13,14]
from artificial-neural-network (ANN) theory, yielding iterative
refinement of specimen parameters from TEM diffraction data.
In this work, we test this algorithm on data with and without
noise, as well as for CBED data with only a few measured
disks.

Forward-simulation algorithms that include multiple scat-
tering are a conventional tool to determine TEM data from
known specimen and imaging conditions. These algorithms,
such as multislice [15,16] and Bloch-wave [4,17–19], can sim-
ulate TEM data that can agree quantitatively with experimental
data [20–22], including convergent-beam electron diffraction
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(CBED) [23,24], though discussion continues about other
imaging modes [25–27]. These algorithms include multiple
scattering, also called dynamical diffraction, which is neces-
sary for all but the thinnest TEM specimens [6]. Alternatively,
electron scattering under the assumption that the electron scat-
ters only once, known as kinematical scattering [19], is easier
to compute, but only useful for thick specimens if the specimen
is oriented to an extremely weak diffraction condition. Even
then, as noted below, the recorded data may still be influenced
by dynamical diffraction, making kinematical simulations
unreliable. While kinematical simulations can be directly
inverted to determine third-dimensional properties [28], they
may not present an accurate picture of the specimen [29].
Consequently, accurate forward-simulation algorithms are
computationally intensive [30], so brute-force multiparame-
ter specimen optimization is impractical. Our algorithm is
able to efficiently perform third-dimension multiparameter
optimization using techniques derived from reformulating
the stacked-Bloch-wave (SBW) [30–33] forward-simulation
algorithm as an ANN [13,14], similar to treatments of the
atomic-resolution multislice algorithm [34,35].

Our algorithm is applicable to optimizing any of the third-
dimension material properties detailed above, in principle,
from crystal orientation to chemical composition. Here, we
focus on only local crystal orientation, which can help explain
asymmetric features of convergent-beam electron diffraction
(CBED) patterns. A related parameter, strain state, has been
characterized in projection with multiple experimental TEM
methods in, e.g., semiconductor devices [36]. To determine
third-dimension strain state information, strain-model-based
analysis and CBED pattern analysis of the strain state in
projection have been reported [37–39]. Unlike our method,
these require accurate prior knowledge of the constrained
domain of possible specimen strain states. While single-
scattering-only simulations were previously used to investigate
strain in ion-implanted surface layers from rocking curves
in CBED patterns [28], those pattern features were later
shown to be sensitive to both dynamical diffraction and a
limited strain range [29], which demonstrates that neglecting
multiple scattering can lead to incomplete data interpretation.
Figure 1 shows a schematic of the CBED geometry, including
the electron beam and a multilayer specimen, and a CBED
pattern produced by forward-simulation discussed in Secs. II
and III from a specimen with no local crystal orientation
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FIG. 1. (Color online) CBED imaging process and simulated
CBED pattern. (a) Schematic of the CBED imaging process [2].
(b) (2◦ × 2◦) CBED pattern from 100 nm-thick unstrained Si
[110], on-axis with respect to the beam, simulated at 80 kV with
197 eigenstates from the zero-order-Laue-zone, determined through
excitation-error filtering of the on-axis orientation (sz = 1.225 nm−1),
and a 6.5 mrad condenser aperture, with 0.01◦ per simulated pixel.
Literature values were used for scattering factors, Debye-Waller
factors, and lattice parameters [40–42]. Inelastic scattering used the
Bird-King model [43].

variation along the third-dimension. By comparison, Fig. 2
shows two simulated CBED patterns. In Fig. 2(a), the left-
right asymmetry arises from third-dimension layer-by-layer
local crystal orientation variation. When tilting the specimen
stage (i.e., a constant third-dimensional crystal orientation)
to attempt to match the asymmetric pattern in Fig. 2(a), the
best-fit pattern, in Fig. 2(b), does not reproduce the asymmetric
features of the target pattern. Therefore local crystal orientation
could be experimentally detectable and would require layer-
by-layer simulations.

II. THEORY

For our layer-by-layer simulations, we use the stacked-
Bloch-wave (SBW) forward-simulation algorithm, proposed

FIG. 2. Simulated asymmetric CBED pattern and best shifted-
symmetric match. (a) Asymmetric CBED pattern under the same
imaging conditions and reflections as Fig. 1, with layer-by-layer
specimen tilts in the [001] direction relative to the zone axis of
{a,a,b,c,c,d,d,c,b,a}, where a = 0.00◦, b = −0.06◦, c = −0.15◦,
and d = −0.20◦. Each layer was 10-nm thick. (b) Best-fitting
shifted-symmetric CBED pattern to the asymmetric left pattern, with
specimen tilt of −0.1269◦ (rounded). The pattern appears shifted, but
without the left pattern’s asymmetry.

and used previously [30–33]. We reformulate SBW as an
artificial neural network (ANN), which enables the backprop-
agation of error (BPOE) [13] and resilient backpropagation
(Rprop) [14] methods, providing efficient layer-by-layer pa-
rameter optimization. This reformulation does not change the
SBW algorithm itself, but does allow for efficient optimization
tools to be applied. In this section, we discuss the SBW algo-
rithm and the ANN-based optimization tools we apply to it.

An SBW simulation, like the Bloch-wave method, decom-
poses the electron beam into s eigenstates comprising ψ , a
length-s complex vector, with each eigenstate corresponding
to an allowed crystallographic direction in the specimen. The
beam-specimen scattering matrix is given by the complex
matrix S(P ) = exp [ıtλA(P )] of dimensions s × s, where
A(P ) is a specimen property matrix, t is the specimen
thickness, and λ is the electron wavelength [44]. A(P ) depends
on a set P of specimen parameters. P can include atomic
scattering and structure factors, chemical composition, beam
absorption, lattice parameter, atomic thermal displacement
(Debye-Waller factor), beam tilt, and local crystal orientation
relative to the electron beam, as discussed above. Due to the
matrix exponential used to generate S(P ) from A(P ), changing
e.g., only the diagonal elements of A changes all the elements
of the corresponding S.

A SBW simulation decomposes the specimen into L lay-
ers with parameters Pall = {P1,P2, . . . ,PL}, from which are
generated the set of matrices Sall = {S1,S2, . . . ,SL}. The
incident beam ψ0 is forward-propagated through the specimen
by successive matrix-vector multiplications:

ψ1 = S1ψ0 = S(P1)ψ0,

ψ2 = S2ψ1 = S2S1ψ0 = S(P2)S(P1)ψ0,

...

ψL = SLψL−1 = SLSL−1 · · · S1ψ0

= S(PL)S(PL−1) · · · S(P1)ψ0.

We define the set ψall = {ψ0,ψ1,ψ2, . . . ,ψL−1,ψL} containing
the beam state at the specimen entrance surface ψ0, at the
specimen exit surface ψL, and between each layer in the
material. The final intensity at the detector is I = |ψL|2.

The SBW algorithm corresponds to a feed-forward simply-
connected ANN [13] with the set of weights Sall and the set
of nodes ψall. Because Sall is a function of Pall, optimizing the
weights yields optimized specimen parameters. To efficiently
optimize over many specimen parameters, including multiple
specimen parameters in the same layer, we use the BPOE and
Rprop ANN iterative algorithms as follows.

In optimization-iteration m, a candidate set Pall,m is used to
generate a set of Sall,m = S(Pall,m). After forward propagation,
the candidate exit intensity for beam eigenstate (diffraction
reflection) k, Ik , is compared with the measured exit intensity
for the same eigenstate, Jk , yielding the individual-reflection
mismatch error Ek = 1

2 |Ik − Jk|2, which are summed to
determine the mismatch error E = ∑

k Ek for that beam tilt.
Applying BPOE yields the full set of ∂E/∂Sall,m at the cost of
only a single reverse pass through the ANN.

We now discuss the implementation of the BPOE method
for the SBW algorithm. The BPOE method for determining the
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derivatives of the error function E requires working from the
output layer and moving “back” through the ANN (in this case,
through the SBW algorithm). The BPOE method has been
previously applied to the multislice algorithm [35], but because
the multislice and SBW forward-propagation algorithms are
different, the BPOE method also operates differently for
multislice and SBW. First, the error derivative for a parameter
p that affects one layer l, ∂E/∂p, is

∂E

∂p
=

∑
k

2 · Re
[
Ul,k ·

(
∂Sl

∂p
× ψl−1

)
k

]
, (1)

where K is the set of simulated reflections and the length of
K is |K| = s, k ∈ K is a single reflection, Sl is the SBW
scattering matrix for layer l, and U is the ANN prefactor
(an s-length vector). Twice the real part is taken because
of the complex-valued nature of the forward-simulation
algorithm [35].

The kth element of the ANN prefactor vector U is, at the
exit surface after all L layers:

UL,k = (Ik − Jk)ψ∗
L,k, (2)

where ψL,k is the kth reflection of the Lth (and final) layer,
and Ik and Jk are, respectively, the simulated and measured
beam intensities of reflection k. For the other layers, U for the
(l − 1)th layer is generated from U for the lth layer:

Ul−1 = Sl
T × Ul. (3)

The BPOE derivatives ∂E/∂p are calculated using three
equations, (1)–(3), but require ∂S/∂p, as discussed in the next
paragraph.

Using BPOE derivatives and Rprop, we can iteratively
update Pall. Because each parameter in Pall only affects
one member of Sall,m, the partial derivative of the intensity
mismatch E with respect to a single parameter p ∈ Pall in layer
l is determined by combining the BPOE weight derivatives for
layer l and ∂S/∂p. We chose to evaluate ∂S/∂p using finite-
difference derivatives, which provides maximum flexibility in
parameter choice. Rprop is then applied to each individual
pm ∈ Pall,m to determine Pall,m+1 using the signs of the partial
derivatives for each parameter from the mth and (m − 1)th
iterations and the previous update value �pm = pm − pm−1;
if the partial derivative sign changes, then pm+1 = pm −
0.5�pm, else pm+1 = pm + 1.2�pm [14]. If some elements
of Pall have known true values, this optimization algorithm
can be applied to the subset of unknown values Qall ⊆ Pall.

CBED patterns require sequential SBW simulations. As-
suming the entire pattern uses the same set of eigenstates s,
electrons along one incident beam vector are scattered into s

points in the detector plane. Therefore the incident beam disk
leads to s disks in the detector plane, part of which may lie
outside the angular span captured on the camera. Simulating a
CBED pattern requires one SBW simulation per incident beam
vector in the disk. A finite angular resolution �θ is used to
sample the disk. The angular relationship between each point in
a CBED disk is calibrated once for the whole pattern, yielding
the incident beam tilts for every point in the pattern [5]. The
incident beam tilt is both a member of Pall and a known value
from a calibrated CBED pattern [5,6]. We use the CBED
pattern to determine our updates for unknown parameters

Qall ⊆ Pall by calculating parameter gradients for multiple
incident beam tilts from the pattern and applying Rprop to the
median calculated gradients, thus providing updates for Qall.

In a realistic CBED pattern, many reflections will be
excited, but only a few will be measured, forming a subset
M of measured reflections. The unmeasured reflections must
be included, including in the backpropagation, because they
affect the observed scattering behavior. Because no inten-
sity information is recorded for the unmeasured reflections,
the mismatch error Ek can be calculated only for k ∈ M .
Conversely, if k /∈ M , Ek cannot be calculated and should
not influence the ANN weight updates. Setting Ek = 0 if
k /∈ M means that the unmeasured intensity at the detector
does not directly contribute to the ANN weight updates, but
the reflections are still preserved in the simulation. Changing
the length of U to drop those reflections is precluded by the
matrix-vector multiplication in Eq. (3).

III. RESULTS AND ANALYSIS

Now, we apply our specimen-parameter retrieval algorithm
to simulated CBED patterns, retrieving depth-dependent,
“third-dimension” parameters. We retrieve third-dimensional
information for three sets of scenarios. The first set of scenarios
(T10, T20, and T40) assumes that all simulated CBED disks
are measured in the experimental patterns. The second set of
scenarios assume that fewer CBED disks are measured than
simulated. The third set of scenarios take the second set and
add noise. Our target in this work is the specimen that yielded
the asymmetric CBED pattern in Fig. 2(a), which has only one
type of third-dimensional variation: αx , the specimen tilt in the
[001] direction relative to the zone axis.

A. All disks

In this section, we examine optimization scenarios for three
different sets of Qall. For optimization, we use a square (20 ×
20) point subarea of the reciprocal-space CBED disks, with
each point 0.01◦ apart, so pp = 400 different incident beam
tilts are considered. The upper-left corner of the square is at the
disk center. For these simulations, we include intensity data
for all 197 simulated reflections, not just the subset shown
in Fig. 2. In scenario T10, the specimen is equally divided
into ten 10 nm layers, and Qall only consists of αx for each
layer. The mean value of αx = −0.097◦ is used as the starting
value. Scenario T20 is as scenario T10, but equally divided into
twenty 5-nm layers. Scenario T40 is as scenario T20, but Qall

consists of αx and also αy for each layer, the specimen tilt in
the [110] direction relative to the zone axis (starting value and
true value 0.00◦). These scenarios have respectively 10, 20,
and 40 parameters in Qall.

Figure 3 shows our algorithm successfully retrieving third-
dimension parameters at 5- and 10-nm depth resolution. Since
we include only the zero-order-Laue-zone, we retrieve third-
dimension information without requiring higher-order-Laue-
zone information (cf. Ref. [39]). Figure 3(a) also shows that
adjacent layers (e.g., 6, 7) with the same orientation have
different convergence behavior. Abrupt parameter shifts (e.g.,
iteration 20, layers 1 and 6) are due to the Rprop algorithm, as
detailed above.
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FIG. 3. (Color online) Results from scenarios T10, T20, and T40

(see text) for third-dimension parameter reconstruction in the all-disk
case. (a) Scenario T10: αx layer-by-layer results for the first 100
iterations, showing retrieval of correct values. (b) All three scenarios:
Mean intensity mismatch �E taken over all pp and mean parameter
errors �αx,�αy per iteration. (c) All three scenarios: Parameter error
as a function of intensity mismatch, yielding detection thresholds.

Figure 3(b) shows mean intensity mismatch �E (where
�E = ∑

k Ek and the mean is taken over all pp = 400 points)
and mean parameter errors over all layers of the total set
Qall [�αx = mean(|αx,Q − αx,true|) for scenarios T10 (light

orange), T20 (dark blue), T40 (black) and �αy = mean(|αy,Q −
αy,true|) for scenario T40 (grey)] as a function of iteration
between the first parameter update and convergence at �E <

10−8. The �αy,40 trajectory arises from the starting values
being identical to the true values, and the calculation initially
departing from those values but returning to converge on the
true values. Increasing the number of parameters in Qall leads
to slower convergence. To reach �E < 10−8, scenarios T10,
T20, and T40 take 108, 454, and 1410 iterations, respectively,
so doubling the number of parameters more than doubles the
number of iterations until convergence. Time-to-convergence
is dependent on the number of parameters and layer properties,
but other third-dimension parameters and configurations may
have different convergence characteristics.

Figure 3(c) shows the same data in Fig. 3(b) regraphed
for mean parameter error �α as a function of mean intensity
mismatch �E. The �αy,40(�E) trajectory results from the
same source as that in Fig. 3(b), noted above. When optimizing
against experimental data, noise limits the best possible
�E value. Figure 3(c) thus demonstrates, in principle, how
precisely �α can be known for noisy data, providing a
quality-of-fit metric.

The quality of parameter fit as a function of �E also appears
to be dependent on layer properties. In Fig. 3(c), scenario T10

follows a different trajectory than scenarios T20 and T40, and
is approximately an order of magnitude more precise for a
given �E. T20 and T40 follow similar trajectories and have
the same layer properties, but different Qall. Thus the quality
of fit for these scenarios appears more dependent on layer
properties (e.g., layer thickness, number of layers) than the
number of parameters in Qall. Because changing the total
specimen thickness would lead to a different CBED pattern,
disentangling the individual influences of layer thickness and
the number of layers without changing the CBED pattern
would require heterogeneous layer thicknesses, which are not
considered here.

B. Realistic disk subsets without noise

Now, we show how our algorithm performs when only a
subset of simulated disks are measured, corresponding to the
realistic experimental situation where only a few disks might
be measured. This section uses the same simulation conditions
and specimen as scenario T10 except, in this subsection, each
disk in the subset is sampled using a (13 × 13)-point square
grid with a 0.05◦ grid spacing; as above, the upper-left corner
is at the orientation shown as the center of the pattern in Fig. 2.
This different grid is used to demonstrate our algorithm’s
versatility.

Six different disk subsets were chosen, as shown in Table I,
ranging from 1 to 9 measured reflections; the full all-disk set
was also considered. The all-197-reflections-measured case
is also considered, for comparison. Figure 4(a) shows the
convergence behavior as a function of simulation epoch in
the same way as Fig. 3(b), and Fig. 4(b) shows the quality
of fit in the same way as Fig. 3(c). Figure 4 shows that our
algorithm functions even when only one disk is measured,
but that measuring more disks generally yields a faster and
better fit. When operating our algorithm on other CBED
patterns or using other sampling grids, some of these specifics
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will likely change. However, these results do demonstrate
that our algorithm can successfully retrieve third-dimensional
information if only a few CBED disks are measured. In the
next section, we increase the realism of our simulations by
including noise.

C. Realistic disk subsets with noise

Now, we consider how noise in the recorded intensities
affects our third-dimension information retrieval algorithm.
Here, Poisson noise is added to the “target” data, so that the
total number of electrons q along a given incident beam vector
over a given time follows a Poisson distribution. We can choose
different values of q, which correspond to different electron
doses; higher q means higher electron dose and less noise. For
example, if the normalized noise-free intensity for a given pixel
in a CBED disk is 0.3, and q = 104, then the noisy intensity at
that pixel would be the result pulled from a Poisson distribution
centered at 3 × 103, which is then divided by q to rescale
the intensities. To do this, we use the numpy.random.poisson
function provided in the NUMPY PYTHON module [45].

Example CBED patterns with different noise levels can be
seen in Fig. 5, ranging from 102 to 105 electrons in the incident
beam per detector pixel. For experimental data, the maximum
usable dose would be influenced by radiation damage and
contamination effects. Additionally, doubling the radius of the
CBED disk on the camera would quadruple the number of
incident-beam electrons required for the same noise level per
pixel. Thus, if the specimen is beam-sensitive or contaminates
under the beam, it would be useful to know how beam dose
affects the quality of the information retrieved using our
algorithm.

In these simulations, only the five lowest-order reflections
are measured, corresponding to the “5” case in Table I and
Fig. 4. To explore the effects of noise, two parameters are
varied: number of electrons q and number of reciprocal-space
points used pp. Intuitively, either increasing pp or increasing
q should improve the quality of fit. pp was varied by using a
square grid, as above. The four corners of the grid were fixed
(and included) at k1 = 0x + 0y, k2 = 1x + 0y, k3 = 0x + 1y,
and k4 = 1x + 1y, where k1 is the beam tilt in the center of
the pattern in Fig. 2(a), and x and y are 0.6◦ in the [001]
and [110] directions, respectively. The area bounded by this
square was sampled with equal space between the grid points,
and included the points on all four edges of the square. For
example, a pp = 625-point simulation used a square grid of
(25 × 25) points with 0.025◦ grid spacing, and a pp = 49-

TABLE I. List of limited-reflection subsets used in Fig. 4. As
is conventional, single reflections are in [brackets] and families of
reflections are in 〈angle brackets〉 with the number of family members
indicated after.

Refl. Refl.

1a: [111] 5: {[000], 〈111〉 (4×)}.
1b: [002] 9: {[000], 〈111〉 (4×),
2a: [000], [111] 〈002〉 (2×), 〈220〉 (2×)}.
2b: [111], [111] 197: All 197 sim. refl.
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FIG. 4. (Color online) Results for disk subsets, graphed in the
same manner as Figs. 3(b) and 3(c). These simulations all use a (13 ×
13)-point grid with a 0.05◦ grid spacing. (a) shows mean parameter
error �αx (dashed lines) and mean intensity mismatch error �E

(solid lines) plotted as a function of simulation epoch (i.e., iteration).
(b) shows �αx as a function of �E, which is the parameter fit quality
at a given intensity mismatch. The key for which subsets of reflections
are used is in Table I; the number indicates the number of included
reflections.

point simulation used a square grid of (7 × 7) points with
0.1◦ grid spacing; in both these simulations, k1, k2, k3, and k4

are included. Therefore the same reciprocal-space region was
included in all simulations, but sampled differently.

Figure 6 shows both the convergence behavior and the
quality-of-fit results when noise is included, for a range of
different noise levels (q = 103 to 105 with pp = 625) and, for
a set number of electrons, a range of different samplings (pp =
49 to 921 with q = 104). The different noise levels, shown
with the black and thin grey lines, substantially influence
the quality of the reconstruction and the number of epochs
required to reach convergence. Using an order of magnitude
more electrons leads to about an order of magnitude better
intensity mismatch, and about half an order of magnitude
better parameter error. Thus, even with noisy input data, our
algorithm is still able to retrieve third-dimension information.
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FIG. 5. CBED patterns with Poisson intensity noise (see text),
corresponding to an incident beam intensity of (a) 102, (b) 103,
(c) 104, and (d) 105 electrons per pixel. Specimen used is the same
as that in Fig. 2(a). The inside edge of the white box added to (d)
shows the region used in (e)–(h). (e)–(h) A 20 × 20-pixel (dot pitch
0.01◦) excerpt from (a)–(d), showing the central disk, between the
left maximum and the central cross. This is not the area used for
optimization, but simply included to highlight the noise levels.

For a fixed noise level (q = 104 electrons), Fig. 6(a)
shows that the pp = 49 and pp = 169-reciprocal-space-point
scenarios yield less accurate fits than the pp = 625 or pp =
921 scenarios. For this specimen and noise level, therefore,
pp = 49 or pp = 169 may be too few data points to optimally
fit the noisy pattern. The pp = 625 scenario retrieves slightly
more accurate �α values than the pp = 921 scenario, which
indicates that more points does not automatically lead mono-
tonically to an improved fit. Some of the differences between
the scenarios may also be due to the random noise, so they
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FIG. 6. (Color online) Results including noise and using only a
few measured CBED disks, graphed in the same manner as Fig. 4.
For an explanation for the “waterfall” curves in (b), see text.

may yield different results if run again with different values
from the same Poisson distributions.

The minimum �α values noted in Fig. 6(b) are the best
�α values reached. If the minimum �α is reached and then
the �α values get worse at the same �E, then the lines in
Fig. 6(b) would be retraced. Because Fig. 6(a) shows some
of these scenarios converging on less accurate values than the
best-fit-reached, interpreting the �α minimums in Fig. 6(b)
requires checking with Fig. 6(a) to ensure that the minimum
is also the converged value. Thus realistic CBED patterns
may have improved third-dimension parameter retrieval from
increasing the number of reciprocal-space points used to fit, but
adding more points is not necessarily guaranteed to improve
the quality of fit. Additionally, the intensity noise may change
convergence behavior and parameter values for different runs
with the same noise distribution.

At first glance, Fig. 6(b) appears counterintuitive, but is
likely due to how Rprop operates on a set of pp different
incident beam tilts. The mean parameter error can still change
even when the mean intensity mismatch is constant (the
“waterfall” feature on the graph). The pp = 49 simulation
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uses the fewest points and does not exhibit this behavior,
but the others do. There is a possible explanation: while
the mean intensity mismatch taken over many points is
not improving, our optimization algorithm is using many
individual points with Rprop to determine parameter updates.
As detailed above, our algorithm, via Rprop [14], uses the
sign of the median gradient across all points to determine
parameter updates. While both signal and noise contribute to
the mismatch, the signal will be correlated across multiple
points, because it is due to the underlying specimen, while
the noise is uncorrelated. In effect, the parameter updates
are driven by the two-option vote of a majority of points on
the sign of the gradient (either positive or negative). Because
equal numbers of random positive and negative votes cancel
each other out, this two-option, majority-voting mechanism
might be expected to be somewhat robust against uncorrelated
noise influencing a correlated signal. The pp = 49 simulation
appears to have too few points for this robustness to function;
thus, the noise can override the signal if there are too
few points included in the simulation. However, the mean
intensity mismatch would still be noise-limited, and the mean
parameter error might not necessarily improve if too few points
are used.

In short, our algorithm demonstrates the ability to re-
trieve third-dimensional information even from only a few
CBED disks with realistic noise. In the presence of noise,
our algorithm appears to generally benefit from sampling
more than a minimum number of points in the CBED
pattern. Interestingly, the mean parameter error can still
change even when the mean intensity mismatch stays
constant, possibly because the latter is uncorrelated noise
against which our parameter update mechanism could be
resistant.

IV. CONCLUSIONS

In this work, we demonstrate the successful extraction
of “third-dimension” (depth-dependent) materials properties
quantitatively from TEM diffraction data including multiple
scattering. Our algorithm reformulates the stacked-Bloch-
wave TEM simulation algorithm as an artificial neural network
(ANN) and applies backpropagation of error and resilient
backpropagation to the ANN to retrieve third-dimension spec-
imen parameters. This algorithm was used to retrieve the third-
dimension specimen orientation with 5- and 10-nm resolution
from simulated convergent-beam electron diffraction (CBED)
data. In principle, this retrieval algorithm can be extended
to any or all parameters affecting the electron beam in the
sample, yielding depth-dependent information from a single
TEM CBED pattern. This algorithm also works when using
a realistic number of measured CBED disks and noisy data.
Future work should examine heterogeneous layer thicknesses
and other optimization characteristics to establish the general
precision of third-dimension parameter determination, as well
as further exploration of our algorithm’s convergence proper-
ties on noisy data. This third-dimension optimization should
also be extended to additional parameters, including scattering
and structure factors, lattice parameter and strain, chemical
composition, Debye-Waller factor, and specimen thickness,
and should also be compared with experimental data, including
CBED patterns, large-angle rocking-beam electron diffraction
(LARBED) patterns [46] or dark-field image tilt series.
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