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Electrons on the half-filled honeycomb lattice are expected to undergo a direct continuous transition from the
semimetallic into the antiferromagnetic insulating phase with increase of onsite Hubbard repulsion. We attempt
to further quantify the critical behavior at this quantum phase transition by means of functional renormalization
group (RG), within an effective Gross-Neveu-Yukawa theory for an SO(3) order parameter (“chiral Heisenberg
universality class”). Our calculation yields an estimate of the critical exponents ν � 1.31, ηφ � 1.01, and
η� � 0.08, in reasonable agreement with the second-order expansion around the upper critical dimension. To
test the validity of the present method, we use the conventional Gross-Neveu-Yukawa theory with Z2 order
parameter (“chiral Ising universality class”) as a benchmark system. We explicitly show that our functional RG
approximation in the sharp-cutoff scheme becomes one-loop exact both near the upper as well as the lower
critical dimension. Directly in 2 + 1 dimensions, our chiral Ising results agree with the best available predictions
from other methods within the single-digit percent range for ν and ηφ and the double-digit percent range for η� .
While one would expect a similar performance of our approximation in the chiral Heisenberg universality class,
discrepancies with the results of other calculations here are more significant. Discussion and summary of various
approaches is presented.
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I. INTRODUCTION

Graphene is an excellent conductor. Experiments show
that this remains true even for suspended graphene sheets,
when the substrate is removed [1]. Recent accurate ab initio
computations of the strength of Coulomb repulsion in free-
standing graphene, however, find values which would place
graphene not too far from the quantum phase transition
into a putative Mott-insulating phase [2,3]. It is thus not
inconceivable that there exist situations in which the Coulomb
interaction between the electrons would become strong enough
relative to the bandwidth, so that a band gap in the electronic
spectrum is dynamically generated. Such an effect may, for
example, be observed in mechanically stretched graphene
sheets, where the hopping of the electrons between neighbor-
ing sites would (albeit most likely nonuniformly) be reduced.
Tuning through a semimetal–Mott-insulator phase transition
could facilitate extraordinary applications for graphene-based
electronics, and would therefore be also highly desirable from
a technological point of view. On the other hand, because
of its Dirac-type spectrum, a Mott transition in graphene
mimics the spontaneous symmetry breakdown in high-energy
particle physics, as it occurs in the strong and electroweak
sectors. Understanding the correlated physics of graphene near
criticality can therefore, as it has already, fertilize further the
research on some of the most intriguing issues of modern
fundamental physics: chiral symmetry breaking in QCD, the
electroweak phase transition and the Higgs mechanism, and
the triviality problem in asymptotically nonfree sectors of the
standard model of particle physics.

The nature of the quantum phase transition on graphene’s
honeycomb lattice has been under much debate [4–6].
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Recently, however, the results began to converge towards the
scenario with a single second-order phase transition between
the semimetallic and Mott-insulating states: Analytical results
for all perturbatively accessible deformations of the theory
near 1 + 1 [7] and 3 + 1 [8] dimensions, and in the 1/N [5,9]
expansion, suggest that the strength of the long-range part
(∼1/r) of the Coulomb interaction, at least when not too
strong and at accessible length scales, is a marginally irrelevant
coupling, and that the transition is triggered by strong short-
range components of the interaction [7]. For the Hubbard
model on the honeycomb lattice, recent quantum Monte Carlo
(MC) calculations find for strong onsite repulsion a direct
and continuous quantum phase transition into the antifer-
romagnetic insulator [10,11]. Universality suggests that the
transition should be within the SU(2)–Gross-Neveu (“chiral
Heisenberg”) universality class and the scaling behavior of the
MC data indeed fits persuasively well to the predictions from
the first-order ε expansion of the SU(2)–Gross-Neveu-Yukawa
field theory [11]. A reliable calculation of the critical exponents
is, as always, a challenging task and, very similar to the
much investigated bosonic O(N ) universality classes, accurate
numerical estimates for the universal quantities in 2 + 1
dimensions can only be obtained by convergence of results
from several complementary approaches [12]. However, aside
from the ε-expansion results [8,13] and the quantum Monte
Carlo on honeycomb lattice [10,11], there are to date no other
predictions for the critical exponents of the chiral Heisenberg
universality class available.

The aim of this paper is therefore to attempt to further
quantify the critical behavior of the chiral Heisenberg univer-
sality class by means of functional renormalization group (RG)
methods. The functional RG has successfully been used to de-
scribe a variety of different correlated fermion systems [14,15].
In the context of graphene, it has been employed to determine
the dominant instabilities on single-layer [16], bilayer [17],
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TABLE I. Critical exponents in D = 3 for the transition into
the charge density wave state (chiral Ising universality class S = 0,
with dγ Nf = 8) from different methods. Functional RG results (this
work) in LPA′ approximation and by truncating u(ρ̃) after sixth
order in ρ̃, both for sharp (Rsc

k ) and linear regulator (Rlin
k ). Previous

FRG results without truncating u(ρ̃). Pi,j (D) interpolates between
ith-order (2 + ε)-expansion and j th-order (4 − ε)-expansion results
(see Sec. VI).

1/ν ηφ η�

FRG [LPA′, O(ρ̃6), Rlin
k ] 0.982 0.760 0.032

FRG [LPA′, O(ρ̃6), Rsc
k ] 0.978 0.767 0.033

FRG [LPA′, full u(ρ̃), Rlin
k ] [21] 0.982 0.756 0.032

1/Nf expansion (2nd/3rd order) [34,35] 0.962a 0.776 0.044
(2 + ε) expansion (3rd order) [28] 0.764 0.602 0.081
(4 − ε) expansion (2nd order) [13,33] 1.055 0.695 0.065
Polynomial interpolation P2,2 0.995 0.753 0.034
Polynomial interpolation P3,2 0.949 0.716 0.041
Monte Carlo simulations [33]b 1.00(4) 0.754(8)

a[1/1] Padé approximant, Eq. (51).
bCubic-lattice model with smaller symmetry, sign problem ignored
[50].

and trilayer [18] honeycomb lattices at and away [19] from
half filling. By taking collective (Hubbard-Stratonovich–type)
degrees of freedom into account, the functional RG has been
shown to be an excellent tool to describe (2 + 1)-dimensional
relativistic fermion models at criticality [20–27].

We first use the Z2–Gross-Neveu (“chiral Ising”) universal-
ity class as a benchmark system to estimate the validity of our
approximation. The chiral Ising universality class is supposed
to describe the transition into a “charge density wave” (CDW)
phase, with a broken sublattice symmetry, favored by a large
nearest-neighbor repulsion on the honeycomb lattice [5,16].
Critical exponents have been computed to third-loop order
near D = 1 + 1 space-time dimensions (with the anomalous
dimensions up to fourth order) [28–32], to second order near
D = 3 + 1 dimensions [13,33], to second order in the 1/Nf

expansion (with the fermionic anomalous dimension up to
third order) [34,35], using Monte Carlo simulations [33], as
well as functional RG methods [20–22].

The loop corrections in the expansions are generically only
slowly (or even not at all) decreasing with the order, such
that the naive extrapolation to the physical case with ε = 1
and/or Nf = 2 is often not without problems. Due to the lack
of knowledge of the large-order behavior of the coefficients,

the standard Borel type of resummation techniques appear to
be hardly justified. We argue that a sensible resummation of the
ε expansions can be obtained by using the information from the
(2 + ε) expansion and the (4 − ε) expansion simultaneously
in terms of an interpolation between those two limits. For the
chiral Ising universality class, we show that our functional RG
results in the sharp-cutoff scheme become one-loop exact both
near the upper as well as the lower critical dimension, and that
for a general dimension 2 < D < 4 they agree remarkably
well with the proposed interpolational resummations. They
also agree with the predictions from all other methods within
the mid single-digit percent range for ν and ηφ and the lower
double-digit percent range for η� ; see Table I.

For the chiral Heisenberg universality class, which is
assumed to describe the antiferromagnetic phase transition
on the honeycomb lattice, much fewer results are available
at the moment. Within the functional RG approach, we
obtain estimates for the critical behavior in terms of the
correlation-length exponent ν, the anomalous dimensions for
order parameter ηφ , and for the fermionic field η� , as well as
the corrections-to-scaling exponent ω; see Table II. Our results
for ν and ηφ agree reasonably well with the previous second-
order ε expansion, whereas the result for η� is significantly
different. The results in D = 2 + 1 are also numerically quite
different from the lowest-order ε expansion [8], which on the
other hand, agrees surprisingly well with the Monte Carlo
study of the Hubbard model on honeycomb lattice [11]. More
numerical and analytical studies of this universality class are
obviously needed.

The rest of the paper is organized as follows: In the next
section, we describe our effective model, its symmetries and
breaking patterns. A brief introduction to the functional RG
approach is given in Sec. III, and the flow equations are
derived in Sec. IV. In Sec. V, we discuss the fixed points first
by expanding around the upper critical dimension, thereby
confirming previous Wilsonian RG ε-expansion results, and
eventually by numerically evaluating the full set of flow equa-
tions for general space-time dimension 2 < D < 4. We discuss
our results and compare them extensively with the existing
literature in Sec. VI. Conclusions are presented in Sec. VII.

II. EFFECTIVE THEORY

The spin- 1
2 electrons on the honeycomb lattice are described

by the eight-component Dirac fermion fields � = (
�↑
�↓

)
and its

Dirac conjugate �̄ = �†(12 ⊗ γ0) in 2 < D < 4 space-time

TABLE II. Critical exponents in D = 3 for the transition into the antiferromagnetic state (chiral Heisenberg universality class, S = 2, with
dγ Nf = 8) from functional RG in LPA′ approximation for both linear and sharp regulators. α, β, γ , and δ from hyperscaling relations. For
comparison: plain second-order (4 − ε)-expansion results [13] (for both the direct expansion of 1/ν and the inverse of the expansion of ν,
cf. Sec. VI) and [1/1] Padé approximant thereof.

1/ν ηφ η� ω α β γ δ

FRG [LPA′, O(ρ̃6), Rlin
k ] 0.772 1.015 0.084 0.924 −1.89 1.31 1.28 1.98

FRG [LPA′, O(ρ̃6), Rsc
k ] 0.761 1.012 0.083 0.908 −1.94 1.32 1.30 1.98

(4 − ε) expansion (1/ν 2nd order) [13] 0.834 0.959 0.242 −1.60 1.17 1.25 2.06
(4 − ε) expansion (ν 2nd order) [13] 0.923 0.959 0.242 −1.25 1.06 1.13 2.06
(4 − ε) expansion ([1/1] Padé approx.) 0.765 0.999 0.252 −1.92 1.31 1.31 2.00
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dimensions. �↑,↓ denote the two four-component spinors for
direction up and down of the physical spin. Due to the increase
of the Fermi velocity vF near half filling [1], the weak long-
range part of the static Coulomb interaction (effective graphene
fine-structure constant) appears to be an irrelevant coupling,
and near the criticality Lorentz invariance is emergent [5,7–9].
The divergence of vF, of course, is an artifact of the static
model, and the Fermi velocity ultimately can not exceed the
velocity of light. The critical exponents we compute in the
following will thus in principle receive corrections of the order
of the QED fine-structure constant � 1

137 [36]. In any realistic
experimental or numerical setup, the running of vF is bound
by finite temperature and the system’s size. In our model we
will henceforth ignore these corrections, and retain only the
short-range parts of the Coulomb repulsion [7]. The Euclidean
effective theory describing the Mott transition with integrated-
out Coulomb field is then explicitly relativistic; it is given in
terms of �, �̄, and the order parameter field φa as [8]

S =
∫

dτ dD−1 �x
[
�̄(12 ⊗ γμ)∂μ� + 1

2
φa

(
m̄2 − ∂2

μ

)
φa

+ λ̄
(
φ2

a

)2 + ḡφa�̄(σa ⊗ 14)�

]
, (1)

with the space-time index μ = 0,1, . . . ,D − 1, the D deriva-
tive (∂μ) = (∂τ , �∇) and the 4 × 4 gamma matrices, obeying the
Clifford algebra {γμ,γν} = 2δμν . Summation over repeated
indices is assumed. The overbar emphasizes the dimension-
fulness of the coupling constants λ̄ and ḡ. In the direct
products σa ⊗ γμ, the Pauli matrices act on spin, and the
gamma matrices act on Dirac indices. The index a either
runs from 1 to 3, to which we will refer to as the “chiral
Heisenberg” [13] model in the following, or it is fixed
a ≡ 0 with σ0 ≡ 12. We will refer to the latter case as the
“chiral Ising” [13] model. The standard Ising and Heisenberg
universality classes can be recovered from the chiral models
by artificially setting ḡ ≡ 0. Our chiral systems thus agree with
their purely bosonic (nonchiral) counterparts in terms of the
order-parameter symmetry. They differ, however, in that they
incorporate massless (chiral) fermionic modes, and they thus
describe different universality classes. In 2 + 1 dimensions
we may use the “graphene” representation [5] γ0 = 12 ⊗ σz,
γ1 = σz ⊗ σy , and γ2 = 12 ⊗ σx . In this representation, the
Grassmann fields u and v on the two sublattices of the honey-
comb lattice near the Dirac point �K are related to the Dirac
field as

�†
σ (�x,τ ) =

∫
dω dD−1 �q

(2π )D
eiωτ+i �q·�x[u†

σ ( �K + �q,ω),

v†
σ ( �K + �q,ω),u†

σ (− �K + �q,ω),v†
σ (− �K + �q,ω)],

(2)

where we have chosen a reference frame in which qx = �q ·
�K/|K|, and for simplicity have set the lattice spacing and the

Fermi velocity to unity. There are two further 4 × 4 matrices
which anticommute with all three γμ: γ3 = σx ⊗ σy and γ5 =
σy ⊗ σy . The Hermitian product γ35 = −iγ3γ5 commutes with
the γμ’s and anticommutes with γ3 and γ5. Note that it is
diagonal in our representation.

Let us discuss the symmetries of our effective relativistic
models and relate them to the structure of the underlying
honeycomb lattice. The action in Eq. (1) exhibits a discrete
reflection symmetry

Z2: � �→ (12 ⊗ γ2)�, �̄ �→ −�̄(12 ⊗ γ2), φa �→ −φa,

(3)

with the (spatial) momentum reflected across the first axis:
qx �→ qx , qy �→ −qy . Again, a ≡ 0 in the chiral Ising model
and a = 1,2,3 in the chiral Heisenberg model, respectively.
This defines the sublattice-exchange symmetry of the honey-
comb lattice, which exchanges the two Grassmann fields u ↔
v [37]. Both models are furthermore invariant under SU(2)
spin rotations, under which φ0 is a scalar and �φ = (φa)a=1,2,3

transforms as a vector:

SU(2)sp: � �→ eiθ �n·(�σ⊗14)�, �̄ �→ �̄e−iθ �n·(�σ⊗14),

φ0 �→ φ0, �φ �→ R �φ, (4)

with rotation matrix (Rab) = (δab − 2θεabcnc) ∈ O(3). Here,
we have used [(σa ⊗ 14),(σb ⊗ 14)] = 2εabc(σc ⊗ 14), ensur-
ing that the chiral Heisenberg bilinear �̄(�σ ⊗ 14)� transforms
as a vector under SU(2)sp. Charge conservation requires the
usual U(1)ch phase-rotational symmetry � �→ eiθ�, �̄ �→
�̄e−iθ . However, the charge in each Dirac-cone sector at wave
vectors ± �K is conserved separately, and the phases of the
modes in the two valleys can therefore be rotated indepen-
dently. Formally, this can be seen by making use of the “chiral”
projector P± = 12 ⊗ (14 ± γ35)/2, which projects onto the
modes near ± �K . The corresponding “chiral” U(1) symmetry is

U(1)χ: � �→ eiθ(12⊗γ35)�, �̄ �→ �̄e−iθ(12⊗γ35). (5)

On the honeycomb lattice, U(1)χ in fact corresponds to
translational invariance [37]. Additional to the phase rotations,
in the chiral Ising model the two modes at ± �K can also be
rotated independently in spin space. The chiral symmetry
here is thus elevated to U(2)χ � U(1)χ × SU(2)χ , with

SU(2)χ: � �→ eiθ �n·(�σ⊗γ35)�, �̄ �→ �̄e−iθ �n·(�σ⊗γ35), (6)

while keeping the order-parameter field φ0 �→ φ0 fixed. In
the chiral Heisenberg model, however, since the commutator
[(σa ⊗ γ45),(σb ⊗ 14)] is not proportional to σc ⊗ 14, the
bilinear �̄(�σ ⊗ 14)� is not a vector under SU(2)χ . Hence,
the chiral symmetry here is not elevated, and remains U(1)χ .
Altogether, the symmetry groups of the chiral Ising and the
chiral Heisenberg models therefore are

χ Ising : Z2 × SU(2)sp × U(1)ch × U(2)χ , (7)

χ Heisenberg : Z2 × SU(2)sp × U(1)ch × U(1)χ . (8)

For strong coupling, the order-parameter field can develop
a nonvanishing vacuum expectation value (VEV). In the chiral
Ising case with a single order-parameter field (a ≡ 0), a
VEV 〈φ0〉 ∝ 〈�̄�〉 �= 0 breaks the Z2 sublattice-exchange
symmetry spontaneously, and our model describes the second-
order transition into the staggered-density phase, the charge
density wave (CDW) state. The critical behavior is described
by the celebratedZ2–Gross-Neveu (=chiral Ising) universality
class, the corresponding universal exponents being fairly well
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known [8,13,20–23,28–35]. In contrast, the chiral Heisenberg
model with the 3-vector order-parameter field �φ = (φ1,φ2,φ3)
describes the transition of the semimetallic phase into the
staggered-magnetization state, the antiferromagnetic (AFM)
phase. If �φ develops a VEV, 〈 �φ〉 ∝ 〈�̄(�σ ⊗ 14)�〉 �= �0, both
the Z2 sublattice-exchange symmetry as well as the SU(2)sp
spin-rotational symmetry are spontaneously broken down to
a residual O(2) � U(1) symmetry. On the AFM side of the
transition we therefore expect two massless bosonic modes,
the Goldstone modes, corresponding to the field variables
being orthogonal to the VEV. The corresponding chiral
Heisenberg [=SU(2)–Gross-Neveu] universality class is not
so well understood (see, however, Refs. [8,13] for results
within an expansion around the upper critical dimension). In
the following, we will investigate both the chiral Ising and
the chiral Heisenberg universality classes by means of the
functional renormalization group.

III. FUNCTIONAL RENORMALIZATION GROUP

The functional renormalization group (FRG) approach is
an efficient tool to compute the generating functional of
the one-particle-irreducible correlation functions, the effective
action �[φa,�,�̄].1 For reviews on this rapidly evolving
method, applied to both condensed-matter as well as high-
energy physics, see Refs. [14,15,23,38–45]. A thorough and
very pedagogical introduction can be found in Ref. [46]. The
central object of the method is the scale-dependent effective
average action �k[φa,�,�̄], which is essentially the Legendre
transform of a regulator-modified action

S �→ S +
∫

dDq dDp

(2π )2D

[
1

2
φa(−q)R(B)

ab,k(q,p)φb(p)

+ �̄(q)R(F)
k (q,p)�(p)

]
, (9)

with the bosonic regulator R
(B)
k (p,q) = (R(B)

ab,k)(q,p), which
for any given momenta q, p is a 3 × 3 matrix in the chiral
Heisenberg case (a,b = 1,2,3) and a scalar in the chiral
Ising case (a,b ≡ 0), respectively, and the fermionic regulator
R

(F)
k (q,p), which is an 8 × 8 matrix acting on spin and

Dirac indices. Here, we have combined the frequency and
momentum integration into the integration over the relativistic
D momentum qμ = (ω,�q), with space-time dimension D.
In momentum space, the regulators, introduced here integral
kernels of linear operators in field space, are usually taken to
be diagonal, i.e., R

(B/F)
k (p,q) = R

(B/F)
k (q)δ(p − q).

At finite scale k > 0, the regulator screens the IR fluctua-
tions with |q| � k in a masslike fashion, ensuring that only fast
modes with momentum |q| � k give significant contributions
to �k . The fermionic regulator R

(F)
k is constructed in a way

that the regulator modification in Eq. (9) does not spoil the
chiral symmetry. Aside from a sharp-cutoff regulator, it is

1Note that for notational simplicity, we use the same symbols for
the fluctuating fields �, �̄, φa and the arguments of �, i.e., the field
expectation values 〈φa〉j,η,η̄, 〈�〉j,η,η̄, and 〈�̄〉j,η,η̄ in the presence of
the conjugated sources j , η, and η̄.

possible (and often very useful) to employ smooth cutoff
functions, which allow a continuous suppression of slow
modes. For k → 0 the regulator has to go to zero for all
momenta, such that the modifications in S vanish and the
effective average action approaches the full quantum effective
action �k→0 = �. We choose regulator functions which for
k → � are of the order of the UV cutoff �, R

(B)
k→�(q) ∼ �2,

R
(F)
k→�(q) ∼ �. Thus, in the UV all fluctuations are suppressed

and �k→� becomes (up to normalization constants) the
microscopic action �k→� � S. The effective average action
thus interpolates between the microscopic action in the UV
and the full quantum effective action in the IR. The concept
can be viewed as a specific implementation of Wilson’s
approach to the renormalization group: Instead of integrating
out all fluctuations at once, we divide the functional integral
into integrations over shells with momentum q ∈ [k,k − δk]
and subsequently successively integrate momentum shell by
momentum shell. �k is the effective action at an intermediate
step 0 � k � �, where the fluctuations in the functional
integral with momentum q ∈ [k,�] are integrated out. The
theory then is solved, once we know the evolution of �k with
respect to the renormalization group time t = ln(k/�) from
t = 0 (UV) to t → −∞ (IR). The evolution equation for �k

has been computed by Wetterich [47] and is given by the
functional identity

∂t�k = 1
2 STr

[
∂tRk

(
�

(2)
k + Rk

)−1]
, (10)

where Rk :=
(

R
(B)
k 0 0
0 0 R

(F)
k

0 −R
(F)T
k 0

)
and �

(2)
k denotes the second

functional derivative of the effective average action with
respect to the fields φa , �, and �̄, i.e.,

�(2)(p,q) ≡
−→
δ

δ�(−p)T
�k

←−
δ

δ�(q)
, (11)

where we have used the collective field variable �(q) =(
φa (q)
�(q)

�̄(−q)T

)
. Note that both Rk and �

(2)
k define linear op-

erators acting on the collective field, e.g., (Rk�)(p) ≡∫
dDq

(2π)D Rk(p,q)�(q). STr runs over all internal degrees of
freedom (momentum, spin, sublattice, valley), as well as
field degrees of freedom. In the fermionic sector, it takes

an additional minus sign into account, STr

(
B ∗ ∗
∗ F1 ∗
∗ ∗ F2

)
:=

Tr B − Tr
(
F1 ∗
∗ F2

)
.

While the Wetterich equation (10) is an exact identity
for the evolution of �k , it is generically difficult to find
exact solutions. It is nevertheless perfectly possible to use
it to find very satisfying approximate solutions by means of
suitable systematic expansion schemes. Perturbation theory
constitutes one such expansion; however, for the description
of phase transitions, nonperturbative expansion schemes in
terms of operator or vertex expansions are often superior
already at relatively low order of the expansion. In particular,
an expansion in terms of the derivative has been shown to
be highly suitable for the study of critical phenomena in
(2 + 1)-dimensional fermion-boson systems, yielding accu-
rate predictions for the critical exponents [20–22,24,26,27]. In
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the spirit of the derivative expansion, we apply in this work
the following ansatz for the effective average action:

�k =
∫

dDx

[
Z�,k�̄(12 ⊗ γμ)∂μ� − 1

2
Zφ,kφa∂

2
μφa

+Uk(ρ) + ḡkφa�̄(σa ⊗ 14)�

]
, (12)

with the scale-dependent wave-function renormalizations
Zφ,k , Z�,k and the scale-dependent Yukawa-type coupling ḡk .
For symmetry reasons, the scale-dependent effective bosonic
potential Uk has to be a function of the scalar product
ρ(x) ≡ 1

2φaφa only. It is often expanded in fields as

Uk(ρ) =
∞∑

n=1

λ̄
(n)
k (0)

n!
ρn, (13)

with λ̄
(1)
k ≡ m̄2

k denoting the scalar-field mass. This type of
ansatz for �k is sometimes referred to as “improved local
potential approximation” (LPA′). The UV starting values for
the flow are given by the microscopic couplings in Eq. (1), i.e.,

lim
k→�

Uk(ρ) = m̄2ρ + 4λ̄ρ2, lim
k→�

ḡk = ḡ, (14)

and

lim
k→�

Zφ,k = lim
k→�

Z�,k = 1. (15)

At lower RG scales k < �, we absorb the wave-function
renormalization factors Zφ/�,k into renormalized fields as

Z
1/2
φ,kφa �→ φa, Z

1/2
�,k� �→ �, Z

1/2
�,k�̄ �→ �̄, (16)

and use the dimensionless renormalized Yukawa-type coupling
g ≡ g(k) and dimensionless renormalized effective potential
u(ρ̃) ≡ u(ρ̃; k):

g2 = Z−1
φ,kZ

−2
�,kk

D−4ḡ2
k , u(ρ̃) = k−DUk

(
Z−1

φ,kk
D−2ρ̃

)
(17)

with ρ̃ = Zφ,kk
2−Dρ. The anomalous dimensions ηφ/� =

ηφ/�(k) are given by

ηφ = −∂tZφ,k

Zφ,k

and η� = −∂tZ�,k

Z�,k

. (18)

It should be worthwhile to discuss the approximations
involved in our ansatz (12). In principle, all terms of higher
order in derivative or fields being invariant under the present
symmetry, could be generated under RG transformations.
Schematically, they have the form

λ̄
(m,n)
k ∂2mφ2n, (19)

h̄
(m,n)
k ∂m(�̄M�)n, ḡ

(m,n1,n2)
k ∂mφn1 (�̄M�)n2 , (20)

with suitable matrices M ∈ C8×8. In other words, even if we
started the RG flow with pointlike coupling constants, the
renormalized couplings could develop a momentum structure,
i.e., we would have to deal with coupling functions (in Fourier
space); and, furthermore, new interactions could be generated,
e.g., of the four-fermion type (�̄M�)2. The mass dimensions

of these additional couplings are determined by[
λ̄

(m,n)
k

] = D − 2m − (D − 2)n, (21)[
h̄

(m,n)
k

] = D − m − (D − 1)n, (22)[
ḡ

(m,n1,n2)
k

] = D − m − D − 2

2
n1 − (D − 1)n2. (23)

In D > 2, all couplings neglected in our truncation of �k

[Eq. (12)] thus have negative mass dimension. By contrast,
the scaling dimensions of the couplings already present in our
ansatz read as[

λ̄
(n)
k

] = D − (D − 2)n, [ḡk] = 1
2 (4 − D). (24)

Below four space-time dimensions D < 4, λ̄(2) and ḡk

thus have positive mass dimension, whereas they both be-
come marginal directly in four dimensions. We thus re-
cover [8,13,33] that D = 4 constitutes an upper critical
dimension of the Gross-Neveu-Yukawa–type theories, and an
anticipated critical point in D = 4 − ε would lie in the pertur-
batively accessible domain for small ε. In this domain, how-
ever, the higher-derivative operators from Eqs. (19) and (20)
(as well as λ̄

(n�3)
k ) are irrelevant in the RG sense, and we would

be right to neglect them in our ansatz. Our truncation of �k

will therefore become exact near D = 4: To first order in ε, our
predictions for the critical exponents obtained by evaluating
Eq. (10) with the ansatz in Eq. (12) have to coincide exactly
with the known results from the (4 − ε) expansion [8,13]. We
will use this fact as a crosscheck to verify the validity of our
computation.

In the nonperturbative regime for not so small ε ∼ O(1),
however, higher (perturbatively irrelevant) interactions can be
generated by the RG flow. Aside from higher-derivative terms,
higher bosonic self-interactions ∝(φ2

a)n, n � 3 may become
important and might play a quantitative role for the critical
behavior. Below the UV cutoff scale, the bosonic potential
Uk(ρ) therefore generically incorporates terms of arbitrarily
high order in ρ. This is an important advantage of the functional
RG approach: Contrary to conventional methods [e.g., within
the context of the (4 − ε) expansion], it will prove possible
to include all such higher-order terms in ρ by computing the
full RG evolution of the effective potential Uk(ρ). Moreover, in
situations where different order parameters compete, the effect
of newly generated four-fermion operators has been shown to
play a decisive role [25]. Within the present FRG scheme,
they can be straightforwardly incorporated by the “dynamical
bosonization” technique [48], i.e., by performing a Hubbard-
Stratonovich transformation at each RG step. However, in
our present partially bosonized models, with the single order
parameter 〈φ0〉 or 〈 �φ〉 at hand, we assume that four-fermion
interactions do not become important at lower RG scales,
and leave the dynamical bosonization technique for future
improvement of our results. In a next step, one can also go
beyond LPA′ by successively including the higher-derivative
terms of Eqs. (19) and (20) up to some fixed m. For the
purely bosonic Ising universality class, various FRG studies
have included terms up to fourth order in derivative, yielding
predictions which agree with high-precision Monte Carlo
measurements, e.g., in terms of the correlation-length exponent
ν, within an error range of �ν/ν � 0.5% [49].
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IV. FLOW EQUATIONS

A. Bosonic potential

The flow equation for the bosonic potential u(ρ̃) is
readily obtained by plugging Eq. (12) into the Wetterich
equation (10), and evaluating this functional identity for
constant bosonic field ρ(x) = ρ = const, i.e., φ(p) = φδ(p)
in Fourier space, and vanishing fermionic field � = �̄ = 0.
For this field configuration, the regularized scale-dependent
two-point correlator �

(2)
k + Rk is block diagonal and easily

inverted. We obtain for the chiral Ising (chiral Heisenberg)
model with S = 0 (S = 2) potential Goldstone modes

∂tu(ρ̃) = −Du(ρ̃) + (D − 2 + ηφ)ρ̃u′(ρ̃)

+ 2SvD�
(B),D
0 (u′(ρ̃); ηφ)

+ 2vD�
(B),D
0 (u′(ρ̃) + 2ρ̃u′′(ρ̃); ηφ)

− 2dγ NfvD�
(F),D
0 (2ρ̃g2; η�), (25)

where we have introduced the dimensionless threshold func-
tions �

(B/F),D
0 (ω; ηφ/�), which involve the remaining loop

integral and incorporate the dependence on the regulator
function R

(B/F)
k . Their definitions are given in the Appendix.

dγ = Tr(γ 2
0 ) is the size of the gamma matrices, and we have ab-

breviated vD = (2π )−Dvol(SD−1)/4 = 1/[2D+1πD/2�(D/2)]
with space-time dimension D. We have also allowed for a
general “flavor” number Nf , counting the number of electronic
spin directions, with Nf = 2 in the physical case.

B. Yukawa-type coupling

In order to compute the beta function for the Yukawa-type
coupling g, we first rewrite Eq. (10) as

∂t�k = 1
2 ∂̃t STr ln

(
�

(2)
k + Rk

)
, (26)

where the derivative ∂̃t is defined to act only on the regulator’s
t dependence (and not on �

(2)
k ), i.e.,

∂̃t :=
∫

dDx ′
[
∂tR

(B)
k (x ′)

δ

δR
(B)
k (x ′)

+ ∂tR
(F)
k (x ′)

δ

δR
(F)
k (x ′)

]
.

(27)

Let κ ≡ ρ̃min be the value for which the effective potential
u(ρ̃) at scale k is at its minimum ∂ρ̃u|ρ̃=κ = 0. In the IR
limit, κ determines the field expectation value 〈 1

2φaφa〉 =
limk→0 kD−2κ . Due to the fermionic fluctuations, which for
our theory (with 2Nfdγ = 16 fermionic degrees of freedom)
will turn out to dominate the flow of the effective potential, the
RG fixed point corresponding to the anticipated second-order
phase transition is located in the symmetric regime, i.e., the
fixed-point potential u∗(ρ̃) attains its minimum at the origin
and κ exactly vanishes near and at the fixed point. In what
follows, it therefore suffices to compute the flow equations in
the symmetric regime with κ = 0.

By splitting the two-point correlator into its field-
independent propagator part �

(2)
k,0 ≡ �

(2)
k |ρ̃=�=�̄=0 at which

the effective average action becomes minimal and the part
including the (not necessarily small) fluctuations around that
minimum ��

(2)
k = �

(2)
k − �

(2)
k,0, we can expand the logarithm

and write

∂t�k = 1

2
∂̃t STr ln

(
�

(2)
k,0 + Rk

) + 1

2
∂̃t STr

∞∑
n=1

(−1)n+1

n

× [(
�

(2)
k,0 + Rk

)−1
��

(2)
k

]n
. (28)

Plugging our ansatz (12) into Eq. (28) and evaluating for
nonvanishing but constant fields �(p) = �δ(p), �(p) =
�δ(p), we get the beta function for the Yukawa-type coupling
by comparing coefficients of the φa�̄(σa ⊗ 14)� terms:

∂tg
2 = (D − 4 + ηφ + 2η� )g2

− 8(S − 1)vD�
(FB),D
11 (u′(0); η�,ηφ) g4. (29)

The definition of the regulator-dependent threshold function
�

(FB),D
11 is again found in the Appendix. S = 0 in the chiral

Ising model, whereas S = 2 in the chiral Heisenberg model.

C. Anomalous dimensions

For computing the boson (fermion) anomalous dimensions
ηφ (η�), we again make use of the expansion (28), which we
now evaluate for nonconstant boson (fermion) field φ = φ(p)
[� = �(p), �̄ = �̄(p)] and vanishing fermion (boson) field
�̄ = � = 0 (φ = 0), and further expand in the momentum
up to order O(p2) [O(p)]. The coefficient in front of
the p2φ(−p)φ(p) [�̄(p)iγμpμ�(p)] term determines ∂tZφ,k

(∂tZ�,k). With the definitions in Eqs. (18) we obtain

ηφ = 8dγ NfvD

D
m

(F),D
4 (η�) g2 (30)

and

η� = 8(S + 1)vD

D
m

(FB),D
12 (u′(0); η�,ηφ) g2, (31)

where we have employed the threshold functions m
(FB),D
12 and

m
(F),D
4 (see Appendix).

V. FIXED POINTS AND CRITICAL EXPONENTS

A. (4 − ε) expansion

In D = 4 − ε space-time dimensions for small ε � 1 the
flow equations simplify considerably. This provides for a
nontrivial and very useful crosscheck of our computation
in the previous section, when comparing with the known
flow equations obtained from standard Wilsonian or minimal
substraction RG schemes. We expand the effective potential
u(ρ̃) around its minimum at ρ̃ = 0 analogously to Eq. (13) and
use the dimensionless renormalized couplings m2 = u′(0) =
Z−1

φ,kk
−2λ̄

(1)
k and λ = 1

8u′′(0) = 1
8Z−2

φ,kk
D−4λ̄

(2)
k . We have seen

in Sec. III that D = 4 constitutes an upper critical dimension
of our theory, and we thus expect the fixed-point values of
an anticipated interacting critical point to be of the order
of m∗2,λ∗,g∗2 = O(ε). Since higher bosonic self-interactions
∼φ2n, n � 3, are irrelevant near the upper critical dimension
[Eq. (24)], the corresponding fixed-point couplings would be
of higher order u∗(n�3)(0) = O(εn−1). We thus may neglect
them to first order in ε, and the same applies to higher-
derivative terms [Eqs. (21)–(23)].
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For calculational simplicity, it is convenient to employ the
sharp-cutoff regulator Rsc

k , yielding the threshold functions
�

(B/F)
0 (ω; ηφ/�) = − ln(1 + ω) + const, m

(FB),D
12 (ω; η�,ηφ) =

(1 + ω)−2, and m
(F)
4 (η�) = 1. A formal definition of Rsc

k is
given in the Appendix. We have checked numerically that
our predictions for the universal quantities (such as critical
exponents) are regulator independent for D → 4−. The reason
is that our ansatz for �k [Eq. (12)] is exact to first order in ε.
Using the rescaled couplings

λ/(8π2) �→ λ and g/(8π2) �→ g, (32)

the β functions become for Nf = 2

∂tm
2 = (−2 + ηφ)m2 − 4(S + 3)

λ

1 + m2
+ 8g2, (33)

∂tλ = (−ε + 2ηφ)λ + 4(S + 9)
λ2

(1 + m2)2
− 2g4, (34)

∂tg
2 = (−ε + ηφ + 2η�)g2 − 2(S − 1)

g4

1 + m2
, (35)

with the anomalous dimensions

ηφ = 4g2, η� = S + 1

2

g2

1 + m2
. (36)

Here, we have used dγ = 4 and vD = 1/(32π2) + O(ε). We
note that Eqs. (33)–(36) are exactly the one-loop results as
have been found earlier within the standard Wilsonian RG
approach [8]. In the sharp-cutoff scheme, this is in fact even
true right up to the exact same coupling rescaling [Eqs. (17)
and (32)].

For completeness, let us quote the fixed-point values
together with the corresponding universal exponents which
determine the critical behavior. Aside from the fully IR
repulsive Gaussian fixed point (and an assumingly unphysical
zero of the β functions at λ∗ < 0) we recover the well-
known Wilson-Fisher fixed point at g∗2 = 0 and λ∗ > 0, being
repulsive in the g2 direction, and a fermionic critical point at

m∗2 = 24

(9 + S)(7 − S)
ε + O(ε2), (37)

λ∗ = 2

(9 + S)(7 − S)
ε + O(ε2), (38)

g∗2 = 1

7 − S
ε + O(ε2), (39)

which is attractive both in the λ and the g2 directions. We note
that the fixed-point values are of order O(ε), as anticipated. To
the present order in ε, this confirms a posteriori the validity of
neglecting all higher-order interactions. Close to the critical
point, the correlation length scales as ξ ∝ |δ|−ν , with the
“reduced temperature” δ := m2 − m∗2, measuring the distance
from criticality. We find

1/ν = 2 − 12(5 + S)

(9 + S)(7 − S)
ε + O(ε2). (40)

For the anomalous dimensions at the critical point we get

ηφ = 4

7 − S
ε + O(ε2) and η� = 1 + S

2(7 − S)
ε + O(ε2),

(41)

with ηφ as the usual order parameter’s anomalous dimen-
sion, determining the scaling of the order-parameter cor-
relation function at the critical point 〈φ(x)φ(y)〉conn. ∝ 1/

|x − y|D−2+ηφ , and the fermionic anomalous dimension η� ,
determining 〈�(x)�̄(y)〉conn. ∝ 1/|x − y|D−1+η� at the criti-
cal point, respectively.2

B. Numerical evaluation for 2 < D < 4

For general D ∈ (2,4), we evaluate the flow equations
[Eqs. (25) and (29)–(31)] numerically. A necessary condition
for reliability of our results is that the regulator dependencies
of our universal predictions remain small when D is no
longer close to the upper critical dimension. We check this
requirement by employing both the sharp-cutoff scheme as
well as the linear regulator Rlin

k , which is also defined in
the Appendix. Rlin

k shares with the sharp regulator Rsc
k the

convenient property that all occurring loop integrals can be
carried out analytically. For both regulators, the results for
these integrals are given in the Appendix.

The defining equation for the fixed-point potential
∂tu

∗(ρ̃) = 0 is a second-order ordinary nonlinear differential
equation [see Eq. (25)]. For any given g2, it can be solved
numerically [21]. For criticality alone it is, however, just as
good, and technically much more convenient, to employ a
Taylor expansion around the potential’s minimum at ρ̃ = 0,
as in Eq. (13). For our numerical results, we truncate this
expansion after the sixth order in ρ̃, i.e., we neglect all
interactions ∼φ14 and higher. The order of the polynomial
truncation is chosen such that an inclusion of higher-order
terms changes our predictions for the critical exponents only
beyond the third digit. The error introduced by truncating
the effective potential is thus much smaller than the error
we expect due to the truncation of �k [Eq. (12)]. Our results
for correlation-length exponent ν and anomalous dimensions
ηφ and η� are shown in Figs. 1–3. For clarity, we have
plotted only the sharp-cutoff results since the difference to the
linear-regulator exponents is hardly visible within the given
resolution of these plots. Our numerical predictions in D = 3
are given for both regulators in Table I for the chiral Ising
(S = 0) universality class and in Table II for the chiral Heisen-
berg (S = 2) universality class, respectively (see page 2). In
Table II, we have also included the exponent ω, determining
the leading correction to scaling, e.g., for the correlation length
ξ ∝ |δ|−ν[1 + a±|δ|ων + O(δ2)]. Since there does not seem to
be any dangerously irrelevant coupling in the problem, we
expect hyperscaling to hold. Our predictions for the remaining
exponents α, β, γ , and δ, obtained by the usual relations [12],
are given in Table II, too.

2Note that the factor 3 in the numerator of Eq. (13) in Ref. [8] should
be 1 + S.
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FIG. 1. (Color online) Correlation-length exponent 1/ν for chiral Ising (left panel) and chiral Heisenberg (right panel) universality classes
from functional RG with sharp regulator (red/solid line) and for comparison from MC simulations [33], second-order 1/Nf expansion ([1/1]
Padé resummed) [34,35], third-order (2 + ε) expansion [28,34], second-order (4 − ε) expansion [13,33], and polynomial interpolations Pi,j (D)
of ith-order (2 + ε) and j th-order (4 − ε) expansion. In the right panel, we also demonstrate the ambiguity of the plain (4 − ε) expansion
coming from either expanding 1/ν or ν itself (cf. the discussion in Sec. VI).

VI. DISCUSSION

Due to the absence of an obvious small expansion parameter
in the strongly-coupled system for general D ∈ (2,4), the
truncation-induced error is hard to control. However, since the
chiral Ising universality class is by now fairly well established
it provides a useful testing ground to check the reliability of
our approximation. Assuming similar performances in the two
universality classes, we can therewith estimate the accuracy of
our predictions in the chiral Heisenberg universality class.

A. Chiral Ising universality class

Within the 1/Nf expansion, the Gross-Neveu model was
solved in any dimension 2 � D � 4 up to two-loop order,
with the fermion anomalous dimension being known even up
to three-loop order [34,35]. In D = 3, the critical exponents

read as

1/ν = 1 − 8

3π2Nf
+ 4(632 + 27π2)

27π4Nf
2 = 1 − 0.270

Nf
+ 1.366

Nf
2 ,

(42)

ηφ = 1 − 16

3π2Nf
+ 4(304 − 27π2)

27π4Nf
2 = 1 − 0.540

Nf
+ 0.057

Nf
2 ,

(43)

η� = 2

3π2Nf
+ 112

27π4Nf
2

+ 94π2 + 216π2 ln 2 − 2268ζ (3) − 501

162π6Nf
3

= 0.068

Nf
+ 0.043

Nf
2 − 0.005

Nf
3 , (44)
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FIG. 2. (Color online) Same as Fig. 1 for anomalous dimension of order parameter ηφ . Left panel: chiral Ising universality class. Right
panel: chiral Heisenberg universality class.
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with Nf counting the number of four-component fermion
species. The exponents have also been computed up to
three-loop order within an expansion around the lower critical
dimension [28–30]. For Nf = 2 and D = 2 + ε, one obtains

1/ν = ε − 1
6ε2 − 5

72ε3 = ε − 0.167ε2 − 0.069ε3, (45)

ηφ = 2 − 4
3ε − 7

36ε2 + 7
54ε3

= 2 − 1.333ε − 0.194ε2 + 0.130ε3, (46)

η� = 7
72ε2 − 7

432ε3 = 0.097ε2 − 0.016ε3. (47)

Here, the anomalous dimensions are known even to four-loop
order [31,32].

The corresponding partially bosonized system, the Gross-
Neveu-Yukawa model, was solved to two-loop order in
D = 4 − ε dimensions with (for Nf = 2) [13,33]3

1/ν = 2 − 20
21ε + 325

44982ε2 = 2 − 0.952ε + 0.007ε2, (48)

ηφ = 4
7ε + 109

882ε2 = 0.571ε + 0.124ε2, (49)

η� = 1
14ε − 71

10584ε2 = 0.071ε − 0.007ε2. (50)

The relationship between the Gross-Neveu model in D =
2 + ε and the Gross-Neveu-Yukawa model in D = 4 − ε is
similar to the one between the nonlinear sigma model and the
Ginzburg-Landau-Wilson theory (linear sigma model) [12]:
universality suggests that the two systems in fact describe the
same critical point, just from different sides of the transition.
Indeed, when further expanding the (4 − ε) Gross-Neveu-
Yukawa exponents in 1/Nf , one finds that the coefficients are
order by order the same as those one would get by expanding
the 1/Nf Gross-Neveu exponents at D = 4 − ε. We also note
that the same is true for the (2 + ε)-expansion exponents, as
expected.

The chiral Ising universality class has also been investigated
within previous FRG calculations [20–22], which in some
cases [21] do not rely on an expansion of the effective potential
u(ρ̃) as in Eq. (13), but solve the full equation for u(ρ̃)
[Eq. (25)]. There also exist Monte Carlo simulations on a cubic
lattice employing the staggered-fermion formulation [33]. Re-
cent analyses [50], however, suggest that these should be taken
with caution for the following reasons: First, the microscopic
symmetry of the cubic-lattice theory in the simulations with
single species of staggered fermions (which due to fermion

3Let us point out some typing errors in the formulas for γψ and γ̄φ2

as given in Eqs. (11) and (12) of the work by Rosenstein et al. [13]:
In Eq. (12) in the second term of the two-loop coefficient it must
read as −94N 2 instead of +94N 2 which can be seen by comparing
with the formulas given by Karkkainen et al. [33]; additionally, only
−94N 2 gives the correct 1/N expansion as quoted following Eq. (12)
in Ref. [13]. In Eq. (11) of Ref. [13] the one-loop coefficient misses
a factor of 1

2 , as can be seen by comparing again with the expansion
in 1/N , following Eq. (11), or with Eq. (41) in this work. Also, the
two-loop coefficient as given in Eq. (11) can not be correct since it
does not produce the correct 1/N expansion; we expect that in the
numerator it should read as 3N instead of 33N , which does the job.
The quoted results in this work use these corrections.

doubling corresponds to Nf = 2 four-component continuum
fermions) is (besides phase rotations) SU(2) × Z2 and it is not
clear, whether the continuum symmetry SU(2)sp × SU(2)χ ×
Z2 is restored close to the critical point. It is therefore not ex-
cluded that the cubic-lattice model describes a different univer-
sality class. Second, the standard auxiliary field approach in the
staggered-fermion formulation on the cubic lattice suffers from
a sign problem for Nf = 2, which was ignored in Ref. [33].
A recently suggested approach that solves the sign problem
also gives different critical exponents in a similar model with
the same (smaller-than-continuum) symmetry group of the
cubic-lattice model considered in Refs. [33,50]. The apparent
consistence of the quoted cubic-lattice MC measurements with
the continuum predictions (see Table I) might therefore be
purely coincidental. This deserves further investigation.

ε or 1/Nf expansions are at best asymptotic series, and
a simple extrapolation to the physical case ε = 1 and Nf =
2 is quite problematic. This is particularly evident in the
correlation-length exponent in the 1/Nf expansion, where for
Nf = 2 we get 1/ν = 1 − 0.135 + 0.341 + O(1/Nf

3), i.e., the
second-order correction is in fact larger than the first-order
correction, with no sign of convergence. To the present order,
the (2 + ε) and the (4 − ε) expansions are still decreasing.
However, at least in parts the (superficial) convergence is rather
slow, in particular for the anomalous dimensions. This is in
contrast to the universality class’ purely bosonic equivalent,
the Ising class, where the second-order (4 − ε) expansion gives
exponents which agree with the best-known values within
an error range of less than 1% [12]. Moreover, in Eqs. (42)
and (48), we have given the correlation-length exponent in each
case in terms of an expansion of 1/ν instead of ν itself, which
is convenient in order to compare with the (2 + ε) expansion,
in which ν ∝ 1/ε. A naive extrapolation to the physical case,
however, leaves us with the ambiguity of either directly ex-
trapolating the expansion of 1/ν or first expanding ν itself and
extrapolating ε → 1 afterwards. Because of the comparatively
large loop corrections, the difference between these two,
probably equally justified, procedures is not negligible, e.g.,
of the order of 10% for the second-order (4 − ε) expansion.
All this indicates the crucial necessity of resummation of the
expansions in the present fermionic systems. Standard Borel-
type resummation techniques rely on the knowledge of the
large-order behavior of the coefficients, obtained within, e.g.,
a semiclassical analysis [51]. As far as we are aware, no such
knowledge exists yet in the fermionic systems considered here.

For the correlation-length exponent in the 1/Nf expansion
we therefore use a naive symmetric [1/1] Padé approxi-
mant [51]

[1/1](1/ν)(Nf) = 584 + 27π2 + 18π2Nf

632 + 27π2 + 18π2Nf
, (51)

where the coefficients have been chosen such that by again
expanding in 1/Nf the Padé approximant gives back the
original series in Eq. (42). Although a solid justification of the
simple Padé approximation is certainly out of reach, it at least
solves the ambiguity between the expansions of 1/ν and ν.
For the ε expansions, however, one can do better: We may take
advantage of the knowledge of the results from the expansions
near lower and upper critical dimensions simultaneously and
try to find a suitable interpolation between these two limits.
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FIG. 3. (Color online) Same as Fig. 1 for fermionic anomalous dimension η� . Left panel: chiral Ising universality class. Right panel: chiral
Heisenberg universality class.

In the purely bosonic O(N ) models, such an interpolation
algorithm, based on an optimized interpolation function
within a variational approach, has been demonstrated to yield
persuasively accurate values for the critical exponents [51],
even though the expansion around the lower critical dimension
yields entirely useless values when naively extrapolating to
ε = 1. In contrast, in the fermionic systems considered here,
the (2 + ε) and the (4 − ε) expansions yield loop corrections of
comparable order, e.g., 1/ν � O(1) in D = 3 while 1/ν → 0
(1/ν → 2) at the lower (upper) critical dimension, a fact
which makes an interpolation even more promising. To our
knowledge, such a variational resummation has so far not
been pursued in the case of the fermionic models. This
deserves a study on its own. Here, instead of employing
the full optimization process, we use a simplified approach
with nonoptimized interpolation function. For convenience,
we employ a polynomial interpolation Pi,j (D) between the
results from the ith-order (2 + ε) expansion and the j th-order
(4 − ε) expansion. This is done by extending the (2 + ε)
expansion by j + 1 more terms, e.g., for the correlation-length
exponent (i = 3, j = 2)

P
(1/ν)
3,2 (D) = (D − 2) − 1

6 (D−2)2 − 5
72 (D − 2)3 + a4(D − 2)4

+ a5(D − 2)5 + a6(D − 2)6, (52)

and fitting this extended series to the known result near the
upper critical dimension [Eq. (48)], i.e., we uniquely determine
the coefficients a4, a5, a6 by requiring

P
(1/ν)
3,2 (4) = 2, P

(1/ν)
3,2

′(4) = − 20
21 , P

(1/ν)
3,2

′′(4) = 325
22 491 .

(53)

By construction, the interpolating polynomial Pi,j (D) is
therefore i-loop (j -loop) exact near lower (upper) critical
dimension. This interpolational resummation also solves the
ambiguity between the expansions of 1/ν and ν by construc-
tion. In order to be able to follow the development and to
compare with the symmetric case i = j , we have computed
Pi,j (D) for both the second- (i = 2) and the third- (i = 3)
order (2 + ε) expansion, each with the second- (j = 2) order
(4 − ε) expansion. The results for correlation-length exponent
and anomalous dimensions are shown in Figs. 1–3 (left
panels), together with the naive extrapolations and our FRG
predictions.

In Sec. V A, it was shown that our improved local potential
approximation within the sharp-cutoff scheme produces the
correct one-loop exponents near the upper critical dimension,
and we have checked numerically that this is also the case
for the linear regulator. This is illustrated in Fig. 4, where
we have plotted the absolute difference of our FRG results
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FIG. 4. (Color online) Absolute difference of critical exponents from FRG with sharp and linear cutoffs, respectively, to ε-expansion results
near upper critical dimension in the chiral Ising universality class. Both sharp-cutoff and linear-cutoff schemes become numerically exact to
first order in ε.
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FIG. 5. (Color online) Same as Fig. 4 near lower critical dimension. Here, only the sharp-cutoff scheme is numerically exact to first order
in ε, while the linear-cutoff scheme is exact merely to zeroth order and yields slightly different first-order corrections.

for both the sharp and the linear cutoff to the second-order
(4 − ε)-expansion results. Indeed, the difference as well as its
derivative goes to zero as D → 4− for both regulators. Figure 5
now shows that the sharp-cutoff FRG scheme becomes one-
loop exact also near the lower critical dimension: By a linear
fit to our FRG predictions in D = 2 + ε, we in fact find for
the sharp-cutoff regulator

1/ν = 1.00ε + O(ε2), (54)

ηφ = 2 − 1.33ε + O(ε2), (55)

ηψ = 0.00ε + O(ε2), (56)

which are on the level of our numerical accuracy exactly the
one-loop results from the (2 + ε) expansion [cf. Eqs. (45)–
(47)]. We note, however, that the linear regulator, which is often
considered as an optimal choice [52], does not produce the
exact first-order corrections near the lower critical dimension
utterly: 1/ν = 1.03ε + O(ε2), ηφ = 2 − 1.29ε + O(ε2), and
ηψ = 0.01ε + O(ε2). Although small, the discrepancy to the
exact coefficients from the (2 + ε) expansion is numerically
significant (see Fig. 5). To our knowledge, this is the first-
known example in which the sharp-cutoff regulator yields
substantially better predictions than the linear regulator. In
light of these findings, we believe that the issue of optimized
RG schemes in the fermion-boson models considered here
may deserve further investigation.

The numerical estimates in D = 3 are given for all
approaches in Table I. From the size of the higher-order
corrections we expect that regarding the expansions the
best estimates for the anomalous dimensions ηφ and η� are
obtained from the 1/Nf series, with no need for resummation.
Our FRG result for ηφ (η�) agrees with these and with the
interpolation-resummed ε-expansion results within the mid
single-digit (lower double-digit) percent range: �ηφ/ηφ �
3% · · · 6% and �η�/η� � 20% · · · 30%. For the correlation-
length exponent we expect either the plain two-loop (4 − ε)
expansion or the interpolation-resummed result to yield the
most accurate value. Our FRG prediction agrees with both
within �ν/ν � 3% · · · 7%. Both ν and ηφ from the FRG
agree with the MC measurements within an even smaller
error range: �ν/ν � �ηφ/ηφ � 2%. Our findings also agree
very well with the previous FRG results which solve the
full equation for the effective potential, suggesting that our
polynomial truncation (13) should be just as good on our level

of accuracy. We also find that our FRG predictions only slightly
depend on the specific regulator function, which is additionally
reassuring.

B. Chiral Heisenberg universality class

One might expect similar performances of our approxima-
tion in the chiral Ising and the chiral Heisenberg universality
classes. For the chiral Heisenberg universality class, there
are much fewer previous calculations available; there exists,
however, a two-loop calculation in D = 4 − ε dimensions,
yielding the exponents [13]

1/ν = 2 − 84
55ε + 2 286 329

6 322 250ε2 = 2 − 1.527ε + 0.362ε2, (57)

ηφ = 4
5ε + 4819

30 250ε2 = 0.8ε + 0.159ε2, (58)

η� = 3
10ε − 6969

121 000ε2 = 0.3ε − 0.058ε2, (59)

with again only a slow (superficial) convergence in comparison
to its purely bosonic equivalent, the Heisenberg model. Again,
the ambiguity between either expanding 1/ν or inverting the
expansion of ν itself is of the order of 10% (see Table II).
At first order, it is yet considerably higher. For comparison,
we have therefore also calculated [1/1] Padé approximants,
analogous to Eq. (51). They are plotted together with the plain
ε-expansion results and our sharp-cutoff FRG predictions in
Figs. 1–3 (right panels). In the case of the correlation-length
exponent, we compare with both the direct expansion of 1/ν

as well as the inverse of the expansion of ν itself, in order
to demonstrate the ambiguity. The numerical estimates are
given in Table II. Again, we find that our FRG approximation
carries only a minor regulator dependence. ν and ηφ agree well
with the Padé-resummed ε expansions within �2%. ηφ agrees
also with the plain second-order ε expansion within �5%,
while ν agrees only within a somewhat larger error range
�10% · · · 20%, depending on whether we expand ν or 1/ν in
ε. The predictions for η� differ to about a factor of 3 between
FRG and ε expansion, in full analogy to the chiral Ising case,
where the naive extrapolation of the (4 − ε) expansion does not
agree well with either FRG or the interpolational-resummation
results. For completeness, we have also noted in Table II our
estimate for the corrections-to-scaling exponent ω and the
exponents α, β, γ , and δ, which are related to ν and ηφ by
the hyperscaling relations [12].

205403-11



LUKAS JANSSEN AND IGOR F. HERBUT PHYSICAL REVIEW B 89, 205403 (2014)

In contrast to the satisfactory agreement of our FRG
predictions with those of the second-order ε expansion, they
appear to significantly contradict the numerical findings of the
simulations of the Hubbard model on the honeycomb lattice:
In Ref. [11], an excellent collapse of the finite-size-scaling
data is obtained by assuming β = 0.79 and 1/ν = 1.13,
which happen to be the values from the plain first-order
(4 − ε) expansion (using the extrapolation of ν itself) [8].
The exponents are ∼50% off from our FRG predictions, and
it is unlikely that a nearly as good finite-size scaling of the
lattice data would be possible with our results for β and ν.
Reference [10] reports β ≈ 0.8, which is close to the above
quoted values, and again in clear numerical conflict with our
findings. Evidently, further analytical and numerical studies
would be desirable in order to pin down the values of the
exponents in this universality class.

VII. CONCLUSIONS

In conclusion, we have investigated the Mott transition on
the honeycomb lattice from the semimetallic phase into the
charge density wave state and into the antiferromagnetic state,
respectively within an effective field-theory approach. In the
Hubbard-type model, the former transition is expected for
large nearest-neighbor repulsion, while the latter is induced
by a strong onsite repulsion [5,11]. They are effectively
described by the chiral Ising (=Z2–Gross-Neveu) model and
the chiral Heisenberg [=SU(2)–Gross-Neveu] model. We have
employed the functional renormalization group formulated
in terms of the Wetterich equation to compute the critical
exponents, describing the critical behavior near the continuous
transition. In the chiral Ising case, our predictions, made within
the LPA′ truncation of the derivative expansion, agree well with
existing calculations up to the mid single-digit percent range
for ν and ηφ and the lower double-digit percent range for η� .
We would expect a similar accuracy in the chiral Heisenberg
case, where not as many previous results exist. However, while
our predictions are in agreement with the second-order (4 − ε)-
expansion results of the chiral Heisenberg model, the signifi-
cant numerical mismatch to the measurements in the Hubbard-
model simulations are worrisome. These discrepancies may
point to an as yet hidden subtlety in our effective Gross-
Neveu-Yukawa approach, or in both our FRG approximation as
well as the second-order (4 − ε) expansion. This issue needs
clarification in future studies. Within the FRG, a systematic
improvement of the present approximation would be to
incorporate the effect of newly generated four-fermion terms,
e.g., by dynamical bosonization [48], or to go beyond LPA′ by
including the higher-derivative terms from Eqs. (19) and (20).

Beyond its physical (and possibly technological) im-
portance in the context of graphene, we believe that the
universality classes presented in this work are an ideal
testing ground to investigate the validity of nonperturbative
approximation schemes, setting the stage for quantitative
comparisons between field-theoretical tools. For the chiral
Ising universality, we have shown that our FRG results are
able to compete with the most accurate predictions from all
existent other approaches. Near the upper critical dimension
we have demonstrated that our predictions become universal
and exact to one-loop order. This was of course to be

expected since the effective Gross-Neveu-Yukawa models
considered here become perturbatively renormalizable in four
space-time dimensions. In two dimensions, in contrast, these
fermion-boson theories are perturbatively not directly acces-
sible (only the purely fermionic Gross-Neveu models are)
and a loop expansion directly in two dimensions should be
expected to be highly scheme dependent. However, here we
have demonstrated that our FRG exponents in the Gross-
Neveu-Yukawa model become universal and exact also in
the limit of two dimensions. Apparently, our nonperturbative
LPA′ truncation “knows” about the existence of the purely
fermionic Gross-Neveu model with its lower critical dimension
of two, in contrast to the conventional loop expansion. Near and
above two dimensions, we find slight scheme dependencies.
However, within the sharp-cutoff scheme, our approximation
is still one-loop exact. At general dimension between lower
and upper critical dimensions, the FRG yields a reasonable
interpolation between these two exact limits.
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APPENDIX: REGULARIZED LOOP INTEGRALS

In this Appendix, we give the details of the regularized
loop integrations occurring in the derivation of our FRG flow
equations. The details of the regularization scheme are encoded
in the regulator functions R

(B/F)
k , which may be expressed in

terms of the dimensionless shape functions r
(B/F)
k as

R
(B)
k (q) = Zφ,kq

2r
(B)
k (q2), R

(F)
k (q) = Z�,ki/qr

(F)
k (q2). (A1)

The Wetterich equation (10) has a one-loop structure, and the
flow equations can therefore always be written in terms of
one-loop Feynman diagrams. The occurring single integrals
define the threshold functions; as used in this work, they are
given by [39]

�
(B/F),D
0 (ω; ηφ/�) = 1

2
k−D∂̃t

∫ ∞

0
dx xD/2−1

× ln
[
P

(B/F)
k (x) + ωk2

]
, (A2)

�
(FB),D
1,1 (ω; η�,ηφ) = −1

2
k4−D∂̃t

∫ ∞

0
dx xD/2−1

× [
P

(F)
k (x)

]−1[
P

(B)
k (x) + ωk2

]−1
, (A3)

m
(F),D
4 (η�) = −1

2
k4−D∂̃t

∫ ∞

0
dx xD/2+1

[
∂x

1

x
[
1 + r

(F)
k (x)

]]2

,

(A4)

m
(FB),D
1,2 (ω; η�,ηφ) = 1

2
k4−D∂̃t

∫ ∞

0
dx xD/2

× 1

x
[
1 + r

(F)
k (x)

]∂x

1

P
(B)
k (x) + ωk2

,

(A5)
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where we have abbreviated the momentum-dependent parts of
the inverse regularized propagator by

P
(B)
k (x) := x

[
1 + r

(B)
k (x)

]
, P

(F)
k (x) := x

[
1 + r

(F)
k (x)

]2
,

(A6)

with x ≡ q2. The scale derivative ∂̃t acts only on the regulator’s
t dependence, which implicitly occurs by means of the
regularized propagator parts P

(F/B)
k . It is formally defined in

Eq. (27) in the main text. The prefactors ∝kα in Eqs. (A2)–
(A5) are chosen such that the threshold functions become
dimensionless.

Let us consider a one-parameter family of regulator
functions, which we define in terms of their corresponding
regularized inverse propagator parts

P
(B)
k,a (q2) = P

(F)
k,a (q2) =

{
ak2 + (1 − a)q2 for q2 < k2,

q2 for q2 � k2,

(A7)

with parameter 0 < a � ∞. These regulators do not affect
the fast modes with |q| > k at all, these modes thus give
no contribution to the threshold integrals after taking the ∂̃t

derivative. Modes below but sufficiently near the RG scale k

are for finite a < ∞ only slightly suppressed, while deep IR
modes with |q| � k are always strongly suppressed.

There are two representatives of this family of regula-
tors, for which the threshold integrals can be carried out
analytically: For a = 1, the regularized propagator becomes
constant for slow modes with |q| < k, turning the integrands
in Eqs. (A2)–(A5) into simple monomials in x. This defines
the linear regulator [52] for which the threshold functions

become [21]

�
(B/F),D
0;lin (ω; ηφ/�) = 2

D

(
1 − ηφ/�

D + 3±1
2

)
1

1 + ω
, (A8)

�
(FB),D
1,1;lin (ω; η�,ηφ) = 2

D

[(
1 − η�

D + 1

)
1

1 + ω

+
(

1 − ηφ

D + 2

)
1

(1 + ω)2

]
, (A9)

m
(F),D
4;lin (η�) = 3

4
+ 1 − η�

2(D − 2)
, (A10)

m
(FB),D
1,2;lin (ω; η�,ηφ) =

(
1 − ηφ

D + 1

)
1

(1 + ω)2
. (A11)

For large a � 1, only the modes in the thin momentum shell
[k − δk,k] with δk � k give significant contributions to the
threshold functions since all lower modes are suppressed by at
least 1/a. In the sharp-cutoff limit a → ∞, understood to be
taken after the integration over the loop momentum x and the
∂̃t derivative in Eqs. (A2)–(A5), the threshold functions then
become [26]

�
(B/F),D
0;sc (ω; ηφ/�) = − ln(1 + ω) + �

(B/F),D
0 (0; ηφ/�), (A12)

�
(FB),D
1,1;sc (ω; η�,ηφ) = 1

1 + ω
, (A13)

m
(F),D
4;sc (η�) = 1, (A14)

m
(FB),D
1,2;sc (ω; η�,ηφ) = 1

(1 + ω)2
. (A15)
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