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Fluctuation theorem for heat transport probed by a thermal probe electrode
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We analyze the full-counting statistics of the electric heat current flowing in a two-terminal quantum conductor
whose temperature is probed by a third electrode (“probe electrode”). In particular we demonstrate that the
cumulant-generating function obeys the fluctuation theorem in the presence of a constant magnetic field. The
analysis is based on the scattering matrix of the three-terminal junction (comprising the two electronic terminals
and the probe electrode), and a separation of time scales: it is assumed that the rapid charge transfer across
the conductor and the rapid relaxation of the electrons inside the probe electrode give rise to much slower
energy fluctuations in the latter. This separation allows for a stochastic treatment of the probe dynamics, and
the reduction of the three-terminal setup to an effective two-terminal one. Expressions for the lowest nonlinear
transport coefficients, e.g., the linear-response heat-current noise and the second nonlinear thermal conductance,
are obtained and explicitly shown to preserve the symmetry of the fluctuation theorem for the two-terminal
conductor. The derivation of our expressions, which is based on the transport coefficients of the three-terminal
system explicitly satisfying the fluctuation theorem, requires full calculations of vertex corrections.
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I. INTRODUCTION

The recent progress in research in thermometry [1],
refrigeration [2], and heating [3] processes in mesoscopic
quantum systems enables one to treat systematically heat-
related phenomena concerning electrons [4–7]. Recent efforts
are focused on thermoelectric transport in coherent quan-
tum conductors coupled to local vibrational modes [8], or
to temperature- and/or potential-probing electrodes [9–11],
in the linear-response regime and also beyond it [12–14].
An intriguing question raised in these investigations is the
symmetry of the various transport coefficients with respect
to time-reversal-symmetry breaking, in particular under the
effect of inelastic interactions induced by probing electrodes.
This question is further related to the fluctuation theorem (FT)
obeyed by the cumulant-generating function.

The prototypical setup of coherent thermoelectric transport
is a mesoscopic conductor connected to leads kept at various
temperatures and a common chemical potential. For clarity,
we focus below on a conductor coupled to two electronic
reservoirs held at two (different) temperatures TL and TR .
Broken time-reversal invariance is induced by a perpendicular
magnetic field B, which affects the orbital motion of the
electrons (the much smaller effect of the Zeeman interaction
is disregarded). Our aim is to investigate the statistics of
the heat current flowing in the conductor. The conductor is
further coupled to a third electrode, designed to measure
its temperature (see Fig. 1) [15,16]. This measurement is
accomplished by adjusting the temperature TP of this third
terminal so that no net energy is flowing between it and
the conductor on the average. However, the energy current
flowing in or out of the probe electrode fluctuates in time and

its distribution depends on details of the coupling between
the quantum conductor and the probe (e.g., it is Poissonian
for tunnel coupling). The fluctuations give rise to stochastic
variations in the temperature of the probe. These in turn affect
the higher cumulants (beyond the first two, i.e., the current
and the noise) and the probability distribution of the energy
current flowing between the two electronic reservoirs, i.e.,
the full-counting statistics (FCS) [17,18]. The problem at
hand is therefore to find the cumulant-generating function
(CGF) which characterizes this FCS, in the presence of the
temperature-measuring probe electrode. In other words, we
want to obtain the CGF once the three-terminal setup (where
all three electrodes are included on equal footing) is mapped
onto an effective two-terminal one in which energy is flowing
between the left (L) and the right (R) reservoirs (see Fig. 1). An
ensuing issue is the fate of the FT (imposed on the CGF) under
this mapping, in particular when time-reversal invariance is
broken.

A similar situation has been encountered in the statistics
of charge currents. There, one has to allow for voltage-
measuring probes (electrodes whose potential is adjusted so
as to bar electric currents between them and the conductor) or
dephasing probes (which exchange electrons incoherently with
the conductor within a narrow energy interval). The treatment
of the stochastic effects of these electrodes on the CGF is
based on time scale separation. For example, the rapid flow
of electrons in and out of a voltage-probing electrode results
in much slower charge fluctuations there, thus allowing for
a stochastic path integration of the CGF of the full setup
(e.g., a three-terminal one) over all configurations of the probe
charge, to obtain the reduced CGF of the physical setup
(e.g., a two-terminal one) [19–22]. A similar treatment has
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FIG. 1. A three-terminal setup. The figure depicts a quantum
conductor (the elliptical area) connected to two reservoirs denoted
L and R, which are held at two different temperatures; those are
expressed in terms of the affinities AL,R ≡ β − βL,R (β−1 is the
temperature of the entire system when at equilibrium); see the text.
The thermal probe (the upper square) is specified by its own affinity
AP ≡ β − βP , which fluctuates in time. Also shown are the three
auxiliary “counting” fields λr (r = L, R, and P ) which measure the
energy flowing in and out of electrode r . The quantum conductor
is threaded by a perpendicularly oriented magnetic field B. Once
the stochastic dynamics of the energy current in and out of the
probe electrode is taken care of, the junction becomes an effective
two-terminal one.

been carried out for the stochastic temperature and chemical
potential fluctuations in an overheated metallic island [23–25].

However, to the best of our knowledge there are no studies
of the fluctuation theorem [26–43] in systems coupled to
thermal probes. This paper is devoted to the exploration
of this issue. In order to map the three-terminal junction
of Fig. 1 onto an effective two-terminal one we adopt the
stochastic path-integral formalism [19–22], originally devised
for describing electric conduction through a chaotic cavity.
We analyze the FT pertaining to the resulting effective two-
terminal setup. In particular we investigate the symmetry
relations of the nonlinear thermal conductances and the linear-
response expressions for the corresponding noise correlations
and verify that those obey the universal relations imposed by
the FT [30]. Explicit results for the aforementioned energy-
transport coefficients are presented by using a triple-quantum-
dot junction as an example. It allows us to demonstrate the
magnetic-field asymmetry induced in the heat transport by the
thermal probe (see, e.g., Ref. [44] for related issues), and to
confirm that the universal relations imposed by the FT are
satisfied.

The FT is a consequence of microreversibility and can be
considered as a microscopic extension of the second law of
thermodynamics. It can be expressed in terms of the probability
distribution Pτ (�S) for an entropy change �S during a
measurement time τ . When time-reversal invariance is broken,
say by a magnetic field B, that probability distribution depends
on the latter as well, and the FT reads

lim
τ→∞

1

τ
ln

Pτ (�S; B)

Pτ (−�S; −B)
= IS, (1)

where IS = limτ→∞ �S/τ is the entropy flow. In a two-
terminal junction coupled to two electronic reservoirs held
at the same chemical potential but at different temperatures TL

and TR , this flow is [45]

IS = IE(βR − βL), (2)

where IE is the energy current, and where β denotes the inverse
temperature. (We use units in which e = � = kB = 1 and

measure energies from the common chemical potential μ = 0,
thus ensuring that the electronic heat current is equivalent to
the energy current [45].) The direction of the current flow here
is out of each electrode [46].

Despite its modest form, the FT Eq. (1) is a very
powerful relation. It reproduces the linear-response results,
the fluctuation-dissipation theorem, and Onsager’s reciprocal
relations [27–33]. Furthermore, it predicts universal relations
among the nonlinear transport coefficients [28–31]. A recent
experiment has aimed to verify some of these relations [38], by
comparing the nonlinear conductance of an Aharonov-Bohm
interferometer with the noise in the linear-response regime.

The paper is organized as follows. We begin in Sec. II by
setting the formal basis of the paper: First we summarize in
Sec. II A the probability distribution of the energy currents
carried by noninteracting electrons across a quantum conduc-
tor connected to three terminals (i.e., left, right, and probe
electrodes) and its CGF, together with the symmetries implied
by the FT. Then, in Sec. II B, following the same route taken
in Refs. [19–25], we path-integrate over the stochastic energy
fluctuations in the probe and thus reduce the three-terminal
setup to an effective two-terminal one. We continue in Sec. II C
by proving that this reduction is consistent with the FT as
applied to the reduced two-terminal setup; this is the first
main result of this paper. In Sec. II D we consider the scaled
two-terminal CGF at steady state. We continue in Sec. III A
by introducing the general scheme for obtaining the transport
coefficients when time-reversal symmetry is broken. Then in
Sec. III B we explain how the transport coefficients of the
effective two-terminal junction are obtained from the CGF
of the three-terminal one, and introduce the required vertex
corrections. This analysis allows us to obtain in Sec. III C the
lowest nonlinear transport coefficients; this is the second main
result of this paper. Finally in Sec. III D we apply our theory to
the three-terminal triple-quantum-dot system. Our results are
summarized in Sec. IV.

II. FULL-COUNTING STATISTICS

A. Cumulant-generating function for a quantum conductor
coupled to three terminals

Figure 1 displays our system schematically: A quantum
conductor whose temperature (TP ) is determined by a thermal
probe, is subject to a magnetic field B and is attached to
two electronic reservoirs (of temperatures TL and TR). This
three-terminal setup is specified by a 3 × 3 energy- and
magnetic-field-dependent scattering matrix S(ω; B), whose
elements are the various scattering amplitudes. Those obey
microreversibility,

Srr ′ (ω; B) = Sr ′r (ω; −B), (3)

with r,r ′ = L, R, or P . Each of the three terminals is specified
by a Fermi distribution at its own temperature,

fr (ω) = [eβrω + 1]−1 = [e(β−Ar )ω + 1]−1. (4)

In the second equality of Eq. (4) we have introduced the affinity
Ar corresponding to the rth reservoir,

Ar = β − βr, (5)
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where β denotes the common inverse temperature of the entire
junction. These affinities, sometimes called “thermodynamic
forces,” drive the energy currents in the junction.

The statistical properties of the energy transfer are char-
acterized by the probability distribution of the three energy
currents IEr emerging from each electrode. Alternatively,
one may exploit the probability distribution PGτ ({εr}) of
the energies accumulated on the three electrodes during the
measurement time τ ,

εr ≡
∫ τ

0
dtIEr (t). (6)

The probability distribution PGτ ({εr}) is also a function of B.
(For brevity, the explicit dependencies of some of the functions
below are suppressed in part of the equations and are presented
when needed for clarity.) The (scaled) cumulant-generating
function FG defined in the limit of long measurement times is

FG({λr}) = lim
τ→∞

1

τ
lnZGτ ({λr}), (7)

whereZGτ is the Fourier transform of the probability PGτ ({εr})
for a finite measurement time τ :

ZGτ ({λr}) =
∫ ∞

−∞
dεLdεRdεP ei

∑
r εrλr PGτ ({εr}). (8)

We may now examine the symmetries imposed by the FT
Eq. (1) on the CGF FG. The entropy production Ṡ, which in
our case is equivalent to the energy current, is given by

Ṡ =
∑

r=L,R,P

IEr (β − βr ) =
∑

r=L,R,P

IErAr , (9)

where in the last step we have used Eq. (5). It therefore follows
that �S = ∑

r εrAr and consequently, in the limit of long
measurement times τ → ∞, the FT takes the familiar form

PGτ ({εr}; B) = PGτ ({−εr}; −B)e
∑

r εrAr . (10)

This, in turn, implies that the CGF obeys [28–30]

FG({λr},{Ar}; B) = FG({−λr + iAr},{Ar}; −B). (11)

Here we stress that the probability distribution PGτ is for the
three-terminal system including the probe terminal. As such, it
is still an intermediate expression. Later, in Eq. (21), we present
the two-terminal probability distribution Pτ after removing the
probe terminal. PGτ and Pτ are different and should not be
confused.

A convenient way to express and calculate the CGF of the
energy current [47] for noninteracting electrons is in terms of
the scattering matrix S(ω; B)

FG({λr}) =
∫

dω

2π
ln det[1 − f(ω)K(λ,ω; B)], (12)

with the matrix K given by

K(λ,ω; B) = 1 − eiλωS†(ω; B)e−iλωS(ω; B). (13)

In Eqs. (12) and (13), f is a diagonal matrix of the Fermi
functions,

f(ω) = diag{fL(ω),fR(ω),fP (ω)}, (14)

and λ is a diagonal matrix comprising the counting fields

λ = diag{λL,λR,λP }. (15)

Obviously, the CGF in its form (12) should obey [29] the FT
relation Eq. (11) (see Appendix A for details).

B. Stochastic treatment of the probe energy

Here we outline the stochastic approach which allows for
the path integration over the slow dynamics of the energy in
the probe electrode, and leads to a functional representation
for the CGF of the effective two-terminal junction [20]. As
is mentioned above, the temperature of the probe fluctuates
in time, i.e., the probe affinity AP is time dependent and
consequently so is the (instantaneous) probe energy denoted
E(t), which is given by

E(t) =
∫

dωρP (ω)
ω

e[β−AP (t)]ω + 1
, (16)

where ρP is the electronic density of states in the probe. The
energy E(t) fluctuates stochastically since the energy current
generated by the electrons in the quantum conductor fluctuates.
Such energy-current fluctuations result in non-Gaussian white
noise, whose rigorous stochastic calculus has been investigated
recently [48]. In the present paper we adopt a simpler
approximation which captures the relevant physics [19–25].
This approach relies on the existence of two distinct time
scales. The faster one pertains to the traveling time of each
electron through the conductor and the subsequent relaxation
in any of the electrodes. The slower one is related to the
fluctuations of the energy inside the probe terminal.

During a time interval �t , the energy emitted stochastically
from the rth electrode is

�εr =
∫ t+�t

t

dt ′ IEr (t ′). (17)

These energy differences obey a joint probability distribution
governed by the scaled CGF [see Eqs. (7) and (8)]

PG�t ({�εr},{Ar}; B)

=
∫ ∞

−∞

dλLdλRdλP

(2π )3
e�tFG({λr },{Ar };B)−i

∑
r �εrλr . (18)

However, the time interval �t is chosen in a specific manner
designed to single out �εP and to make it a stochastic variable.
Indeed, the key approximation in Refs. [19–25] is related to the
duration of �t . It should be longer than the time needed for the
probe electrode to reach local equilibrium, which is obviously
much longer than the time scale characterizing the energy
fluctuations in the probe. In other words, �t is much longer
than the time required for an electron to relax in the probe
electrode. The latter time scale is determined for example
by electron-electron collisions (the probe electrode is in the
hot-electron regime).

One next discretizes the entire measurement time τ into
N = τ/�t intervals, each of duration �t . When the probe
energy at time tn = n�t is En, then after an additional time
step it changes to

En+1 = En + �εP . (19)
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Since �εP is a stochastic variable, En+1 is not unique. By
using the probability distribution of �εP , Eqs. (18) and (19),
we obtain the conditional joint probability of finding the probe

energy En at time t = tn and En+1 at t = tn+1 = (n + 1)�t ,
accompanied by the energy changes �εLn and �εRn of the left
and right reservoirs

PG�t (�εLn,�εRn,En+1 − En,AL,AR,AP ([En+1 + En]/2); B), (20)

where we have assumed that during �t the probe affinity is determined by Eq. (16) with the average energy at times tn+1 and tn,
AP ([En+1 + En]/2). Although from the viewpoint of causality it would be more reasonable to use instead AP (En), this midpoint
rule is convenient for proving the FT (see Sec. II C).

It follows from the above that only two adjacent events determine the probe dynamics, making it a Markov process. Hence, the
probability distribution for the energies εL/R = ∑N−1

j=0 �εL/Rj to emerge from the left and right reservoirs during the measurement
time τ is

Pτ (εL,εR,AL,AR; B) =
∫ ⎛

⎝N−1∏
j=0

d�εLjd�εRj

⎞
⎠

⎛
⎝ N∏

j=0

dEj

⎞
⎠ δ

⎛
⎝εL −

N−1∑
j=0

�εLj

⎞
⎠ δ

⎛
⎝εR −

N−1∑
j=0

�εRj

⎞
⎠

× PG�t (�εLN−1,�εRN−1,EN − EN−1,AL,AR,AP ([EN + EN−1]/2); B) · · ·
× PG�t (�εL0,�εR0,E1 − E0,AL,AR,AP ([E1 + E0]/2); B) pP (E0). (21)

Here pP (E0) is the equilibrium distribution probability of the probe energy at an initial time t0. The second and third lines of
the right-hand side of Eq. (21) express the probability of finding a path in energy space E0,E1, . . . ,EN , at t0,t1, . . . ,tN . The
characteristic function is the Fourier transform of Eq. (21),

Zτ ({λr},{Ar}; B) =
∫

dεLdεReiλLεL+iλRεRPτ ({εr},{Ar}; B)

=
∫ ⎛

⎝N−1∏
j=0

dλPj

2π

N∏
j=0

dEj

⎞
⎠pP (E0)e−i

∑N−1
j=0 λPj (Ej+1−Ej )+∑N−1

j=0 �tFG(λL,λR,λPj ,AL,AR,AP ([Ej+1+Ej ]/2);B), (22)

where now the arguments {λr} and {Ar} refer to the counting fields and affinities of solely the left and right electronic reservoirs.
In the continuum limit �t → 0, the characteristic function becomes

Zτ ({λr},{Ar}; B) =
∫

D[λP ,E] eiSpP (E(0)) , (23)

where
∫
D[λP ,E] means functional integration over λP (t) and E(t). The Martin-Siggia-Rose action [23,24,49] S is given by

iS = −
∫ τ

0
dt[iλP (t)Ė(t) − FG(λL,λR,λP (t),AL,AR,AP (E(t)); B)]. (24)

C. Fluctuation theorem for the reduced two-terminal system

The probability distribution of the effective two-terminal junction, Eq. (21), is based on the assumption that the dynamics of
the energy flow in and out of the probe is slow and can be treated stochastically. Therefore, it is not a priori obvious that the CGF
thus derived obeys the fluctuation theorem. Here we prove that it does.

The proof begins with Eqs. (10) and (20) which yield the extended form of the local detailed balance [50] or the detailed
fluctuation theorem [51],

PG�t {�εLj−1,�εRj−1,Ej − Ej−1,AL,AR,AP ([Ej + Ej−1]/2); B}
= PG�t (−�εLj−1, − �εRj−1,Ej−1 − Ej ,AL,AR,AP ([Ej−1 + Ej ]/2); −B)e

∑
r=L,R �εr j−1Ar pP (Ej )/pP (Ej−1) . (25)

Here we have imposed the first law of thermodynamics for the fluctuating energy,

AP ((Ej+1 + Ej )/2)(Ej+1 − Ej ) = ln pP (Ej+1) − ln pP (Ej ) + O(�t2), (26)

and introduced the instantaneous equilibrium probability pP (Ej ) to find the probe energy Ej at time tj . It then follows from
Eq. (21) that

Pτ ({εr},{Ar}; B) =
∫ ⎛

⎝N−1∏
j=0

d�εLjd�εRj

⎞
⎠

⎛
⎝ N∏

j=0

dEj

⎞
⎠ δ

⎛
⎝εL −

N−1∑
j=0

�εLj

⎞
⎠ δ

⎛
⎝εR −

N−1∑
j=0

�εRj

⎞
⎠

× e
∑N−1

j=0 (�εLjAL+�εRjAR) P�t (−�εL0, − �εR0,E0 − E1,AL,AR,AP ([E0 + E1]/2); −B) · · ·
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×P�t (−�εLN−1, − �εRN−1,EN−1 − EN,AL,AR,AP ([EN−1 + EN ]/2); −B) pP (EN )

= Pτ ({−εr},{Ar}; −B)eεLAL+εRAR , r = L,R. (27)

Upon Fourier-transforming this expression, one finds that the
characteristic function obeys the fluctuation theorem,

Zτ ({λr},{Ar}; B) = Zτ ({−λr + iAr},{Ar}; −B), (28)

similarly to Eq. (10). Thus we have demonstrated that the
stochastic path-integral treatment of the temperature probe is
consistent with the FT. This proof, which is similar to the one
given [52] for the work fluctuation theorem of an LC circuit
coupled to a quantum conductor [53], is one of the main results
of our paper.

D. The steady state

To perform the functional integral of Eq. (23), we adopt the
saddle-point approximation [19], for which δS/δ(iλP (t)) =
δS/δE(t) = 0, and consequently

Ė = ∂FG

∂(iλP )
, iλ̇P = −∂FG

∂E
. (29)

These equations are analogous to Hamilton’s equations of
motion if iλP is regarded as the “momentum,” E as the
“coordinate,” and FG as the “Hamiltonian” (see Sec. IV
in Ref. [49]). When λL = λR = 0, a steady-state solution
satisfying λ̇P = Ė = 0 corresponds to a saddle-point of the
“Hamiltonian” residing on the E axis satisfying iλP = 0.
However, for λL,λR �= 0, which we are considering in the
present paper, it is not the case. It is convenient to use AP

instead of E by using Eq. (16). Then Eqs. (29) can be rewritten
as

T 2
P CP ȦP = ∂FG

∂(iλP )
, T 2

P CP iλ̇P = − ∂FG

∂AP

. (30)

Here TP ≡ (β − AP )−1 is the (finite) probe temperature and
CP = ∂E/∂TP is its heat capacitance. Therefore, when the
heat capacitance CP is finite, a steady state can be reached
and corresponding solutions λ∗

P and A∗
P (which are purely

imaginary and purely real, respectively) can be calculated from

∂

∂λ∗
P

FG(λL,λR,λ∗
P ,AL,AR,A∗

P ; B)

= ∂

∂A∗
P

FG(λL,λR,λ∗
P ,AL,AR,A∗

P ; B) = 0 . (31)

The scaled CGF of the two-terminal junction,

F({λr},{Ar}; B) = lim
τ→∞

lnZτ ({λr},{Ar}; B)

τ
, (32)

is then related to that of the three-terminal junction upon using
in the expression for the latter the saddle-point approximation
values

F({λr},{Ar}; B) = FG(λL,λR,λ∗
P ,AL,AR,A∗

P ; B). (33)

Equation (33) is a large-deviation function [54], which max-
imizes the probability of finding zero net current through the
probe electrode by properly choosing AP . The characteristic
function is then approximately given by Zτ ≈ exp(τF).

As a consequence of energy conservation, the two-terminal
scaled CGF (33) is a function of only the difference between
the left and the right counting fields, λ = λL − λR . To see this,
we return to the three-terminal scaled CGF Eq. (12) and note
that, again as a result of energy conservation, it is invariant
under a common shift of the three counting fields,

λr → λr + δλ. (34)

This means that it can be expressed as a function of two
counting fields. In addition, λP is a “floating” variable
determined by the saddle-point condition Eq. (31), which
means that a shift of λP alone,

λP → λP + δλP , (35)

cannot change the scaled CGF belonging to the effective two-
terminal junction.

Taking advantage of the invariance under the shifts Eqs. (34)
and (35), and rewriting the three-terminal CGF as a function
of two independent counting fields λ and λP and the corre-
sponding two affinities A and AP , we obtain

FG(λ,λP ,A,AP ; B,x)

≡ FG[(1 + x)λ,xλ,λP ,(1 + x)A,xA,AP ; B]. (36)

Here we have introduced the parameter x, which measures the
asymmetry in the inverse-temperature drop between the left
and right electrodes,

AL = (1 + x)A, AR = x A. (37)

(This parameter is dictated by the details of the experimental
setup.) Note that the form Eq. (36) for the CGF of the three-
terminal setup satisfies the FT,

FG(λ,λP ,A,AP ; B,x)

= FG(−λ + iA, − λP + iAP ,A,AP ; −B,x). (38)

The second advantage of Eq. (36) is that it can be used to
simplify the saddle-point condition. By shifting the counting
fields, λr → λr − λR + xλ, Eq. (31) becomes

∂

∂λ∗
P

FG(λ,λ∗
P − λR + xλ,A,A∗

P ; B,x)

= ∂

∂A∗
P

FG(λ,λ∗
P − λR + xλ,A,A∗

P ; B,x) = 0, (39)

and consequently, upon choosing λ∗
P → λ∗

P − λR + xλ, we
obtain

∂

∂λ∗
P

FG(λ,λ∗
P ,A,A∗

P ; B,x)

= ∂

∂A∗
P

FG(λ,λ∗
P ,A,A∗

P ; B,x) = 0. (40)

The corresponding CGF of the effective two-terminal junction
is then

F(λ,A; B,x) = FG(λ,λ∗
P ,A,A∗

P ; B,x), (41)
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which depends on a single counting field λ. The two-terminal
FT Eq. (28) can now be expressed as

F(λ,A; B,x) = F(−λ + iA,A; −B,x). (42)

Equations (40) and (41) are the starting point of the following
calculations.

III. TRANSPORT COEFFICIENTS AND VERTEX
CORRECTIONS

A. Transport coefficients

Once the CGF Eq. (41) is found, the various cumulants are
obtained upon differentiating it with respect to the counting
field and the affinity,

〈〈
δI

j

E

〉〉 = ∂jF(λ,A; B,x)

∂(iλ)j

∣∣∣∣
λ=0

=
∞∑

k=0

L
j

k

Ak

k!
, (43)

where the transport coefficients of the reduced two-terminal
junction are given by

L
j

k ≡ dj+kF
d(iλ)j dAk

∣∣∣∣
λ=A=0

. (44)

For example, L1
1 corresponds to the linear-response thermal

conductivity, while L2
0 is its noise in equilibrium.

In the presence of a magnetic field, it is convenient to
introduce symmetrized/antisymmetrized forms of the transport
coefficients,

L
j

k,± = L
j

k (B) ± L
j

k (−B). (45)

By combining the two-terminal FT (42) with the definition (44)
one obtains certain universal relations among the nonlinear
transport coefficients Li

j , which are valid out of equilib-
rium [30]. Relevant relations are summarized in Appendix B.

In Sec. III B we express the two-terminal transport coeffi-
cients using those of the three-terminal junction. The latter are
derivatives of the CGF Eq. (36),

L
j


km(B) ≡ ∂j+k+
+mFG

∂(iλ)j ∂Ak∂(iλP )
∂Am
P

∣∣∣∣
λ=λP =A=AP =0

. (46)

By combining the three-terminal FT (38) with the defini-
tion (46), one obtains certain universal relations among the
nonlinear transport coefficients Lik

j
, which are also summa-
rized in Appendix B.

There is a subtle point related to the choice of the
“coordinates,” i.e., the counting fields and the affinities (see
Appendix C). As discussed above, the three-terminal transport
coefficients are invariant under shifts of the counting fields
Eqs. (34) and (35). This redundancy results in different
but equivalent expressions for the two-terminal transport
coefficients. The situation is similar to what happens in
the presence of gauge fields, where different choices of the
gauge result in apparently different expressions, which are, in
fact, identical. Previous research has exploited the minimal-
correlation coordinate [20] (see Appendix C), which simplifies
drastically the calculations at the price of expressions which do
not explicitly obey the FT and consequently miss symmetries
among the transport coefficients.

B. Vertex corrections

While the procedure outlined above for determining the
transport coefficients of the effective two-terminal junction
is seemingly straightforward, it is not free of certain pitfalls.
As can be seen from the left-hand side of Eq. (41), small
variations of the counting field and affinity of the two-terminal
junction, λ and A, lead to small shifts in the saddle-point
values of the counting field and affinity of the probe, λ∗

P

and A∗
P . These shifts, in turn, give rise to corrections in the

transport coefficients of the two-terminal junction, i.e., vertex
corrections [see Eq. (57) below]. Here we outline the derivation
of the first few cumulants, taking into account these vertex
corrections. Technically, the procedure we follow is identical
to the one performed in the self-consistent �-derivable
approximation [55,56] and the saddle-point approximation in
the Schwinger-Keldysh path-integral approach [39].

In order to keep the equations compact, we introduce the
shorthand notations ac = A, aq = iλ, and vc = AP , vq = iλP .
In terms of these, the saddle-point equations (40) become

∂FG/∂vα = 0, (47)

where α = c,q. The complete derivative of Eq. (47) with
respect to aγ (γ = c,q) is

d

daγ

∂FG

∂vα

= ∂2FG

∂vα∂aγ

+
∑

α′=c,q

∂2FG

∂vα∂vα′

dvα′

daγ

= 0. (48)

It therefore follows that

dvα

daγ

=
∑

α′=c,q

Uαα′
∂2FG

∂aγ ∂vα′
, (49)

where the matrix U obeys

∑
α′=c,q

Uαα′
∂2FG

∂vα′∂vα′′
= −δαα′′ , Uαα′′ = Uα′′α. (50)

Furthermore, the partial derivatives of U are given by

∂Uαα′

∂aα′′
=

∑
γ,γ ′=c,q

Uαγ

∂3FG

∂aα′′ ∂vγ ∂vγ ′
Uγ ′α′ ,

(51)
∂Uαα′

∂vα′′
=

∑
γ,γ ′=c,q

Uαγ

∂3FG

∂vα′′ ∂vγ ∂vγ ′
Uγ ′α′ ,

which can be verified by differentiating the first of Eqs. (50).
We can now obtain the first derivative of the CGF of the

two-terminal junction in terms of derivatives of the CGF of the
three-terminal one,

dF
daγ

= ∂FG

∂aγ

+
∑

α=c,q

∂vα

∂aγ

∂FG

∂vα

= ∂FG

∂aγ

, (52)

where we have used Eq. (47). To obtain the second derivative,
we completely differentiate Eq. (52),

d2F
daγ ′ daγ

= ∂2FG

∂aγ ′ ∂aγ

+
∑

α=c,q

dvα

daγ ′

∂2FG

∂aγ ∂vα

= ∂2FG

∂aγ ′ ∂aγ

+
∑

α,α′=c,q

∂2FG

∂aγ ′ ∂vα

Uαα′
∂2FG

∂aγ ∂vα′
, (53)
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(b-1) = −

(b-2) = −

(a)

l

k

j

i

+ −2

FIG. 2. (a) A bare vertex (empty circle) Lik
j
; (b1) and (b2)

corrected vertices (solid triangles).

where we have used Eq. (49). Note that the final form is
symmetric in aγ and aγ ′ . The third derivative can be obtained
by further differentiating Eq. (53). The lengthy expression of
the third derivative is relegated to Appendix D.

The derivatives of the CGF of the two-terminal junction
given in Eqs. (52), (53), and (D1) indicate the explicit form
of the vertex corrections: the full derivative is obtained upon
inserting

d

daγ

→ ∂

∂aγ

+
∑

α′=c,q

∂2FG

∂vα′∂aγ

Uα′α
∂

∂vα

(54)

into each bare vertex. Let us now explore these vertex
corrections in detail. Note that in deriving the transport
coefficients one has to set λ = A = 0 after performing the
differentiations [see Eq. (44)]. Under these circumstances the
saddle-point solution is λ∗

P = A∗
P = 0, and consequently the

matrix U , Eq. (50), becomes

U → −
⎡
⎣ ∂2FG

∂AP ∂AP

∂2FG

∂AP ∂(iλP )

∂2FG

∂(iλP )∂AP

∂2FG

∂(iλP )∂(iλP )

⎤
⎦

−1
∣∣∣∣∣∣∣
λ=λP =A=AP =0

= 1

L0 1
0 1,+

[
2 −1

−1 0

]
. (55)

The last equality here is obtained upon using Eqs. (B10)
and (B11). Similarly, the matrix ∂2FG/∂vk∂ai is⎡
⎣ ∂2FG

∂AP ∂A
∂2FG

∂AP ∂(iλ)

∂2FG

∂(iλP )∂A
∂2FG

∂(iλP )∂(iλ)

⎤
⎦
∣∣∣∣∣∣
λ=λP =A=AP =0

=
[

0 L10
01

L01
10 L11

00

]
. (56)

Collecting these results, Eq. (54) can be written explicitly as
(for λ = λP = A = AP = 0)

d

dA → ∂

∂A − L01
10

L01
01,+

∂

∂AP

,

(57)
d

d(iλ)
→ ∂

∂(iλ)
+ 2L10

01 − L11
00

L01
01,+

∂

∂AP

− L10
01

L01
01,+

∂

∂(iλP )
.

(a-2) =

=(a-1)

−

+

−

2

2

FIG. 3. Diagrams for the linear-response conductance (a1) and
the equilibrium noise (a2). Only the “bare” diagrams, indicated by
dotted squares, are included in the minimal-correlation coordinate
approach explained in Appendix C.

Following Ref. [57] the vertex corrections can be visualized
diagrammatically. Figure 2(a) depicts a “bare” vertex, connect-
ing i outgoing solid lines, k outgoing dotted lines, j incoming
solid lines, and 
 incoming dotted lines which correspond to
Lik

j
. The dressed vortices presented in Eqs. (57) are shown in
Figs. 2(b1) and 2(b2), respectively.

C. Linear and lowest nonlinear transport coefficients

Here we exploit the general formulas derived in Sec. III B
to present expressions for the transport coefficients of the
heat current in the linear-response regime, and the lowest
nonlinear ones. Figures 3(a1) and 3(a2) portray the diagrams
for the linear-response conductance and the equilibrium noise,
respectively, leading to the expressions [see Eq. (44)]

L2
0/2 = L1

1 = L1 0
1 0,+ −

(
L1 0

0 1,+
)2 − (

L0 1
1 0,−

)2

L0 1
0 1,+

,

L1 0
1 0,− = 0, (58)

which satisfy the fluctuation-dissipation theorem and the
Onsager relations [see Eqs. (B6) and (B7) and the discussion
around them]. Furthermore, by Eqs. (C3) and (C6), Eqs. (58)
reproduce the well-known result (see, e.g., Ref. [46] for the
electric-transport analog),

L1
1 = KLL − KLP KPL

KPP

, (59)

where Kab are the elements of the three-terminal heat-
conductance matrix defined in Eq. (C2).

There are six vertex-correction diagrams comprising the
lowest nonlinear conductance; these are shown in Fig. 4,
leading to the expression

L1
2 = L1 0

2 0 − L1 0
0 1L

0 1
2 0 + 2L0 1

1 0L
1 0
1 1

L0 1
0 1

+
(
L0 1

1 0

)2
L1 0

0 2 + 2L0 1
1 0L

1 0
0 1L

0 1
1 1(

L0 1
0 1

)2 −
(
L0 1

1 0

)2
L1 0

0 1L
0 1
0 2(

L0 1
0 1

)3 . (60)

One notes the appearance of the second nonlinear thermal
conductances of the three-terminal junction, L1 0

1 1L
1 0
0 2, L0 1

2 0,
L0 1

1 1, and L0 1
0 2, which enter this expression because of the

changes in the temperature of the probe electrode. However,
as can be seen from Eq. (12), the simultaneous derivatives of
the CGF with respect to A and AP vanish,

L1 0
1 1 = L0 1

1 1 = 0, (61)
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= −

+

−

−+ 2

2

FIG. 4. The six diagrams comprising the second nonlinear con-
ductance. The three diagrams enclosed in the dotted squares are
the bare one and its cascade corrections, which are accounted for
in the minimal-correlation coordinate approach (Appendix C). The
second and fifth diagrams on the right-hand side contain L10

11 and L01
11,

respectively, and thus vanish.

and therefore Eq. (60) is simplified,

L1
2 = L1 0

2 0 − L1 0
0 1L

0 1
2 0

L0 1
0 1

+
(
L0 1

1 0

)2
L1 0

0 2(
L0 1

0 1

)2 −
(
L0 1

1 0

)2
L1 0

0 1L
0 1
0 2(

L0 1
0 1

)3 .

(62)

The expression for the linear-response noise results from
the diagrams depicted in Fig. 5 and turns out to be rather
complicated even after utilizing Eq. (61). However, by using
the universal relations among the bare transport coefficients of
the three-terminal junction, Eqs. (B12), it is possible to show
that the components symmetric with respect to a magnetic field
and the antisymmetric ones obey

L1
2,+ = L2

1,+,
(63)

L1
2,− = L2

1,−/3.

= −

+

2−

−

+ 2

− 2 +

−+ 2 +

+ −

4

4

24

− 2

FIG. 5. The 14 diagrams contributing to the expression for the
linear-response noise. The four diagrams enclosed in the dotted
squares are accounted for in the minimal-correlation coordinate
approach (Appendix C). The third and fifth diagrams on the right-hand
side contain L10

11 and the 10th and the 11th ones contain L01
11. These

diagrams therefore vanish.

[See Eqs. (E1) and (E2) for the explicit expressions.] These
relations between the noise in the linear-response regime and
the second nonlinear conductance agree with the universal
relations derived in Ref. [30] [see Eqs. (B8)].

The number of the diagrams is reduced considerably when
one adopts the approach of the minimal-correlation coordi-
nate [20]; see Appendix C and in particular Eq. (C7). Then,
only three (four) diagrams remain for the second nonlinear
conductance (the linear-response noise) as indicated by dotted
squares in Fig. 4 (Fig. 5). This is obviously advantageous for
practical use, e.g., for a numerical calculation. However, since
the bare three-terminal transport coefficients do not satisfy the
universal relations presented in Appendix B, it is not possible
to prove the symmetry of Eq. (63) analytically [it is possible
for our case as given in Eqs. (E1) and (E2)], which is, in our
opinion, a weak point.

D. Three-terminal triple quantum dot

The general results presented in the previous sections are
explicitly illustrated in this section by analyzing a triple
quantum dot connected to three terminals and threaded by a
magnetic flux � = Bs, as shown schematically in Fig. 6(a)
(s is the relevant area). The system is described by the
Hamiltonian

H =
3∑

j=1

ε0d
†
j dj +

3∑
j=1

∑
k

εka
†
jkajk

+
3∑

j=1

(
teiφ/3d

†
j+1dj +

∑
k

tjkd
†
j ajk + H.c

)
, (64)

where for simplicity the spin degree of freedom is ignored.
The first term in Eq. (64) pertains to the three uncoupled
dots (with each dot represented by a single energy level);
the second describes the three electrodes (assuming each
to consist of a free electron gas. To make the expression
compact we identify the left, right, and probe electrodes
with the first, second, and third electrodes, respectively, and
the third gives the tunneling between neighboring dots and
between each dot and the electrode to which it is attached.
In Eq. (64), dj annihilates an electron on the j th dot (with
d4 ≡ d1), ajk destroys an electron with wave vector k in the
j th electrode, t is the hopping matrix element between adjacent
dots, and tjk is the tunneling matrix element between the
j th dot and j th electrode. The effect of a magnetic field is
contained in the Aharonov-Bohm phase φ = �/�0, where
�0 = �c/e is the flux quantum; hence φ reverses its sign
when B → −B.

The scattering matrix of the triple-quantum-dot system
comprises the following elements:

Sj+1 j (ω; B) = {4e−iφ/3t�[� − 2i(ω − ε0 + teiφ)]}/�(φ),

Sj j+1(ω; B) = Sj+1 j (ω; −B),
(65)

Sjj (ω; B) = {[2(ω − ε0) − i�][2(ω − ε0) + i�]2

− 4 t2[6(ω − ε0) + i�] − 16 t3 cos φ}/�(φ),
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FIG. 6. (a) Schematic picture of three-terminal triple quantum
dot. The flux threads the triangular region. (b) The second nonlinear
thermal conductance (solid line) and the linear-response thermal noise
(dotted line) as functions of the flux. L1

2(0) = 1.39 × 10−4�3/(e2RK ),
where RK = h/e2 is the resistance quantum. (c) and (d) show the
symmetric (solid lines) and antisymmetric (dashed lines) components
in the flux. Solid and dashed lines in each panel overlap each other.
Parameters: t = 0.1�, ε0 = −0.5�, β� = 10, and x = 0.25.

where

�(φ) = [2(ω − ε0) + i�]3 − 12 t2[2(ω − ε0) + i�]

− 16 t3 cos φ. (66)

We have assumed here that the tunnel coupling strength is
energy independent and introduced the level broadening

� = 2π
∑

k

|tjk|2δ(ω − εk). (67)

Figure 6(b) shows the flux dependence of the second
nonlinear thermal conductance L1

2 (solid line) and the linear-
response expression for the heat-current noise L2

1 (dotted line).

As can be seen, the curves are not symmetric with respect to
the flux φ. Such an antisymmetric component induced by the
magnetic field at out-of-equilibrium conditions is absent for
the two-terminal conductor of noninteracting electrons, but is
finite for the setup with a probe (for the magnetic-field-induced
electric heat-current asymmetry, see e.g. Ref. [44]). From
Fig. 6(b), we may conclude that L1

2 (solid line) and L2
1

(dotted line) are uncorrelated. However, when we look at the
symmetrized and the antisymmetrized components [defined in
Eq. (45)] the correlation becomes clearer. Figure 6(c) shows
the symmetrized components L1

2,+ (solid line) and L2
1,+ (dotted

line). Figure 6(d) shows the antisymmetrized components
(with 1/3 for the linear response of noise) L1

2,− (solid line)
and L2

1,−/3 (dotted line). The two panels show that the solid
lines and the dotted lines overlap, which means that the FT
Eq. (63) is satisfied.

A recent study of the Langevin equation with non-Gaussian
white noise suggests that non-Gaussian corrections around the
saddle point play a crucial role in certain cases [48]. We have
therefore checked numerically that the saddle-point solution
provides a physically reasonable probability distribution in the
case of the triple dot. In the limit of long measurement times τ ,
the inverse Fourier transform of the characteristic function can
be written approximately as a Legendre-Fenchel transform of
the scaled CGF (32),

Pτ ({εr},{Ar}; B) = 1

2π

∫
dλe−iλεL+τF(λ,A;B,x)δ(εL + εR)

≈ e−τI δ(εL + εR), (68)

where εL and εR are electron energies flowing out of the left
(first) electrode and the right(second) electrode, respectively.
The cumulant-generating function F was given in Eq. (33)
with the S matrix for the three-terminal triple quantum dot. I
is the rate function [54]

I = max
λ

[iλIE − F(λ,A,; B,x)] , (69)

with λ being a purely imaginary number. This result verifies
that the heat current flowing out of the left junction and
that flowing into the right junction are identical, IE =
limτ→∞ εL/τ = limτ→∞ −εR/τ .

Figure 7(a) depicts the rate function, calculated by numer-
ically solving the saddle-point equations (40). This procedure
yields a single solution and it results in a reasonable rate
function as shown in Fig. 7(a). Furthermore, by using Eqs. (1)
and (68), the FT in the limit of long measurement times
can be expressed as I(−IE) − I(IE) = IEA. This equality
is plotted in Fig. 7(b), which further supports the validity of
our numerical solution.

IV. SUMMARY

We have investigated the fluctuation theorem of the heat
transfer driven by a temperature difference across a three-
terminal conductor for which one of the electrodes serves as a
probe electrode used to measure the conductor temperature.
The stochastic energy fluctuations in the probe electrode
are integrated over to yield the cumulant-generating function
of the reduced two-terminal junction. We have proven that
this generating function satisfies the two-terminal fluctuation
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FIG. 7. (a) The rate function and (b) the fluctuation theorem for
φ = 0. Parameters: A� = 0.5, β� = 10.

theorem. We have obtained expressions for the second non-
linear conductance and the linear-response noise, and have
shown explicitly that they obey the symmetries imposed
by the FT. Furthermore, we have shown that in order for
this symmetries to hold, it is imperative to account for all

vertex corrections entering the expressions for the transport
coefficients. We stress that our expressions for the transport
coefficients explicitly preserve the symmetry of the fluctuation
theorem [Eqs. (E1) and (E2)], which is not the case for
those drawn from the approach of the minimal-correlation
coordinate [20]. We have applied our theory to a three-terminal
triple-quantum-dot system.

We have included in our analysis solely the thermodynamic
driving forces resulting from temperature differences. A
full treatment of thermoelectricity requires the inclusion of
chemical-potential gradients, as well as voltage probes; these
will be handled in future presentations.
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APPENDIX A: PROOF OF THE FT FOR THE CGF IN
TERMS OF THE SCATTERING MATRIX

In order to keep the paper self-contained, we outline in
this appendix the proof that the CGF as given in terms of
the scattering matrix S [see Eq. (12)] obeys the symmetries
derived from the FT, i.e., Eq. (11). To this end we adopt the
representation of the scattering matrix introduced in Refs. [17]
and [29] (see Appendix A in the latter). For convenience of
notation, we denote here the left (r = L), the right (r = R),
and the probe (r = P ) electrodes by 1, 2, and 3, respectively.

The first step is to decompose the determinant in the
integrand of Eq. (12) into terms describing multiparticle
scattering events by using the Cauchy-Binet formula,

det[1 − f(ω)K(λ,ω; B)] =
∑

I

∑
O

∣∣S(ω; B)OI
∣∣2

( ∏
r∈I,r ′ �∈I

fr (1 − fr ′ )

)
exp

(
−i

∑
s∈I

λsω + i
∑
s ′∈O

λs ′ω

)

=
∑

I

∑
O

∣∣S(ω; B)OI
∣∣2

(∏
r

(1 − fr )

)
exp

(
−i

∑
s∈I

(λs − iβs)ω + i
∑
s ′∈O

λs ′ω

)
. (A1)

Here I is a set of terminals from which particles are emerging, and O is the one in which they are being absorbed. For a
three-terminal junction, I,O = {1,2,3} or I,O = {1,2},{2,3},{1,3}, or I,O = {1},{2},{3}. The square matrix SO

I is one of the
submatrices of the scattering matrix S with rows O and columns I , and |SO

I | is its determinant, i.e., it is the minor. For example,
I = {2,3} and O = {1,2} means that particles are emerging from terminals R and P and are then absorbed in terminals L and
R. The submatrix is then

S{1,2}
{2,3} =

[
SLR SLP

SRR SRP

]
. (A2)

Next, the transformation λr → −λr + iAr is applied to Eq. (A1) to yield

det[1 − f(ω)K(λ,ω; B)] →
∑

I

∑
O

∣∣S(ω; B)OI
∣∣2

(∏
r

(1 − fr )

)
exp

(
i
∑
s∈I

λsω − i
∑
s ′∈O

(λs ′ − iβs ′ )ω

)

=
∑

I

∑
O

∣∣S(ω; −B)OI
∣∣2

(∏
r

(1 − fr )

)
exp

(
−i

∑
s ′∈O

(λs ′ − iβs ′ )ω + i
∑
s∈I

λsω

)

= det[1 − f(ω)K(λ,ω; −B)], (A3)
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where we have used the microreversibility condition Eq. (3).
Equation (A3) proves that the CGF in its representation (12)
(valid for noninteracting electrons) obeys the FT.

APPENDIX B: RELATIONS AMONG THE
TRANSPORT COEFFICIENTS

The fluctuation theorem imposes certain relations among
the transport coefficients [30]. Here we summarize several of
them. In order to derive those one considers the symmetrized
and antisymmetrized forms of the FT as applied to the two-
terminal CGF,

F(λ,A; B,x) ± F(λ,A; −B,x)

= F(−λ + iA,A; −B,x) ± F(−λ + iA,A; B,x), (B1)

and the symmetrized and antisymmetrized coefficients

Ln
m,±(B) = Ln

m(B) ± Ln
m(−B), (B2)

where Ln
m is defined in Eq. (44). By expanding both sides of

Eq. (B1) in powers of the counting field λ and the affinity A
and comparing the resulting coefficients, it is found that

Ln
m± = ±

m∑
k=0

(
m

k

)
(−1)k+nLn+k

m−k ±. (B3)

The normalization of the CGF implies that F(0,A; B) = 0,
and consequently

L0
n = 0. (B4)

The lowest nontrivial coefficient, for which m = n = 1, is
[see Eq. (B3)]

L1
1± = ±(−L1

1 ± + L2
0 ±

)
. (B5)

This relation yields that the linear-response coefficients obey
the fluctuation-dissipation theorem relating the linear-response
thermal conductance to its noise,

L1
1+ =L2

0+/2, (B6)

and the Onsager relation imposing that the linear-response
thermal conductance and also its noise are even in the magnetic
field,

L1
1− =L2

0− = 0. (B7)

Similarly, Eqs. (B3) and (B4) produce interrelations among
the coefficients which hold beyond linear response, e.g.,

L1
2+ = L2

1+,

L1
2− = L2

1−/3 = L3
0−/6, (B8)

L3
0+ = 0.

For completeness, we present below similar relations
for a three-terminal junction. By using Eq. (38), these are
determined by an expression analogous to Eq. (B3),

L
n1 n2
m1 m2± = ±

m1∑
k1=0

m2∑
k2=0

(
m1

k1

)(
m2

k2

)

× (−1)k1+n1+k2+n2L
n1+k1 n2+k2
m1−k1 m2−k2±. (B9)

From this expression, in conjunction with the normalization
condition L0 0

m1 m2± = 0, one can obtain several classes of
interrelations. First, there are those of the linear-response
regime, which obey the fluctuation-dissipation theorem

L1 0
1 0,+ = L2 0

0 0,+/2,
(B10)

L0 1
0 1,+ = L0 2

0 0,+/2.

Second, there are the Onsager-Casimir relations,

L1 0
0 1,+ = L0 1

1 0,+ = L1 1
0 0,+/2,

L1 1
0 0,− = 0,

(B11)
L1 0

0 1,− = −L0 1
1 0,−,

L1 0
1 0,− = L2 0

0 0,− = L0 1
0 1,− = L0 2

0 0,− = 0.

These symmetries are identical to those obtained for electrical
transport [46]. Third, there are relations for the higher transport
coefficients, beyond the linear-response regime,

L3 0
0 0,+ = 0,

L1 0
2 0,+ = L2 0

1 0,+,

L1 0
2 0,− = L2 0

1 0,−/3 = L3 0
0 0,−/6,

L0 3
0 0,+ = 0,

L0 1
0 2,+ = L0 2

0 1,+,

L0 1
0 2,− = L0 2

0 1,−/3 = L0 3
0 0,−/6,

(B12)
L2 1

0 0,+ = 0,

L0 1
2 0,+ = L1 1

1 0,+ = 2 L1 0
1 1,+ − L2 0

0 1,+,

L2 0
0 1,− = L1 1

1 0,− = L2 1
0 0,−/2 = L0 1

2 0,− + 2 L1 0
1 1,−,

L1 2
0 0,+ = 0,

L1 0
0 2,+ = L1 1

0 1,+ = 2 L0 1
1 1,+ − L0 2

1 0,+,

L0 2
1 0,− = L1 1

0 1,− = L1 2
0 0,−/2 = L1 0

0 2,− + 2 L0 1
1 1,−.

APPENDIX C: THE MINIMAL-CORRELATION
COORDINATE

Here we provide more explanations concerning the hidden
redundancy in the expressions for the transport coefficients.
A ubiquitous procedure to characterize the linear-response
conductances of a three-terminal junction is to introduce a
3 × 3 conductance matrix Krr ′ , in terms of which the energy
currents are

IEr =
∑
r ′

Krr ′Ar ′ . (C1)

The heat conductance matrix thus includes nine elements,
but these are not independent. For example, when that
matrix is derived from Eq. (12) upon using the identity
(d/dx) ln detM = Tr{M−1dM/dx} (where M is an arbitrary

205314-11



UTSUMI, ENTIN-WOHLMAN, AHARONY, KUBO, AND TOKURA PHYSICAL REVIEW B 89, 205314 (2014)

matrix), one finds

Krr ′ = ∂2FG({λr},{Ar}; B)

∂Ar ′∂(iλr )

∣∣∣∣
λr=Ar=0

= 1

4π

∫
dω ω2 δrr ′ − |Srr ′ (ω; B)|2

1 + cosh(βω)
. (C2)

From the unitarity of the scattering matrix S it follows that

∑
r

Krr ′ =
∑
r ′

Krr ′ = 0, (C3)

and therefore the nine components of K are not independent.
The transport coefficients as introduced in Eq. (46) are free of
redundancies and provide compact expressions.

There are many ways to remove the above-mentioned
redundancies. For example, in deriving Eq. (36) we have
assigned the same asymmetry parameter (denoted x) to the
counting fields and to the affinities. We could choose a different
asymmetry parameter for the counting fields and for the
affinities, and rewrite Eq. (36) in a general form

FG(λ,λP ,A,AP ; B,x,y)

≡ FG([1 + y]λ,yλ,λP ,[1 + x]A,xA,AP ; B). (C4)

Similarly to Eq. (46), the transport coefficients in the present
scheme are given by

L
j


km(B,x,y)

≡ ∂j+k+
+mFG(λ,λP ,A,AP ; B,x,y)

∂λj∂Ak∂λ

P ∂Am

P

∣∣∣∣
λ=λP =A=AP =0

.

(C5)

These transport coefficients are related to the heat conductance
matrix Eq. (C2) via

L10
10(B,x,y) =KLL + (KLL + KRL) y + (KLL + KLR) x

+ (KLL + KLR + KRL + KRR) xy,

L10
01(B,x,y) =KLP + (KLP + KRP ) y, (C6)

L01
10(B,x,y) =KPL + (KPL + KPR) x,

L01
01(B,x,y) =KPP .

In the minimal-correlation coordinate approach, one chooses
y as [20]

y = − KLP

KLP + KRP

. (C7)

Then, from the second of Eqs. (C6),

L10
01[B; −KLP /(KLP + KRP )] = 0. (C8)

This choice removes many of the vertex corrections discussed
in Sec. III B (see Figs. 3, 4, and 5 there). In particular, for the
linear transport case, vertex corrections vanish (Fig. 3).

APPENDIX D: THE THIRD CUMULANT OF THE TWO-TERMINAL JUNCTION

The third derivative of F , the CGF of the effective two-terminal junction, is obtained by taking the complete derivative of
Eq. (53) and exploiting Eq. (49). We find (γ,γ ′,γ ′′ = c,q)

d3F
daγ ′′ daγ ′ daγ

= ∂3FG

∂aγ ′′ ∂aγ ′ ∂aγ

+
∑

α,α′=c,q

∂3FG

∂aγ ′′ ∂aγ ′ ∂vα

Uαα′
∂2FG

∂aγ ∂vα′
+ ∂2FG

∂aγ ′ ∂vα

∂Uαα′

∂aγ ′′

∂2FG

∂aγ ∂vα′
+ ∂2FG

∂aγ ′ ∂vα

Uαα′
∂3FG

∂aγ ′′ ∂aγ ∂vα′

+
∑

β,β ′=c,q

∂2FG

∂aγ ′′∂vβ ′
Uβ ′β

{
∂3FG

∂aγ ′ ∂aγ ∂vβ

+
∑

α,α′=c,q

[
∂3FG

∂aγ ′ ∂vβ ∂vα

Uαα′
∂2FG

∂aγ ∂vα′
+ ∂2FG

∂aγ ′ ∂vα

∂Uαα′

∂vβ

∂2FG

∂aγ ∂vα′
+ ∂2FG

∂aγ ′ ∂vα

Uαα′
∂3FG

∂aγ ∂vβ ∂vα′

]⎫⎬
⎭

= ∂3FG

∂aγ ′′∂aγ ′∂aγ

+
∑

{i,j,k}

∑
α,α′=c,q

∂2FG

∂ai∂vα′
Uα′α

∂3FG

∂aj∂ak∂vα

+
∑

{i,j,k}

∑
α1,α2,α

′
1,α

′
2=c,q

∂2FG

∂ai∂v
α′

1

Uα′
1α1

∂2FG

∂aj∂v
α′

2

Uα′
2α2

∂2FG

∂ak∂vα1
∂vα2

+
∑

α1,α2,α3,α
′
1,α

′
2,α

′
3=c,q

∂2FG

∂aγ ∂v
α′

1

Uα′
1α1

∂2FG

∂aγ ′∂v
α′

2

Uα′
2α2

∂2FG

∂aγ ′′∂v
α′

3

Uα′
3α3

∂3FG

∂vα1
∂vα2

∂vα3

, (D1)

where we have used Eqs. (51). Here
∑

{i,j,k} means summation over the three cyclic combinations of {γ,γ ′,γ ′′}.
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APPENDIX E: THE SYMMETRIC AND ANTISYMMETRIC COMPONENTS OF THE NOISE
WITH RESPECT TO A MAGNETIC FIELD

As is explained in the main text, the full expression for the linear-response noise (see Fig. 5) turns out to be rather cumbersome.
However, it is possible to obtained certain relations among its symmetric and antisymmetric components, with respect to the
magnetic field.

The symmetric component is

L1
2,+ =L2

1,+ = L2 0
1 0,+ + 2

L1 0
0 1,+

(
L2 0

0 1,+ − 4L1 0
1 1,+

) − L1 0
0 1,−

(
L0 1

2 0,− − 2L1 0
1 1,−

)
L0 2

0 0,+

+ 4

(
L1 0

0 1,+
)2(

L0 2
1 0,+ + 2L1 1

0 1,+
) − (

L1 0
0 1,−

)2
L0 2

1 0,+ − 2L1 0
0 1,+L1 0

0 1,−L1 0
0 2,−(

L0 2
0 0,+

)2

− 8

[(
L1 0

0 1,−
)2 − (

L1 0
0 1,+

)2](
L1 0

0 1,−L0 1
0 2,− − L1 0

0 1,+L0 2
0 1,+

)
(
L0 2

0 0,+
)3 , (E1)

and the asymmetric component is

L1
2,− =L2

1,−/3 = L1 0
2 0,− + 2

L1 0
0 1,−L2 0

0 1,+ − L1 0
0 1,+

(
L0 1

2 0,− + 2L1 0
1 1,−

)
L0 2

0 0,+

+ 4
2
[(

L1 0
0 1,+

)2 − (
L1 0

0 1,−
)2]

L0 1
1 1,− + [(

L1 0
0 1,+

)2 + (
L1 0

0 1,−
)2]

L1 0
0 2,− − 2L1 0

0 1,−L1 0
0 1,+L1 1

0 1,+(
L0 2

0 0,+
)2

− 8

[(
L1 0

0 1,−
)2 − (

L1 0
0 1,+

)2](
L1 0

0 1,−L0 2
0 1,+ − L1 0

0 1,+L0 1
0 2,−

)
(
L0 2

0 0,+
)3 . (E2)
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[12] R. López and D. Sánchez, Phys. Rev. B 88, 045129 (2013).
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[24] M. A. Laakso, T. T. Heikkilä, and Yu. V. Nazarov, Phys. Rev.
Lett. 104, 196805 (2010); ,Phys. Rev. B 82, 205316 (2010); ,85,
184521 (2012); ,Phys. Rev. Lett. 108, 067002 (2012).

[25] D. Golubev, T. Faivre, and J. P. Pekola, Phys. Rev. B 87, 094522
(2013).

[26] D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev.
Lett. 71, 2401 (1993); ,71, 3616 (1993); G. Gallavotti and
E. G. D. Cohen, ibid. 74, 2694 (1995); G. Gallavotti, ibid. 77,
4334 (1996).

[27] J. Tobiska and Yu. V. Nazarov, Phys. Rev. B 72, 235328 (2005).
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