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Splitting valleys in Si/SiO2: Identification and control of interface states
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Interface states in a silicon/barrier junction break the silicon valley degeneracy near the interface, a desirable
feature for some Si quantum electronics applications. Within a minimal multivalley tight-binding model in one
dimension, we inspect here the spatial extent of these states into the Si and the barrier materials, as well as favorable
conditions for its spontaneous formation. Our approach—based on Green’s-function renormalization-decimation
techniques—is asymptotically exact for the infinite chain and shows the formation of these states regardless of
whether or not a confining electric field is applied. The renormalization language naturally leads to the central
role played by the chemical bond of the atoms immediately across the interface. In the adopted decimation
procedure, the convergence rate to a fixed point directly relates the valley splitting and the spread of the wave
function, consequently connecting the splitting to geometrical experimental parameters such as the capacitance
of a two-dimensional electron gas—explicitly calculated here. This should serve as a probe to identify such states
as a mechanism for enhanced valley splitting.
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I. INTRODUCTION

While most aspects of the Si/insulator interface are well
understood [1], the emergence of interface states still presents
puzzles for the semiconductor community. For classical
devices—whose operation involves a macroscopic number
of electrons—most of the drawbacks introduced by inter-
face states may be overcome by modern growth techniques
lowering their density in comparison to conduction states.
These techniques do not tackle the issue of devices operating
at the quantum regime of one or a few electrons, though.
Understanding these states, we might be able to circumvent
eventual associated problems and possibly make them instru-
mental. For instance, it was demonstrated that these states
may be used for nuclear spin readouts [2]. Moreover, it is
conjectured that these states strongly break the Si valley
degeneracy, an important desideratum in many silicon-based
quantum computer architectures [3,4].

The Si conduction-band edge is sixfold-degenerate, with
valley minima at wave vectors

{kμ}μ=±x,±y,±z = {(±k0,0,0); (0, ± k0,0); (0,0, ± k0)},
(1)

where k0 = 0.85(2π/aSi); aSi is the Si conventional lattice
parameter. Aiming at the development of Si-based quantum
devices, a deeper understanding and clearer identification
of the mechanisms lifting this degeneracy constitute a key
issue. While the potential of donor impurities, singular in
three dimensions, successfully splits these states, leading to
a nondegenerate orbital ground state, the picture is far more
challenging at an interface, where the barrier potential is
two-dimensional. The mechanism of intervalley scattering by
the barrier potential, which we assume to be in the [001]
direction, efficiently splits the two z valleys from the other four
valleys, but the coupling between them induced by the abrupt
interface giving the ground-state splitting (or valley splitting)
is not as large as is desirable. So far, theoretical estimates
[1,5–9] and most experiments [1,10] report relatively small
(less than 1 meV) splitting of the lowest valley state.

In contrast, several works [11–14] on Si/SiO2 indicate that
buried oxide silicon-on-insulator (BOX-SOI) interfaces may
efficiently couple the z-valley states, leading to ground-state
splitting orders of magnitude higher than those produced
by regular thermal interfaces. One possible explanation for
this effect [7] is related to the presence of interface states,
which form spontaneously at some semiconductor-barrier
interfaces and—in the context of Si-based classical and
quantum electronics—may improve or hinder a given device’s
performance according to its functionality and the interface
state properties.

In a recent study [7], intrinsic Si/SiO2 interface states and its
hybridization to the Si bulk states were investigated, and it was
shown that this hybridization follows a valley selection rule,
which significantly enhances the ground-state splitting. This
mechanism was numerically investigated in Ref. [7] within
minimal one- and two-dimensional multivalley tight-binding
models, both leading essentially to the same conclusions. It
was thus conjectured that this is the prevailing mechanism
leading to the giant valley splitting observed in BOX-SOI
heterostructure samples.

The one-dimensional tight-binding model for the Si/barrier
electronic structure is explored here from a different and
more insightful perspective. An analytic (Green’s function)
formalism is developed from which the full range of pa-
rameter space is readily accessible and investigated. The
microscopic physics of interface states emerges by approach-
ing this problem within a decimation technique based on
renormalization-group ideas [15], which we generalize to
account for second nearest neighbors, as required by our
minimal multivalley tight-binding model. Localized states
are intrinsically related to the junction of two semi-infinite
chains (modeling the Si and barrier material, respectively), and
undesirable effects [7] due to a finite-size supercell, periodic
boundary conditions, or applied electric field are eliminated.
Moreover, the renormalization procedure provides quantitative
estimates for the localization lengths of the intrinsic interface
states [16]. This information emerges from the decimation
rate of convergence and is useful to experimentally probe
and compare the participation of the interface states in the
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composition of the electronic states in different quantum
devices. We suggest capacitance measurements around the
junction region as a possible gauge to detect the presence
of intrinsic interface states, differentiating those from the
more usual interface states [17] bound to a triangular-shaped
well—formed by an electric field near a barrier interface.

II. FORMALISM

The sixfold degeneracy in Si, μ = ±x, ± y, ± z [see
Eq. (1)], is partially lifted in the presence of an interface,
which breaks the symmetry of the system along the direction
perpendicular to it, z here. Assuming a perfectly flat interface,
translational symmetry parallel to the xy plane is preserved,
while the potential profile along z raises the energy of the
μ = ±x, ± y valleys with respect to the μ = ±z, and lifts the
degeneracy of the resulting two-dimensional {k±z} subspace.
We therefore restrict our study to the z direction, where the
interface perturbation potential and interface localized state
envelope are evident. As argued below, we restrict the barrier
material to SiO2.

The one-dimensional model for the Si/SiO2 (001) het-
erostructure consists of two connected semi-infinite chains
(light and dark sites in Fig. 1) extending toward ±∞ away from
the junction. For the Si half-chain, we adopt a minimal one-
orbital-per-site tight-binding description of the conduction
band accounting for the z-valley physics [6].

Modeling the SiO2 layer realistically is not a trivial task
within the empirical tight-binding approach, since this material
is in general amorphous and its chemical bonds involve strong
charge transfer. Nevertheless, the details of the electronic
structure of the oxide have only a modest influence on the
interface states [7], so that we may choose a plausible arbitrary
model without compromising the generality of our results.
For definiteness, we choose tight-binding parameters to fit the
effective mass of the β-cristobalite polymorph, and we adjust
the on-site parameters so as to give a 3 eV conduction-band
offset (barrier height). For the description of this direct-gap
structure, a tight-binding parametrization with one orbital per
site and a nearest-neighbor hopping range suffices, while first-
and second-neighbor hopping links are needed to account for
the indirect gap of Si.

FIG. 1. (Color online) Schematic representation of the tight-
binding one-dimensional model for the Si/barrier interface. The labels
A, B, and I refer to Si, barrier, and interface regions, respectively.
Dark sites are labeled by s = −∞, . . . , − 2, − 1 and represent Si
occupation, while light sites indicate the effective barrier species, at
s = 1,2, . . . ,∞. The junction A – B corresponds to bond (−1) – (1),
and the I region includes the range −2 � s � 2. The label s = 0
is discarded so that A ←→ B symmetry is obtained by changing
−s ←→ s along the decimation procedure (see Appendix A).

TABLE I. Tight-binding parameters, in eV, for the adopted one-
dimensional model. The on-site energy is ε and t1 (t2) is the nearest-
(next-nearest-) neighbor hopping parameter. The labels A, B, and I

refer to Si, barrier, and interface regions, respectively, and α ∈ [0,1].

εA 1.41

Region A, Si t1 (A) −0.68
t2 (A) 0.61

Region I , interface t1 (I ) (1 − α)t1 (A) + αt1 (B)
t2 (I ) (1 − α)t2 (A) + αt2 (B)

εB 9.56
Region B, barrier t1 (B) −3.28

t2 (B) 0

The effect of dimensionality, decisive in many physical
contexts, is not as important for the properties investigated here
[7]. Even though the Van Hove singularities and the transport
properties can only be correctly modeled within a full three-
dimensional model, the valley splitting is determined only
by the band profile across the (001) interface. This can be
understood in terms of first-order perturbation theory, where
the valley orbit integral between orthogonal valleys vanishes
for a perfectly flat interface (see Ref. [9]).

The complete set of parameters is given in Table I, and
the nonzero hopping links are schematically represented in
Fig. 1. We take the unit cell to consist of two atomic sites,
representing the two inequivalent consecutive planes of the
diamond structure of Si—this choice has no particular physical
meaning or effect for the barrier oxide. The (3D) lattice
parameter for Si (SiO2) is aSi = 0.54 nm (aSiO2 = 0.74 nm).
This leads to a distance between sites in the linear chain of
0.27 nm (0.37 nm).

The tight-binding Hamiltonian for the conduction band
written in the basis set of one Wannier orbital |s〉 at each
site s is then

Ĥ =
+∞∑

s=−∞

′
{
εs |s〉〈s| +

∑
snn

t1[s −→ snn]|s〉〈snn|

+
∑
snnn

t2[s
j−→ snnn]|s〉〈snnn|

}
. (2)

Here εs is the diagonal term at site s, t1 and t2 are first- and
second-neighbor tunnel couplings (or hopping parameters),
and the first summation is primed to exclude s = 0 (see
Fig. 1). The two first- (second-) nearest neighbors of s are
snn (snnn). Without ambiguity, the notation s gives not only the
site sequence, but also the species and environment of site s:
s < −2 → A (Si), s > 2 → B (barrier), or −2 � s � 2 → I

(interface) according to its location with respect to the junction
(−1)A—(+1)B. The common first neighbor between s and

snnn is labeled j , and the notation t2[s
j−→ snnn] indicates that

this second-nearest-neighbor hopping is across a j -species site
(see Fig. 2).

Since the I couplings are not a priori determined, a variable
α is introduced which linearly interpolates [7] the first- and
second-neighbor off-diagonal terms t1 and t2 from the Si tight-
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FIG. 2. (Color online) Diagrammatic structure of the renormal-
ized hoppings explicitly appearing in the formalism after n � 1
decimation steps. At each stage, alternate dimers are projected
out from Dyson’s equations (see Appendix A). For the original
chain with hoppings up to second nearest neighbors, the decimated
configurations involve hoppings ranging from first up to fourth
neighbors.

binding parameters (α = 0) to the oxide parameters (α = 1),
as detailed in Table I.

The density of states is obtained here from the Green’s
function Ĝ(Z) = (Z · 1̂ − Ĥ )−1, with Z = E + iu, where u

is a small imaginary part added to the energy E to avoid
singularities of the Green operator, and 1̂ is the unitary
operator. Results presented here are for u = 10−3 meV. The
matrix elements Gij = 〈i|Ĝ|j 〉 for the Hamiltonian in (2) are
obtained exactly by a decimation approach [15,18], adapted
here as detailed in Appendix A.

The energetics of these states is given intrinsically by
the bonds across the interface. As shown in Appendix A,
the decimation technique conveys this message in a clear
and simple picture by mapping the electronic Hamiltonian
of the two semi-infinite chains into a fictitious molecule of
two effective atomic species with renormalized self-energies
(each representing one of the materials) connected by a single
renormalized hopping.

The local electronic density of states at site j and
energy E, LDOS (s = j,E) = −(1/π ) limu→0 Im[Gjj (Z)],
and the total density of states, DOS(E) =
limN→∞

∑
j=−N/2,N/2 [LDOS(s = j,E)/N], are then

expressed in terms of the diagonal matrix elements. The
LDOS of sites very far from the interface (|s| 	 1)
asymptotically coincides with the LDOS of the bulk material,
while interface effects appear for |s| ∼ 1. Results for E(k)
and the LDOS of the bulk materials are presented in Figs. 3(a)
and 3(b), respectively. Two of the singularities in Fig. 3(b)

FIG. 3. (Color online) (a) Energy dispersion E(k) for the bulk
materials as indicated, with a = aSi (aSiO2 ) for the dispersion of Si
(SiO2). (b) Local density of states (LDOS) in bulk Si and oxide. (c)
LDOS at the interface sites with α = 0.5. (d) LDOS at the interface
sites with α = 1.0: here an interface state splits from the lower band
into the gap, as indicated by the arrow. The vertical dotted lines
mark the Van Hove singularities of the one-dimensional tight-binding
model for bulk Si and bulk oxide parameters.

for Si occur at the minimum and maximum of the conduction
band (band edges); a third peak is due to a local maximum
at the direct gap (k = 0) energy [see Fig. 3(a)]. For the
barrier, the singularity in Fig. 3(b) corresponds to the lower
conduction-band edge (k = 0) [see Fig. 3(a)]. The singularity
at the band maximum is outside of the energy range here.

III. INTERFACE STATE ENERGY AND
LOCALIZATION PROPERTIES

Intrinsic interface states were originally considered by
Tamm [19] and Shockley [20], and we refer to such states
here as TS states. The signature of a TS state at energy ETS is
a pole in Gjj (E) at ETS, which contributes to LDOS (s = j )
at sites j close enough to the interface with a δ-function peak.
The imaginary part u added to E broadens such peaks into
Lorentzians.
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FIG. 4. (Color online) Energy eigenvalue of the interface state as
a function of the interpolation parameter α. We identify the valley
splitting as the energy gap between the two lowest-energy eigenstates,
i.e., the band edge and bound state eigenvalue.

Figures 3(c) and 3(d) present the LDOS at the junction Si
and barrier sites calculated for α = 0.5 and 1.0. The sharp
peak below the Si conduction-band edge, marked by an arrow
in Fig. 3(d), indicates the formation of a TS interface state,
while for α = 0.5 the LDOS is strongly modified as compared
to the bulk materials in Fig. 3(b), but no isolated peak appears.
These results suggest the existence of a minimum α needed to
form a bound interface state (TS) below the conduction band.
In fact, Fig. 4 shows that a TS state appears only for α � 0.7.
From Fig. 4 it is also clear that the bottom of the conduction
band (horizontal line) and the interface state constitute the two
lowest electronic energy levels in this system, i.e., their energy
difference gives the ground-state gap, which we identify here
with the valley splitting (�VS). For all α, �VS(α) is a single-
valued increasing function so that, instead of α, the physically
accessible quantity �VS is taken as the control variable in terms
of which all calculated properties are discussed next. Thus
quantities related to regions I and B (see Table I), including
α, are not expected to affect the main results.

Figure 5(a) shows the local density of states at (s = ±1),
or equivalently the electronic probability density |�±1(E =
−�VS)|2 of the TS state at the interface sites as a function
of the valley splitting. Operationally, these are the weight of
the pole of G11 and G−1−1 at the energy of the interface state
(E = −�VS).

The asymptotic behavior of localized states away from the
perturbation site(s) is characterized by an envelope exponential
decay within a distance λ,

lims→±∞|�(s)| ∝ exp(−|s|/λ), (3)

assuming that the perturbation creating the localized state is
symmetric. For nearest-neighbor tight binding alone, it was

FIG. 5. (Color online) Properties of the intrinsic interface state
as functions of the valley splitting (�VS). (a) Electronic probability
density (|�s |2) at the Si (s = −1) and barrier (s = 1) junction sites.
(b) Localization length (
) into Si (s � −1) and barrier (s � 1)
regions. The inset shows length scales characteristic of the TS and
FH states (see Sec. IV) as a function of �VS.

shown [16,21,22] that

λ−1 = − lim
n→∞ 2−n ln |t (n)|, (4)

where t (n) is the nearest-neighbor hopping parameter after n

decimation cycles (see Appendix A).
The envelope function of a TS state is expected to be asym-

metric with respect to the junction, so Eq. (3) splits into two
localization lengths: 
A into the Si (s → −∞) and 
B into the
oxide side (s → +∞). We expect that expressions analogous
to (4) apply in the present case (this assumption is verified
numerically a posteriori). Since for the second-neighbor
model the intermediate decimated chain configurations acquire
nonzero hopping parameters up to fourth nearest neighbors
(see Appendix A), a possible generalization of Eq. (4) would
be written as


−1
k=2,3,4 (K) = − lim

n→∞ C
(n)
k ln

∣∣t (n)
k (K)

∣∣, K = A,B, (5)

where limn→∞ C
(n)
k = 2−(n+1) and t

(n)
k (K) for k = 2, 3, 4

are the renormalized kth-neighbor hopping parameters after
the nth decimation cycle at either s � −1 (A) or s � 1 (B).
In fact, the limits for all ranges k converge to the same

A or 
B , indicating the consistency of our assumption.
Figure 5(b) gives 
A (solid line) and 
B (dashed line) versus
�VS. The expected behavior is obtained in Fig. 5(b), i.e., a TS
state tends to delocalize when approaching the Si band edge
due to band-localized state hybridization. Figure 6 summarizes
the behavior of the interface state localization lengths. We take
the exponential decay in the probability density—consistent
with 
 given in Fig. 5(b) for each material—to apply for all sites
beyond the respective junction sites s = ±1. We show in Fig. 6
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FIG. 6. (Color online) Approximate electronic density of the TS
state extracted from the envelope-function asymptotic behavior along
the chain as a function of the energy of the ground state (�VS), where
z � −1 corresponds to A sites (Si), and z � 1 corresponds to B

sites (barrier). Values for the interface sites in Si and the barrier were
obtained from direct calculation, and we assume an exponential decay
beyond these sites, which should apply to |s| 	 1.

that the electronic probability peak at the interface rises as the
TS state becomes deeper in energy, reducing the penetration
into the Si slab. Penetration is qualitatively indicated by the
color stripes. As a general (arbitrary) guide, the dashed line
follows the point where the density is reduced from the
interface peak by four orders of magnitude. The penetration
into the barrier is negligible with respect to the Si side, and not
very sensitive to the TS energy. The characteristic oscillatory
behavior of localized states in Si—due to the interference of
kz and k−z valleys—is not reproduced here [7].

IV. ELECTRIC FIELD BOUND STATES

A more familiar interface-bound electron state is formed
when an applied electric field (F ) pushes the electron toward an
interface. A number of studies on this problem based on tight-
binding treatments are available in the literature [6,7,23,24]. In
the presence of an electric field, solving a tight-binding model
based on the renormalization method is cumbersome and not
especially insightful. In particular, localization properties are
not easily extracted as in Sec. III [see Eq. (4)].

Overall insight of interface states bound by an electric
field, including localization trends, may be obtained within
a simplified description proposed by Fang and Howard (FH)
[17], which we briefly review. This approach is based on the
effective-mass envelope function, providing analytic expres-
sions within a single valley approximation. In FH’s model, the

barrier region (z > 0) is assumed to be impenetrable, and the
effective Hamiltonian for z < 0, with mz as the longitudinal
effective electron mass in Si, e the absolute electron charge,
and εA the Si relative permittivity, is written as

HFH = − �
2

2mz

∂2

∂z2
+ e

F

εA

|z|. (6)

The FH variational envelope for the ground state [17] is
assumed to have the form

�FH(z � 0) =
√

4/β3|z|e−|z|/β (7)

and �FH(z � 0) = 0. The parameter β characterizes the wave-
function extent into the Si slab and is obtained from energy
minimization,

β =
(

2�
2εA

3mzeF

)1/3

. (8)

The lengths β and 
A are given in the inset of Fig. 5(b). Further
details and the impact of these different lengths are discussed
in the next section.

We have also investigated electric field bound states
within tight binding using supercell direct diagonalization
(see Appendix B). In what follows, we refer to electric field
bound states as FH states, even if they are obtained within tight
binding.

V. FIELD CONTROL OF THE SPLITTING

The valley splittings of the field bound FH states and the
spontaneously bound TS states have distinct origins, but both
depend on the external electric field. The difference between
the mechanisms is a subtlety that results in immensely different
splitting-to-field rates.

Traditional conduction-band FH states have the same
overall shape for the envelope function for each valley compo-
sition, making it possible to study it under the effective-mass
approximation [25]. This means that the electronic density is
very similar and the electric field does not couple directly to
the valley degree of freedom. Instead, the role of the field is
indirect, squeezing the electron against the barrier material.

On the other hand, the effect of electric fields in sponta-
neously localized interface TS states is trivial. The average
position of the electronic charge distribution for the TS and
FH states is different, so that the electric field detunes them.
The TS state is roughly an exponential with an average
position 〈z〉 = 
A/2, while a regular conduction-band FH state
is located at 〈z〉 = 3β/2.

The valley splitting sensitivity to the charge distribution is
illustrated in Fig. 7, where we show the �VS dependence on the
external field obtained within the same tight-binding model,
defined in Eq. (2), via a supercell methodology (described in
Appendix B). Varying the value of α, we identify a crossover
of the splitting from FH behavior (low α) to the typical
enhancement of �VS characteristic of important hybridization
of the interface state with band states (higher α). Comparison
of the �VS sensitivity in F as α increases in the range
{0.2 → 0.4} to the range {0.4 → 0.6} shows that the TS regime
is approaching at α = 0.6. In fact, for α = 0.8 the data would
extrapolate the plotted range.
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FIG. 7. (Color online) Electric field dependence of the valley
splitting for different values of α, as indicated. Linear fits for each α

are also given. Supercell: 67.9 nm Si layer adjacent to a 6.8 nm oxide
layer.

These results are more clearly understood by examining
the two lower eigenstates for FH and TS states, obtained as
described in Appendix B and given in Fig. 8. The FH state—
illustrated taking α = 0—presents the usual behavior of
electrons bound by the triangular electrostatic potential, with
a splitting consistent with first-order perturbation theory [25].
The valley splitting, identified here as the energy difference
between these states and shown in the inset, increases linearly
with the field, remaining of the order of a few meV.

We take α = 0.5 to model near band-edge TS states.
Although at F = 0 this value of α is below the minimum
required to sustain an interface state, a TS state splits from
the band into the gap at very small electric fields. The lower
energy level behavior (black squares) for the TS state, shown
in Fig. 8(b), is quantitatively very different from the behavior
in the FH state [Fig. 8(a)]. The first excited state values (red
circles), however, are closer to each other: this is consistent
with our interpretation of the origin of the enhanced valley
splitting.

The insets in Fig. 8 show that the fundamental difference
between the origin of FH and TS states leads to distinct
responses to applied electric fields. This distinction causes the
TS state to present improved tunability of the valley splitting,
covering a wider range of �VS.

VI. CAPACITANCE AND INTERFACE STATES

We investigate in this section to what extent capacitance
measurements may distinguish TS from FH interface states,
given the distinct real-space electronic charge distributions of
these states.

For both TS and FH interface states, the penetration into
the barrier side is negligible, therefore we do not take the
contribution of the fast decaying charge-density tail into the
barrier. Also, the oscillatory behavior mentioned in Sec. III
is expected to make comparable contributions to both TS
and FH localized states and should not alter significantly the
comparison performed here.

FIG. 8. (Color online) (a) Electric field dependence of ground
and first excited energy levels calculated within tight binding for
an electric field bound state (α = 0). The inset shows the energy
difference between theses states, i.e., the �VS. (b) Same as (a) for
an intrinsic interface state (α = 0.5). Supercell: 67.9 nm Si layer
adjacent to a 9.5 nm oxide layer.

The capacitance between the gate P and the electron gas
is considered under the geometry schematically shown in
the lower-left inset of Fig. 9(a), taken to be parallel plate
capacitors. The exponential charge penetration of a TS state
into the Si layer is

ρTS(z) = ρ0e
−2|z|/
A . (9)

The dielectric barrier of thickness d gives a capacitance

CTS(
) = Aε0εAεB

εAd + (1/2)εB
A

, (10)

where εA (εB) is the relative permittivity of the silicon (barrier)
and A is the device’s transverse area.

If instead the gas forms by the usual field binding, the
charge density will be derived from the FH wave function [see
Eq. (7)],

ρFH(z) = (4/β3)|z|2ρ0e
−2|z|/β . (11)

In this case, the capacitance reads

CFH = Aε0εAεB

εAd + (3/2)εBβ
. (12)
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FIG. 9. (Color online) (a) Relative capacitance for TS and FH
interface states as a function of the valley splitting. The lower-left
inset shows a schematic representation of the capacitor structure
discussed here; δ is the effective thickness of the equivalent capacitor.
The length � is large enough to include the total charge bound near the
interface. (b) Percent difference between capacitances in the presence
of a TS or FH state as a function of the valley splitting �VS and the
barrier thickness d .

The effective thickness δ of the electron charge distribution
for the TS (FH) state is 
A/2 (3β/2) [δ is schematically
indicated in the lower-left inset in Fig. 9(a), and is assumed to
be much smaller than the Si slab].

The capacitances share the same overall form—the contri-
bution of the electron penetration into the semiconductor may
be regarded as a parasitic capacitance associated in series with
the otherwise ideally thin capacitor C0 = Aε0εB/d. Therefore,
capacitance measurements are only capable of distinguishing
these states if the base capacitance C0 due to the SiO2 barrier
is comparable (�) to the parasitic capacitances.

Since the detailed electric field inside a semiconductor
heterostructure may be hard to obtain (especially for doped
samples), we calculate all quantities as a function of �VS. For
the interface (TS) state, the splitting shown is the zero-field
spontaneous splitting, while for the external field bound (FH)
state we assume a field high enough to give each �VS. Theory

[9] indicates that this mechanism leads to �VS = 0.548 e ÅF ,
which is in fair agreement with recent experiments [26].

The lengths 
A and β are presented in the inset of Fig. 5(b).
Even though 
A > β, the parasitic capacitance expressions
for TS and FH states depend on 
A/2 and 3β/2, respectively.
Taking this into account, there is an inversion at �VS � 5 meV,
resulting in the capacitance relation CTS > CFH.

Figure 9(a) shows the capacitances (in C0 units) as a
function of �VS. We chose here d = 10 nm, leading to a
small capacitance contribution from the oxide (further reduced
by the small oxide relative permittivity εB = 3.9, compared
to Si, εA = 11.9). Figure 9(b) gives the percent difference
Dp = (CTS − CFH)/CTS as a function of the oxide thicknesses
d and the splitting �VS.

We first note that CTS > CFH except for a small range in the
low-�VS limit, which appears in the figure as a dip next to the
peak at �VS = 0. For �VS = 23 meV, Dp = 1.7% [as may be
obtained from the zoomed region in Fig. 9(a)]. It is clear that
smaller values of d increase the distinguishability between the
two kinds of interface states.

Reliable identification of the presence of intrinsic interface
states (TS) for a particular Si/SiO2 junction may be possible
through a comparison of different samples and/or different
interfaces on the same sample as in Refs. [11–14]. General
trends toward this identification obtained here for the interface
TS state contribution to capacitance as compared to the more
usual FH state may be summarized as follows: (i) at low
voltages, CTS should be less sensitive to voltage variations
than CFH and remain finite in the limit of very small voltages;
(ii) at the conditions leading to the same splitting �VS, the
interface TS state will have a larger capacitance than the
field bound FH state—an effect enhanced for thin oxide
barriers.

VII. DISCUSSIONS AND CONCLUSIONS

We have presented a comprehensive study of properties
and effects of interface states in a Si/SiO2 interface. The
adopted model, based on a simple one-dimensional tight-
binding description of the system, is solved exactly within a
Green’s-function renormalization formalism through an origi-
nal decimation sequence, also presented. From the converged
fixed point of the decimation procedure, the local density of
states at the interface sites is obtained, as well as the energies
and conditions for the formation of an intrinsic interface state.
From the Green’s-function off-diagonal matrix elements, the
rate of approach to the fixed point gives the localization lengths
characterizing the exponential decay of the interface state into
each of the materials in the heterojunction.

For comparison, we have also considered electric field
bound states within the FH effective-mass approximation—
inferring localization trends and the overall charge distribution
used in calculations of the capacitance. The distinct charge
distributions of these two types of states, with a peak (TS) or
node (FH) at the interface, are explored in terms of differences
in capacitance measured for a voltage bias applied at opposite
sides of the interface. We find that in the range of high-�VS,
the calculated CTS is always larger than CFH, and that the
distinction between them is enhanced for narrower barrier
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widths. Such differences are expected to be observable and
useful to verify experimentally whether intrinsic interface
states (TS) are present and probably responsible for observed
high-�VS values of some junctions when different samples
and interfaces are compared.

Field control over the ground and first excited levels
of FH and TS states were also obtained in a supercell
tight-binding approach. The TS state is clearly shown to
improve the tunability of the valley splitting over a wider
range.

ACKNOWLEDGMENTS

We are indebted to Kei Takashina, Mark Friesen, and
Rodrigo Capaz for the many discussions. This work is part of
the Brazilian National Institute for Science and Technology on
Quantum Information. The authors also acknowledge partial
support from FAPERJ, CNPq, and CAPES.

APPENDIX A: DIMER DECIMATION METHOD

We start with Dyson’s equation for all sites,

ZGij −
∑

l

′
HilGlj = δij , (A1)

representing each dimer as a pair (i,j ) and discarding the
label 0 for symmetry of the decimation procedure, in the
first renormalization cycle all information involving alter-
nate dimers—(2,3) (6,7) (10,11) · · · (2 + 4N,3 + 4N ) to the
right and (−2, − 3)(−6, − 7) (−10, − 11) · · · (−2 − 4N, −
3 − 4N ) to the left—is decimated [see Figs. 10(a) and 10(b)],
i.e., projected into those for the “surviving” sites, resulting
in a problem of closely bound pairs separated by a distance
that eventually increases exponentially with the number of
decimation cycles.

For example, after the first cycle, (−1,1) and (4,5) are
nearest-neighbor dimers, with hoppings defined as in Fig. 2.
Always keeping information on (−1,1), the second cycle
consists of projecting out the dimers’ nearest neighbors
to it, namely (4,5), (−4, − 5), so that (8,9) becomes a
nearest-neighbor dimer to (−1,1) at the end of the second
cycle.

The possible hopping elements in the original (n−times
decimated) chain are given in Tables II and III, where the
notation is self-explanatory. In Table III, the fixed point (n →
∞) is 0 for all t2, t3, and t4, while t1 converges to t1(A), t1(B),
or t1(I ) according to the constituents of the dimers.

FIG. 10. (Color online) (a) Original chain (prior to decimation),
considering the nearest-neighbor dimer coupling. (b) Intercalated
dimers are decimated each cycle, and renormalized hoppings connect
the next-nearest dimers. (c) Final product of the decimation process,
i.e., a single dimer with negligible coupling with nearest dimers. After
the process of decimation, the original system is represented by two
effective atoms with complex tight-binding parameters.

The fixed point is an isolated dimer, (−1,1) [see Fig. 10(c)],
obtained when all ti for i = 2,3,4 are close to 0 (within
a convergence criterion that we take as u × 10−3, with u

introduced in the definition Ĝ(Z) = Ĝ(E + iu) in Sec. II. All
needed matrix elements G−1−1,G11, and G1−1 = G−11 are
easily identified at the fixed point.

APPENDIX B: SUPERCELL TIGHT-BINDING
TREATMENT FOR INTERFACE STATES UNDER

APPLIED ELECTRIC FIELDS

In the case of our one-dimensional model under an
applied field, the problem is treated within tight binding
through a supercell approach. The Hamiltonian in Eq. (2) is
truncated by taking a finite sum in s, restricted to a supercell
with periodic boundary conditions, which is diagonalized
numerically. Large enough supercells are used to eliminate
spurious interactions with the periodic images created by
these boundary conditions. The same tight-binding parameters
described in Sec. II are used, which incorporate correctly the
following gap properties: nature, value, and relative offset.
Data presented in Figs. 7 and 8 were obtained within this
treatment.

Given that the ground-state energy EFH obtained from the
optimized variational parameter β in Eq. (8) is proportional
to F 2/3, we explore this relation to probe the consistency of

TABLE II. Hopping elements of the original Hamiltonian (n = 0). Here A indicates Si sites, B indicates barrier sites, and I indicates
interface sites. See Eq. (2) for the notation, where the superscript (0) is added here and site labels are defined in Fig. 2.

κλμν t
(0)
1 [κ −→ λ] t

(0)
1 [μ −→ ν] t

(0)
2 [λ −→ μ] t

(0)
3 [κ

λ−→ μ] t
(0)
3 [λ

μ−→ ν] t
(0)
4 [κ

λμ−→ ν]

Region A A A A A t1 (A) t1 (A) t1 (A) t2 (A) t2 (A) 0

Interface A A A B t1 (A) t1 (I ) t1 (A) t2 (A) t2 (I ) 0
A B B B t1 (I ) t1 (B) t1 (B) t2 (I ) t2 (B) 0

Region B B B B B t1 (B) t1 (B) t1 (B) t2 (B) t2 (B) 0
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TABLE III. Same as Table II for the n-times decimated chain. All sites in neighboring dimers are coupled (see Fig. 2 for the notation).

κλμν t
(n)
1 [κ −→ λ] t

(n)
1 [μ −→ ν] t

(n)
2 [λ −→ μ] t

(n)
3 [κ

λ−→ μ] t
(n)
3 [λ

μ−→ ν] t
(n)
4 [κ

λμ−→ ν]

Region A A A A A t
(n)
1 [A −→ A] t

(n)
1 [A −→ A] t

(n)
2 [A −→ A] t

(n)
3 [A

A−→ A] t
(n)
3 [A

A−→ A] t
(n)
4 [A

AA−→ A]

Interface A A A B t
(n)
1 [A −→ A] t

(n)
1 [A −→ B] t

(n)
2 [A −→ A] t

(n)
3 [A

A−→ A] t
(n)
3 [A

A−→ B] t
(n)
4 [A

AA−→ B]

A B B B t
(n)
1 [A −→ B] t

(n)
1 [B −→ B] t

(n)
2 [B −→ B] t

(n)
3 [A

B−→ B] t
(n)
3 [B

B−→ B] t
(n)
4 [A

BB−→ B]

Region B B B B B t
(n)
1 [B −→ B] t

(n)
1 [B −→ B] t

(n)
2 [B −→ B] t

(n)
3 [B

B−→ B] t
(n)
3 [B

B−→ B] t
(n)
4 [B

BB−→ B]

our tight-binding calculations with respect to the FH effective-
mass results for the electric field dependence of the ground-
state energy. The test here consists in a comparison, the same
presented in Ref. [23] for a tight-binding three-dimensional
model, of the ratio R = EFH(2F )/EFH(F ), which equals 1.59

in FH. It was found to be equal to 1.4 at F = 0.04 V/nm in
Ref. [23]. We get R = 1.54 here. Given the simplicity of the
models, the agreement is fairly good and we may conclude
that the field effects reported here within both treatments are
plausible and consistent.
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