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Spontaneously magnetized Tomonaga-Luttinger liquid in frustrated quantum antiferromagnets

Shunsuke C. Furuya and Thierry Giamarchi
DPMC-MaNEP, University of Geneva, 24 Quai Ernest-Ansermet CH-1211 Geneva, Switzerland
(Received 11 March 2014; revised manuscript received 7 May 2014; published 27 May 2014)

We develop a theory of spontaneously magnetized Tomonaga-Luttinger (TLL) liquid in geometrically frustrated
quasi-one-dimensional quantum magnets by taking an S = 1/2 ferrimagnet on a union-jack lattice as an example.
We show that a strong frustration leads to a spontaneous magnetization because of the ferrimagnetic nature
of lattice. Due to the ferrimagnetic order, the local magnetization has an incommensurate oscillation with
the position. We show that the spontaneously magnetized TLL is smoothly connected to the existence of a
Nambu-Goldstone boson in the canted ferrimagnetic phase of a two-dimensional frustrated antiferromagnet.
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I. INTRODUCTION

Spontaneous symmetry breaking is one of the most fun-
damental concepts in physics. It provides the mechanism to
generate mass of elementary particles and allows macroscopic
alignment of magnetic moments in ferromagnets. Spontaneous
breaking of global continuous symmetry is accompanied by
a massless excitation, the Nambu-Goldstone boson [1–3].
Since Nambu-Goldstone boson governs low-energy physics
at long distance and the low-energy physics is affected by
the geometry of system, the dimensionality of the system has
strong influences on Nambu-Goldstone boson.

Such effects are most prominent in one dimension (1D)
because of the large suppression of ordering at finite temper-
atures [4,5] and even at zero temperature [6] due to quantum
effects. As a result the breaking of a continuous symmetry in
1D is deemed impossible. For systems such as a 1D superfluid,
indeed no long-range order exists, and the proper description is
the one of a Tomonaga-Luttinger liquid (TLL) [7]. Despite the
absence of the true long-range order [8,9], Goldstone modes
exist and have a dynamical origin [10]. However, in some
rare cases, such as a ferromagnet, the ground state can, even in
1D spontaneously break a continuous symmetry. This prompts
immediately for the question of why and for which systems
such phenomena can occur.

In order to shed light on the possibility of spontaneous
symmetry breaking in 1D, dynamical aspects of the system
need to be carefully considered. In addition, in view of
the recent experimental progresses in realizing 1D quantum
liquids in various situations [11–14], it is worthwhile to search
for novel manifestations of spontaneous symmetry breaking
in 1D.

For quantum magnetism in 1D, one expects a system with
quasi-long-range antiferromagnetic order to have a relativistic
dispersion, which is the case of the TLL, while a ferromagnet
would have a quadratic one. This behavior of the Nambu-
Goldstone boson has been formulated in a quite general context
[15–17]. Finding in 1D a system that would spontaneously
break the continuous rotational symmetry of the spins, while
at the same time retaining some TLL behavior, would thus be
interesting and an example of the more general character of
Nambu-Goldstone boson.

A very good possibility to realize such a spontaneously
magnetized TLL (SMTLL) is offered by ferrimagnetic sys-
tems. Several numerical studies [18–24] have followed this

route and found incommensurate ferrimagnetic phases which
can be candidates for the SMTLL. However, besides the
numerical results, there is still no microscopic theory that
explains the nature of the incommensurate phase and could
relate it to a SMTLL.

In this paper, we present such a theory of the SMTLL,
showing that one can have simultaneously a spontaneous
breaking of the spin-rotation symmetry leading to a finite
magnetization and a TLL behavior. We demonstrate that this
SMTLL phase is realized in the ground state of an S = 1/2
geometrically frustrated quantum antiferromagnet on a 1D
array of the union-jack lattice [see Fig. 1(a)].

II. INSTABILITY OF THE TOMONAGA-LUTTINGER
LIQUID

We consider the union-jack (UJ) spin Hamiltonian,

H = J1

∑
j

3∑
a=1

Sj,a · Sj+1,a + J1

∑
j

Sj,2 · (Sj,1 + Sj,3)

+ J2

∑
j

S2j,2 · (S2j−1,3 + S2j+1,1)

+αJ2

∑
j

S2j,2 · (S2j−1,1 + S2j+1,3), (1)

where J1,2 > 0 and 0 < α � 1. The parameter α denotes the
imbalance of the diagonal interactions. Throughout the paper,
we fix α and change the ratio J2/J1 from 0 to +∞. Note that
this model has a priori full spin-rotational symmetry.

A. Classical ground state

We first consider the classical ground state minimizing
the energy of a unit cell. The classical analysis on the UJ
ladder (1) is similar to the 2D UJ antiferromagnet [25–27]. For
0 � J2/J1 < 1/2, the classical ground state is the Néel state.
For 1/2 < J2/J1, spins on the filled sites in Fig. 1(a) become
canted with a polar angle ϑ = cos−1(J1/2J2) and the classical
ground state in the canted phase has an incommensurate
magnetization,

〈
Sz

j,a

〉 = �S

2

(
1 − J1

2J2

)
.
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FIG. 1. (Color online) The three-leg union-jack ladder (1).

Hereafter we use � = 1 for simplicity. At the classical
level, a spontaneous magnetization occurs. However, since
quantum fluctuation usually destroys long-range order in 1D
systems (1), we have to take them into account to conclude on
the existence of a spontaneous magnetization in 1D.

B. The Tomonaga-Luttinger liquid

To do so we derive the low-energy effective field theory
of the UJ ladder (1). When the diagonal interaction is small
enough, J2/J1 � 1, the low-energy effective field theory is
written as a function of two slowly varying fields,

n = 1

2S

3∑
a=1

(S2j+2−a,a − S2j+3−a,a), (2)

l = 1

2a0

3∑
a=1

(S2j+2−a,a + S2j+3−a,a). (3)

Here a0 is the lattice spacing. We take a diagonal unit cell
(Fig. 2) to define n and l along the J2 bond [28]. The
n and l fields denote, respectively, staggered and uniform
magnetization densities and satisfy the constraints

f (n,l) ≡ n2 − 1 − 1

S
− l2

S2
= 0 (4)

and n · l = 0. The constraint (4) is usually replaceable to
n2 = 1. However, the l2 term will play an essential role for
our purpose.

The Hamiltonian (1) in the low-energy limit is given by

H =
∫

dx

2

[
1∑

a,b M−1
a,b

l2 + 2S2
∑

a

pa(∂xn)2

+ 2S
∑

a,b paM−1
a,b∑

a,b M−1
a,b

(l · ∂xn + ∂xn · l)

]
(5)

=
∫

dx

[
gv

2

(
l − �

4π
∂xn

)2

+ v

2g
(∂xn)2

]
, (6)

FIG. 2. (Color online) The shaded area depicts the unit cell of the
O(3) nonlinear σ model.

where g is a coupling constant, v is the velocity, � is a
topological angle given by

g = 1

S

[
2

∑
a,b,c

paM−1
b,c −

(
�

4πS

)2
]−1/2

, (7)

v = Sa0

⎡
⎣ 2

∑
a pa∑

b,c M−1
b,c

−
(

�

4πS

1∑
a,b M−1

a,b

)2
⎤
⎦

1/2

, (8)

� = 6πS, (9)

and pa = 3J1/2 + (J1/2)δa,2. While g and v depend on a 3 × 3
matrix of microscopic parameters,

M =

⎛
⎜⎝

5J1 − J̃2 J1 − J̃2 0

J1 − J̃2 6J1 − 2J̃2 J1 − J̃2

0 J1 − J̃2 5J1 − J̃2

⎞
⎟⎠, (10)

with J̃2 = (1 + α)J2/2, the topological angle (9) is determined
only by the number of legs. The derivation of the effective field
theory (6) is explained in the case of the three-leg spin ladder
in Refs. [28,29]. We obtain the effective field theory (6) by
replacing the rung coupling of the three-leg ladder to J1 − J̃2

in the matrix (10). We can see from Eq. (5) that information
on the structure of the UJ lattice (1) is encoded in the matrix
(10). Integrating l out, we obtain [30]

H = v

2g

∫
dx

[
1

v2
(∂τ n)2 + (∂xn)2

]
+ i�Q, (11)

where n2 = 1 and

Q = 1

4π

∫ ∞

−∞
dx n · ∂τ n × ∂xn

gives an integer after integrating with an imaginary time τ ; that
is,

∫ ∞
−∞ dτ Q ∈ Z. The Hamiltonian (11) is the O(3) nonlinear

σ model (NLSM). The � term controls the low-energy limit
of the NLSM (11) [31]. When � ≡ π (mod 2π ), namely when
S is a half integer, the O(3) NLSM (11) is identical to the TLL
as a conformal field theory with a central charge c = 1 [32],

H = v

2π

∫
dx

[
K(∂xθ )2 + 1

K
(∂xφ)2

]
. (12)

We use here the notation for the TLL of Ref. [7]. The nature
of the φ and θ fields will be discussed in detail later. Since
� is independent of J2, for small enough J2, the diagonal
interaction is irrelevant and the UJ ladder (1) has the TLL
ground state (12), and thus, in particular, zero spontaneous
magnetization.

C. Instability at k = 0

However, the diagonal interaction has a serious impact
on the ground state, and lead to an instability of the TLL.
The diagonal interaction J2 partly compensates J1 in the
matrix (10) and it reduces the velocity down to v = 0,
where the linearization of the dispersion relation ω = vk

becomes invalid. Let us denote the instability point as J c1
2 . The

instability point is determined from the zeros of the matrix (10).
The matrix M is positive definite for J̃2 = 0. As we increase
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J̃2, the positive definiteness first breaks down at J̃2 = 7J1/3,
namely,

J c1
2 = 14J1

3(1 + α)
. (13)

When 0 < Jc1
2 − J2 � J1, g and v can be expanded

with respect to (J c1
2 − J2)/J1. In fact, since

∑
a,b M−1

a,b ∼
[(J2 − J c1

2 )/J1]−1, we obtain g ∝ S−1[(J c1
2 − J2)/J1]1/2 and

v ∝ J1S

(
J c1

2 − J2

J1

)1/2

. (14)

We can easily see that the velocity (14) approaches zero when
J2 ↗ J c1

2 . Note that the TLL parameter K must be 1/2 to
ensure that the Hamiltonian (12) preserves the SU (2) rotational
symmetry [7]. Thus, the susceptibility χ = K/πv of the
TLL (12) diverges as J2 ↗ J c1

2 .
Near the instability point J2 = J c1

2 , a careful treat-
ment of the interaction is required. The interaction of
the O(3) NLSM (11) is nonperturbatively included in the
constraint (4). Namely, the partition function Z of the O(3)
NLSM (11) is given as a path integral,

Z =
∫

DnDlδ(f (n,l))δ(n · l) exp

(
−

∫
dτH

)
. (15)

The constraint (4) generates a strong repulsion λ(l2)2. Indeed,
one can add a strongly repulsive interaction U{f (n,l)}2 with
U ↗ +∞ to the Hamiltonian (6) instead of imposing the con-
straint (4). Then, the partition function (15) is approximated
as

Z =
∫

DnDlδ(n · l) exp

(
−U

∫
dτdx{f (n · l)}2

)

× exp

(
−

∫
dτH

)

=
∫

DnDlδ(n · l) exp

(
−

∫
dτH̄

)
, (16)

where we obtain the Hamiltonian H̄ with the effective
repulsion,

H̄ =
∫

dx

[
gv

2
L2 + λ(L2)2 + v

2g
(∂xn)2 + U (n2 − 1)2

]
,

(17)

where λ = U/S4 > 0 and

L ≡ l − �

4π
∂xn. (18)

We introduced the quartic interaction (L2)2 instead of (l2)2

because their difference (e.g., {(∂xn)2}2) is negligible, as we
see below.

When J2 > Jc1
2 , the following inequalities are valid:

gv = 1∑
a,b M−1

a,b

< 0, (19)

v

g
= 2S2

∑
a

pa −
(

�

4π

)2 1∑
a,b M−1

a,b

> 0. (20)

Thus, the interaction that the L field feels takes a form of the
wine bottle:

gv

2
L2 + λ(L2)2 = λ

(
L2 − 1

λ|gv|
)2

+ const. (21)

The potential (21) leads to a nonvanishing expectation value of
L. Note that the instability occurs only in the uniform part of
the O(3) NLSM (17) because of the inequalities (19) and (20).
The diagonal coupling only changes the sign of the coupling
constant of the L2 [Eq. (19)], keeping that of (∂xn)2 positive
[Eq. (20)]. Namely, the instability only occurs at the wave
number k = 0 and the nonzero expectation value of the L field
(18) is attributed to the magnetization density l . Therefore,
the ground state has a spontaneous magnetization per site,
M ≡ 〈l〉/3, with

|M| = 1

3

(
1

λ|gv|
)1/2

∝
(

J2 − J c1
2

J1

)1/2

. (22)

The transition around J c1
2 is described by a Ginzburg-Landau-

like theory of second-order transitions. Contrarily to the
(L2)2 term, the higher-order interaction {(∂xn)2}2 is negligible
because the lower-order term (∂xn)2 is stable. Since λ > 0
the transition cannot be first order. We emphasize that our
derivation of the spontaneous magnetization (22) fully respects
the SU (2) rotational symmetry and M can point in an arbitrary
direction.

D. Nambu-Goldstone bosons

Let us explain the nature of Nambu-Goldstone boson
generated from this phase transition. First we focus on the
k = 0 part. We rewrite the Hamiltonian in terms of fluctuation

m ≡ L − 3M. (23)

We can assume M = M(0 0 1)T without loss of generality.
The longitudinal component mz has a mass � = 12λM2

because of the interaction (21), that is, λ(L2 − 9M2)2 �
12λM2(mz)2. The transverse component m⊥ ≡ (mx,my,0) is
the Nambu-Goldstone boson generated from the spontaneous
magnetization and it possesses a nonrelativistic dispersion
relation [33,34]. Dispersion relations of the longitudinal and
the transverse modes are, respectively,

E‖(k) = � + k2

2m‖
, E⊥(k) = k2

2m⊥
. (24)

We can find another massless excitation near k = π . Then
the Hamiltonian (17) turns into

H̄ =
∫

dx

[
4λM2m2 + v

2g
(∂xn)2

]
+ H′. (25)

The repulsion U (n2 − 1)2 is transformed into the constraint
n2 = 1 again. The last term of Eq. (25) denotes the anisotropy
that the spontaneous magnetization induces,

H′ = V

∫
dx{2(mz)2 − (mx)2 − (my)2}, (26)

with V = 4λM2, which seemingly equals to the coupling
constant of m2. However, after including renormalization
due to irrelevant operators, the coupling constant V of the
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anisotropic interaction (26) actually deviates from that of
the isotropic part m2. Here we first omit the anisotropy
(26) and include it later perturbatively because it does not
modify qualitative features of the effective Hamiltonian of the
Nambu-Goldstone boson. Let us rewrite Hamiltonian (25) in
terms of n and l ,

H̄ =
∫

dx

[
ḡu

2

(
l − �

4π
∂xn

)2

+ u

2ḡ
(∂xn)2 − 3ḡuM · l

]
.

(27)

Here we introduced the coupling constant ḡ and the velocity
u in a parallel manner as Eq. (6). They are given by

ḡ = 2M

S

[
2λ

∑
a

pa −
(

�

4πS

)2
λ∑

a,b M−1
a,b

]−1/2

, (28)

u = 2MSa0

[
2λ

∑
a

pa −
(

�

4πS

)2
λ∑

a,b M−1
a,b

]1/2

. (29)

Note that both ḡ and u are positive and proportional to the
magnitude of the spontaneous magnetization |M|.

The last term of the Hamiltonian (27) can be seen as the
Zeeman energy −heff · Sj,l . For further understanding of the
effective Hamiltonian (27) of the Nambu-Goldstone boson at
k = π , we integrate l out,

H̄ = u

2ḡ

∫
dx

[
1

u2
(∂τ n + iheff × n)2 + (∂xn)2

]

+ 9ḡu

∫
dx (M · n)2 + i�Q, (30)

where heff is written as

heff = 3ḡuM. (31)

If we include the perturbation H′ at lowest order, it gives a
correction

H′ � V

∫
dx(M · n)2[3(nz)2 − 1] (32)

to the Hamiltonian (30). If we use the value V = 4λM , H′
replaces the term 9ḡu(M · n)2 = 9ḡuM2(nz)2 of Eq. (30) with
27ḡuM2(nz)4, which has no impact on qualitative aspects of
the effective field theory (30).

The O(3) NLSM (30) leads to three important con-
sequences. First, the spontaneous magnetization M leaves
� ≡ π (mod 2π ) intact. Second, M generates the easy-plane
anisotropy. Finally, the O(3) NLSM (30) is semiclassical.
While the NLSM (11) in the TLL phase has a coupling
g ∝ 1/S, the NLSM (30) has ḡ ∝ M/S [see Eq. (28)]. Thus,
the NLSM (30) behaves similarly to a spin-Seff Heisen-
berg antiferromagnetic chain with a large half-integer spin
Seff ∼ S/M .

The effective field theory at k = π is thus the TLL under
an effective magnetic field heff = heff(0 0 1)T ; that is,

H̄ = u

2π

∫
dx

[
K̄(∂xθ )2 + 1

K̄
(∂xφ)2

]
− heff

π

∫
dx ∂xφ,

(33)

which is the effective model for the SMTLL. The TLL
parameter K̄ is determined from the relation [7]

M = heffK̄

πu
. (34)

The TLL parameter

K̄ = π

ḡ
∝

(
J2 − J c1

2

J1

)−1/2

(35)

diverges at the instability point J c1
2 . The point J c1

2 brings about
a divergence of the susceptibility,

χ ∝
( |J c1

2 − J2|
J1

)−γ

, (36)

with the critical exponent γ is given by γ = 1/2 for J2 ↗ J c1
2

and γ = 1 for J2 ↘ J c1
2 .

E. Dynamical structure factors

We now use this theory to compute the dynamical
structure factors in the SMTLL phase. We focus on
longitudinal and transverse dynamical structure factors,
S‖(k,ω) = ∫ ∞

−∞ dtdx ei(ωt−kx) 〈Sz
j (t)Sz

0(0)〉 and S⊥(k,ω) =∫ ∞
−∞ dtdx ei(ωt−kx) 〈S+

j (t)S−
0 (0)〉.

The longitudinal and transverse dynamical structure factors
near k = π are the same as those of the S = 1/2 Heisenberg
antiferromagnetic chain under magnetic field [7,35],

S‖[k = π (1 − 2M) + δk,ω]

= π2C‖
u�2(K̄)

θH (ω − u|δk|)
[

4u2

ω2 − u2(δk)2

]1−K̄

, (37)

S⊥(k = π + δk,ω)

= π2C⊥
u�2

(
1

4K̄

)θH (ω − u|δk|)
[

4u2

ω2 − u2(δk)2

]1−1/4K̄

. (38)

θH (z) is the Heaviside’s step function and C‖ and C⊥ are
nonuniversal constants. Equations (37) and (38) hold when
|δk| � 1. The dynamical structure factor near k = 0 is given
by

Sν(k = δk,ω) = θH [ω − Eν(δk)]
C ′

ν

ω − Eν(δk)
, (ν =‖ , ⊥),

(39)

where C ′
‖ and C ′

⊥ are constants. Figure 3 shows the longitudinal
and transverse dynamical structure factors in the low-energy
region. The dynamical structure factor near k = 0 (39) clearly
shows difference between the SMTLL and either a TLL under
magnetic field (e.g., the S = 1/2 antiferromagnetic chain [7])
or a field-induced TLL (e.g., the S = 1/2 two-leg spin ladder
[36]), for which the symmetry has been externally broken.

III. COMMENSURATE PHASE

A. Commensurability condition

Let us now examine the behavior upon increasing J2 further.
The spontaneous magnetization saturates at a certain point
J c2

2 (> Jc1
2 ). In the case of the UJ ladder, we can find a
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π

π(1 − 2M)

ω

k
0

ω

k
0

Δ

(a)

(b)

FIG. 3. (Color online) Dynamical structure factors (a) S‖(k,ω)
and (b) S⊥(k,ω) in the low-energy region. Outside of the shaded
area, the dynamical structure factor has zero intensity. The red lines
represent the linear dispersion of the SMTLL and the blue dashed
curves represent the quadratic dispersions (24) of the nonrelativistic
Goldstone mode [E⊥(k)] and the massive mode [E‖(k)].

saturation condition in the spirit of the Oshikawa-Yamanaka-
Affleck theory [37]. To do so, we need to clarify the physical
meanings of the φ and θ fields of the SMTLL (33). The
definitions (2) and (3) of n and l indicate that n and l ,
equivalently φ and θ , represent a “center-of-mass” mode.
When one considers the UJ ladder (1) as a system of three
spin chains weakly coupled by the rung and the diagonal
interactions [38], each spin chain is equivalent to a TLL written
in a compactified boson φa and its dual θa (a = 1,2,3). The
bosons φ and θ represent the center-of-mass mode because
they are given by φ = φ1 + φ2 + φ3 and θ = θ1 + θ2 + θ3. The
other “relative-motion” modes, φ1 − φ2 and φ1 + φ2 − 2φ3,
are massive and negligible in the low-energy effective field
theories (12) and (33). The two-site translational symmetry
j → j + 2 of the UJ ladder (1) requires the invariance of the
effective field theory under the translation

φ → φ + 6(S − M)π. (40)

Given an incommensurate magnetization M satisfying

6(S − M) �∈ Z, (41)

the incommensurability condition (41) prohibits relevant in-
teractions of φ, for instance, cos(2φ), to appear in the effective
field theory (33). Relevant interactions of θ are not allowed
from another reason, that is, the U (1) symmetry of the ground
state [37].

Equation (41) shows that the φ field can be massive when
the incommensurability condition (41) is violated. Increasing
M from zero, the condition (41) first breaks down when

M

Ms

= 1

3
. (42)

Here Ms = S is the saturated value of M . Thus, a com-
mensurate phase as the 1/3 plateau (42) should exist. The
commensurate phase has only one massless Nambu-Goldstone
boson near k = 0 because the SMTLL acquires a mass from
a relevant interaction cos(2φ). The condition (42) gives the
saturation condition of the UJ ladder.

(b)

| j | j+1

(a)

Tj+1Tj

FIG. 4. (Color online) (a) A configuration of trimers (solid rect-
angles) at J2/J1 � 1. Trimers are surrounded by spins (circles).
In the low-energy limit, one can regard the trimer as the S = 1/2
pseudospin. The trimer-trimer interaction is ferromagnetic and
the trimer-spin interaction is antiferromagnetic. (b) The effective
model that describes the commensurate phase. The solid and blank
circles represent trimers (S = 1/2 pseudospins) and S = 1/2 spins,
respectively. The thick line represents the ferromagnetic coupling
(46) of trimers and the thin lines are the antiferromagnetic coupling
of trimers and spins.

B. Trimer-spin chain

In order to complete the above derivation of the spontaneous
magnetization, we show that for large J2 it can be shown to
occur directly from the lattice model (1).

The commensurate phase is identified as a ferromagnetic
phase of trimers formed on diagonal J2 bonds [Fig. 4(a)]. Let
us consider the case J2/J1 � 1. When J1 = 0, the UJ ladder
(1) is composed of an S = 1/2 diamond chain [40,41] and
isolated spins. Three spins S2j+1,1, S2j,2, and S2j−1,3 form a
trimer [a solid rectangle in Fig. 1(b)] on the strongest J2 bond.
To describe the ground state and the lowest-energy excitation,
we may replace the three spins with an S = 1/2 pseudospin
[41],

S2j+1,1 = S2j−1,3 = 2
3 T j , S2j,2 = − 1

3 T j . (43)

The eigenstates |⇑〉j with T z
j = 1/2 and |⇓〉j with T z

j = −1/2
are written as

|⇑〉j = 1√
6

(|↓〉j,1|↑〉j,2|↑〉j,3 − 2|↑〉j,1|↓〉j,2|↑〉j,3
+ |↑〉j,1|↑〉j,2|↓〉j,3), (44)

|⇓〉j = 1√
6

(|↑〉j,1|↓〉j,2|↓〉j,3 − 2|↓〉j,1|↑〉j,2|↓〉j,3
+ |↓〉j,1|↓〉j,2|↑〉j,3). (45)

Here |↑〉j,a and |↓〉j,a are the eigenstates of Sz
2j+2−a,a (a =

1,2,3). Figure 4(a) depicts that the mapping from spins
to a trimer metamorphoses an antiferromagnetic interaction
αJ2 S2j,2 · (S2j−1,1 + S2j+1,3) to a ferromagnetic trimer-trimer
interaction,

αJ2 S2j,2 · (S2j−1,1 + S2j+1,3) = −JFT j · T j+1, (46)

with JF = 4αJ2
9 + O(α2J2) [41]. Since the trimer-trimer in-

teraction is ferromagnetic, the ground state at J1 = 0 has a
nonzero magnetization.
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FIG. 5. (Color online) A schematic magnetization curve of the
UJ ladder (1). J c1

2 and J c2
2 represent quantum critical points. The

SMTLL phase exists in the region J c1
2 < J2 < J c2

2 .

At J1 = 0, the residual spins [depicted as blank cir-
cles in Figs. 4(a) and 4(b)] are isolated from the trimers.
The nonzero J1 switches on trimer-spin interactions.
The low-energy effective Hamiltonian for J2/J1 � 1 is
given by

Hferri = −JF

∑
j∈Z

T j · T j+1 +
∑
i,j∈Z

Jij S̃i · T j , (47)

where spins not participating in forming trimers are relabeled
as S̃j . Figure 4 (b) shows interactions of the effective
model (47). If we are concerned only with the ground-state
magnetization of the trimer-spin chain (47), we do not
even need the details of coupling constants. We use only
three facts, JF > 0, Jij � 0, and

∑
l∈Z Jil > 0 for i,j ∈ Z.

These conditions enable us to apply the Marshall-Lieb-Mattis
theorem [42,43] to the model (47). This theorem imposes that
the ground state of the trimer-spin chain (47) must have a
fixed magnetization irrespective of parameters JF and Jij .
The ground-state magnetization of the commensurate phase
is exactly Eq. (42). Since the ferromagnetic order of the trimer
is exactly the ferrimagnetic order of spins, the commensurate
phase is exactly the ferrimagnetic phase. Figure 5 shows the
ground-state magnetization of the UJ ladder, which reproduces
the numerically derived one [24] in the α = 1 case. The
Marshall-Lieb-Mattis theorem allows us even to take a limit
α → 1. However, compared to the numerical result [24], we
overestimated J c1

2 because of the imbalance α � 1.

IV. RELATION TO THE GENERAL THEOREM

Now that we have a description of the SMTLL and its
Nambu-Goldstone boson, we can compare our result with the
general theorem [15–17], claiming that the number of broken
generators of the symmetry group determines the number
of Nambu-Goldstone boson. The canted phase generally has
a nonrelativistic Nambu-Goldstone boson and a relativistic
Nambu-Goldstone boson [16,44], which is true in the 2D UJ
antiferromagnet [26]. In the 1D case (1), the U (1) symmetry
is recovered for the ground state as a result of quantum
fluctuations. In the TLL phase, even the full SU (2) symmetry
is recovered. Therefore, we conclude that the general theorem
[16,17] is applicable to 1D systems at the classical level.

The SMTLL phase results from the competition of the
quasi-long-range Néel order of the TLL and the ferrimagnetic
order. The geometrical frustration is necessary for the SMTLL
to exist because, in the absence of geometrical frustration,
the Marshall-Lieb-Mattis theorem prohibits the existence of
an incommensurate magnetization (41). However, frustration
alone is not sufficient. A frustrated diamond chain [19]
has no incommensurate phase. This is because the diamond
chain cannot have the TLL and the ferrimagnetic structures
simultaneously. By contrast, the UJ ladder is a superposition
of the three-leg ladder leading to the TLL and the diamond
chain leading to the ferrimagnetic order. In this respect an
investigation of itinerant ferrimagnet [45] in 1D would be very
interesting.

In conclusion, in this paper, we showed the existence
of a spontaneously magnetized phase, with TLL properties,
the SMTLL. We gave an effective theory for this phase
and computed the magnetization and the dynamical structure
factors. We derived the nonrelativistic Nambu-Goldstone
boson near k = 0 and the SMTLL near k = π .
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