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Solving lattice density functionals close to the Mott regime
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We study a lattice version of the local density approximation (LDA) based on Bethe ansatz (BALDA). Contrary
to what happens in density functional theory in the continuum and despite its name, BALDA displays some very
nonlocal features and it has a discontinuous functional derivative. The same features prevent the convergence of
the self-consistent Kohn-Sham cycle thus hindering the study of BALDA solutions close to a Mott phase or in the
Coulomb blockade regime. Here, we propose a numerical approach which, differently from previous works, does
not introduce ad hoc parameters to smear out the singularity. Our results are relevant for all lattice models where
BALDA is applied ranging from Kondo systems to harmonically trapped Hubbard fermions. As an example, we
apply the method to the study of a one-dimensional lattice model with Hubbard interaction and a staggered poten-
tial which can be driven from an ionic to a Mott-insulating state. In the Mott regime, the presence of a “vacuum”
allows us to calculate the different contribution to the gap and to highlight an ultranonlocality of BALDA.
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I. INTRODUCTION

The extension of density functional theory (DFT) to treat
lattice fermions dates back to the 1980s and it has been recently
the subject of a revived interest [1–33]. One motivation to
develop lattice DFT (LDFT) is that it provides a “sandbox”
environment where one can study the subtleties of DFT itself,
clarify the origin of inaccuracies in approximate function-
als [1–13], and test ideas on new functionals [11]. Another
motivation is provided by the problem of solving lattice models
in the presence of an inhomogeneous potential. Lattice models
are at the basis of our understanding of the phenomenology
of strongly correlated, magnetic, and disordered systems.
Their fundamental relevance has in recent years motivated
a number of successful experiments with ultracold atomic
gases in optical lattices [34–36] fueling at the same time
the development and refinement of efficient theoretical tools
(see, e.g., [37]) among which LDFT has become particularly
useful [21,38,39]. Static and time-dependent [14–16] lattice
DFT were indeed used to investigate the physics of Hubbard
models with onsite interaction [13,17–22], Kondo models
[23–28], disordered interacting lattice models [31,32], and spin
liquids [33].

The local density approximation (LDA) is the commonest
approximation to the exchange-correlation (xc) functional
of DFT, already proposed by Hohenberg and Kohn [40],
it was first applied to a lattice model by Gunnarsson and
Schönhammer [3,7] and subsequently by Lima et al. [10].
In the case of the one-dimensional Hubbard model, there is
the advantage that the exact solution of the homogeneous
reference model is known by Bethe ansatz [41] (BA). One can
thus base the LDA on the exact energy or use the approximate
but accurate analytical expressions available [7,9,10,17]. One
intriguing aspect of such Bethe ansatz LDA (BALDA) func-
tional is that, differently from the standard continuum LDA,
it has a discontinuous functional derivative. Such nonanalytic
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behavior stems directly from electron correlation and it has
important consequences on the relation between the charge
gap and the gap in the Kohn-Sham (KS) spectrum [13,42–50].
Furthermore, as it will be explained in the following, it is
ultimately responsible for an ultranonlocality of BALDA,
which is absent in standard continuum LDA.

Derivative discontinuities and the associated cusp singu-
larities in the exchange-correlation energy undermine the
convergence of self-consistent KS equations. So far, various
approaches have been proposed to solve this problem for
the BALDA functional including smoothening of the cusp
minimum by going to a finite temperature [19] or by adding
an ad hoc parameter [20,24] or by relying on Thomas-Fermi
approximation [22]. Here, we present a solution which allows
us to treat in a simple and clean manner the cusp singularity
of the BALDA functional at zero temperature: instead of the
site occupation, we use the LDA local chemical potential as a
variable and we develop self-consistent equations.

As an example, we apply our method, which we call μ-
BALDA, to a Hubbard model subject to a staggered spin-
independent site potential, also known as the ionic Hubbard
model [10,51–53] (IHM). At half-filling, by modifying the
ratio between Hubbard interaction and the staggered potential,
it can be tuned continuously from an ionic to a Mott-insulating
regime [51,54]. In both regimes, we calculate the xc potential
and the charge gap by applying μ-BALDA.

The paper is organized as follows. In Sec. II, we give a
description of the model and of the basics of lattice DFT. In
Sec. III, we present a brief review of BALDA, we explain how
the cusp problem emerges, and we introduce the μ-BALDA
algorithm. We then apply our method to the IHM in Sec. IV.
As a proxy to a solid with a surface we study a bulk system
with high binding energy attached to a zero binding energy
chain representing the vacuum [13]. This geometry allows us
to have a well-defined KS potential at all sites, even those with
integer density, and to highlight an ultranonlocal behavior of
LDA in the lattice, computing also the different contributions
to the charge gap in the discontinuous situation. We conclude
in Sec. V.
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II. LATTICE DENSITY FUNCTIONAL THEORY

Let us start by outlining of the basics of LDFT. We consider
a Hubbard chain in an inhomogeneous static field vx :

H = −t
∑

xσ

(c†xσ cx+1σ − nxσ + H.c.) + U
∑

x

nx↑nx↓

+
∑

xσ

vxnxσ , (1)

where c
†
xσ creates an electron with spin σ = ↑,↓ at site

x and nxσ = c
†
xσ cxσ , while U and t are, respectively, the

interaction constant and the hopping amplitude. Notice that
we have included an onsite contribution in the definition of
the “kinetic energy,” i.e., in the first term on the right-hand
side of Eq. (1). With this choice and “external potential”
vx = 0, the lowest-energy one-particle state has zero energy in
analogy with the continuum model. This will be useful below
to simulate a “vacuum” region (Sec. IV).

As in standard Kohn-Sham continuum DFT [55], also in
lattice DFT, the total ground-state energy can be obtained by
minimizing a functional written as the sum of three density-
dependent terms

E = TKS + EHxc + Ev, (2)

where TKS is Kohn-Sham kinetic energy functional, EHxc is
the Hartree-exchange-correlation (Hxc) functional, and

Ev =
∑

x

vxρx,

with ρx ≡ 〈nx〉 denoting the density at site x. Notice that the
“functional” is actually a multivariable function of the onsite
densities ρx . The functional EHxc is “universal” in that it does
not depend on the external potential vx .

Minimization of the functional with the constraint
∑

x ρx =
N leads to the KS equations

[t̂ + vs
x]ϕκ,x = εN

κ ϕκ,x, (3)

where t̂ denotes the hopping operator t̂ϕκ,x = −t(ϕκ,x−1 +
ϕκ,x+1 − 2ϕκ,x) and εN

κ indicates the κth eigenvalue of the
N -particle system and κ = kσ includes the orbital k and spin
components. The KS potential is defined as

vs
x = vHxc

x + vx. (4)

Even if not explicitly indicated, vs
x and vHxc

x depend on
the number of particles N . In the lattice formulation, the
functional derivative with respect to the density becomes a
partial derivative with respect to the onsite density [2,29]
leading to the following definition of the Hxc potential:

vHxc
x = ∂EHxc

∂ρx

. (5)

The ground-state density of N particles is composed of all
occupied KS orbitals

ρx =
∑

κ∈occ.

ϕ∗
κ,xϕκ,x . (6)

Since the vHxc
x is a functional of the total density, Eqs. (3)

and (6) have to be solved self-consistently.

Due to the constraint on the total number of particles,
the Hxc potential is defined up to a constant both in the
continuum and in the lattice. One can extend DFT by
considering ensemble densities [42,49,50,56]. In this case,
even the constant term in vHxc

x is determined.
Intrinsic to the ensemble formulation of DFT are derivative

discontinuities of the exchange-correlation energy functional
which arise when the total density crosses an integer N . As first
discussed by Perdew et al. [42], these lead to a discontinuous
uniform change �xc in the KS potential vs

x when an integer
filling is approached from the left or from the right, namely,

�xc = vHxc
x (N+) − vHxc

x (N−), (7)

where N± = N±η with η = 0+. It can be shown that the
charge gap of the system �c ≡ E0(N + 1) + E0(N − 1) −
2E0(N ), with E0(N ) the N -particle ground-state energy,
satisfies

�c = �KS + �xc, (8)

where �KS = εN
N+1 − εN

N is the single-particle Kohn-Sham
gap. Another important result is the DFT version of Koopman’s
theorem which is valid both in the continuum [43,57] and in
the lattice [13] and it relates the highest occupied Kohn-Sham
eigenvalue εN

N to the ionization energy

IN = −εN
N , (9)

where IN ≡ E0(N − 1) − E0(N ). One can also show [58] that
if particles are bound in a finite region of space around the
origin, vHxc

x → 0 when x → ∞, such that ρx → 0.

III. BETHE ANSATZ LOCAL DENSITY APPROXIMATION

Within BALDA, the Hxc energy functional is approximated
by a sum of local contributions as follows [9,10,59]:

EHxc =
∑

x

eHxc
x =

∑

x

[ehom(U,ρx) − ehom(0,ρx)], (10)

where ehom(U,ρ) is the energy per site of the standard Hubbard
model defined as

HH = −t
∑

xσ

(c+
xσ cx+1σ + H.c.) + U

∑

x

nx↑nx↓. (11)

We do not include here the onsite term in the kinetic energy
which does not affect Eq. (10) but it affects the zero of the
homogeneous chemical potential defined in the following.

In the one-dimensional case, the energy of the uniform
system can be calculated exactly for all fillings by BA [41]
and one can easily relate the appearance of a finite �xc

to the presence of a cusp singularity in the BA energy
density ehom(U,ρ) at ρ = 1. The physical consequences of this
nonanalytic behavior and the solutions of the related technical
difficulties in the implementation of KS-DFT are the subject of
the following sections. Most of the results presented below can
be generalized to higher dimension using numerical solutions
of the uniform many-body problem.
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FIG. 1. (Color online) (a) Examples of cusp and round minima in
BALDA for U = 6t (cusp), U = 3t (round) in the presence of an ionic
potential of amplitude V = 1t . In the presence of an inhomogeneous
potential, both situations coexist on the same system. (b) Hxc and
chemical potentials vHxc

x and μ̃x , as functions of the site occupation
for U = 6t and vx = 0. (c) vHxc

x (full line) and μ̃x (dotted line) as
functions of the interaction strength. Curves are labeled by the onsite
occupation ρx . In the case of ρx = 1±, the two quantities coincide
(only vHxc

x shown). (d) A zoom of panel (b) around ρx = 1 to compare
the nonmonotonous behavior of vHxc

x with the monotonous behavior
of μ̃x .

A. Cusp problem and μ-Bethe-ansatz
local density approximation

Most difficulties in the implementation of BALDA are
related to the fact that BA energy ehom(U,ρ) has a cusp at
ρ = 1. The implications for BALDA functional are evident
in Fig. 1(a) where we show two energy curves describing the
typical dependence of BALDA energy on the occupation ρx

of a site: when the energy minimum with respect to ρx is
located away or at ρx = 1, the functional has, respectively, a
round or a cusp behavior at equilibrium. In the latter case,
the Hxc potential is a discontinuous functional of the density
and, as recently discussed in Ref. [19], the convergence of KS
self-consistent cycle is not guaranteed. More precisely, when
the density of a site is away from half-filling, ρx �= 1, the
Hxc potential is obtained as usual as the derivative of the Hxc
energy [Eqs. (5), (10)]

vHxc
x = μ̃hom(U,ρx) − μ̃hom(0,ρx), (12)

where the local chemical potential μ̃hom(U,ρ) coincides with
the chemical potential of a homogeneous system with density
ρ and interaction U :

μ̃hom(U,ρx) = ∂ehom

∂ρx

(U,ρx). (13)

On the contrary, for ρx = 1, the standard definition given
in Eq. (12) becomes ambiguous, indeed the derivative of
ehom(U,ρ) has a jump whose amplitude equals the Mott
gap �hom

Mott of the uniform system. This leads to numerical

instabilities if one uses a standard approach to solve Kohn-
Sham equations.

Notice that Eqs. (12) and (13) together with the definition of
Eq. (11) imply that vHxc and μ̃hom have the same limits when
ρ → 1±, as shown in Fig. 1(b). We can thus define v±

Hxc =
μ̃hom

± and we have μ̃hom
+ − μ̃hom

− = v+
Hxc − v−

Hxc = �hom
Mott.

Figure 1(c) shows v+
Hxc, v−

Hxc (full lines labeled 1±) as a function
of U/t .

Notice also that not only one value of the density (ρx = 1)
corresponds to a continuum of values of vHxc, but also certain
values of vHxc correspond to three values of the density as one
can see in Fig. 1(d), which may lead to additional numerical
problems.

As mentioned in the Introduction, various methods have
been developed to treat these problems: some modify the
BALDA functional relying on a sort of Thomas-Fermi ap-
proximation [20,24], others entail the introduction of an ad
hoc parameter [22] or a finite temperature to smoothen the
discontinuity [19].

Here, we propose a different route which allows us to
solve the KS equations self-consistently without any additional
parameter. Instead of ρx , we take the chemical potential of the
homogeneous system as a variable, in this sense we name our
method by μ-BALDA. Since, as shown in Fig. 2(a), the
chemical potential in Eq. (13) is a monotonous function of the
density Eq. (13) can be inverted. Using μ̃x as the independent
variable (to avoid confusion with the function μ̃hom), the
inverse can then be written as

ρx = ρhom
x (U,μ̃x). (14)

The inverse function ρhom
x (U,μ̃x), shown schematically in

Fig. 2(b), does not have discontinuities but it has plateaus
for μx inside the Mott gap and above the upper and below the
lower Hubbard band, i.e., for ρx = 0,1,2. Inserting Eq. (14)
in (12), we obtain the LDA Hxc potential in terms of μ̃x :

vHxc
x (μ̃x) = μ̃x − μ̃hom[

0,ρhom
x (U,μ̃x)

]
. (15)

This function is shown schematically by the blue dashed line
in Fig. 2(b). The advantage of this change of variable becomes
clear when we compare Eq. (12) with (15). In the former,
the potential is a discontinuous function of the independent
variable ρ, while in the latter it is a continuous function of the
variable μx as shown in the two panels of Fig. 2. Indeed, the last
term in Eq. (15) is the chemical potential of the noninteracting
system, which has no discontinuity and it simply becomes
constant when ρ is constant, i.e., in the plateau regions. The
plateaus then simply map into a linear behavior of vHxc

x (μ̃x)
which is continuous and well defined for all values of μ̃x as
shown by the dashed line in Fig. 2(b). As we will discuss in
the following, curing the discontinuity solves the convergence
problem.

According to the Hohenberg and Kohn theorem [1,40],
and its lattice generalization [2,59], the interacting ground-
state density determines uniquely (up to a constant) the
noninteracting potential that yields the same density as the
interacting one, which should hold regardless of the presence
or absence of cusps (except [2,59] in the trivial case of
total filling ρ = 2). The KS equations (3) together with
prescription given in Eq. (6) yield the noninteracting density
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ZU-JIAN YING, VALENTINA BROSCO, AND JOSÉ LORENZANA PHYSICAL REVIEW B 89, 205130 (2014)

Large U

U 0

HF

0 .0 0 .5 1 .0 1 .5 2 .0
2
0
2
4
6
8
10
12

ρ

μh
om
t

(a)

0 5 10

0

5

10

0 .

0 .5

1 .

1 .5

2 .

μ t

v
H
x
c
t

ρ

(b)

FIG. 2. (Color online) (a) Uniform chemical potential for large
U as a function of filling. According to Ogata and Shiba [60] in the
U/t → ∞ the system can be mapped to a spinless fermion model.
Therefore, the chemical potential for 0 < ρ < 1 has a simple sine
behavior. At ρ = 1, the chemical potential jumps by the Mott gap.
In the picture we took U = 10 to have a finite gap. For ρ > 1, the
chemical potential has again a sine form. For comparison, we also
plot the chemical potential of noninteracting electrons and the HF
chemical potential. (b) The red full line (right scale) is the density
as a function of the chemical potential inverting the corresponding
curve in panel (a). The dashed line (left scale) illustrates the behavior
of the exchange-correlation potential as a function of local chemical
potential [Eq. (15)].

as a functional of the Hxc potential ρx = ρx[vHxc], where the
square brackets abbreviate the multivariable functions, i.e., we
set ρx(vHxc

1 , . . . ,vHxc
L ) = ρx[vHxc].

Inserting Eq. (15) in (3), we obtain the density as functional
of the local chemical potential μ̃x , i.e.,

ρx = ρx[vHxc(μ̃)]. (16)

Finally, to obtain self-consistency, we request that this density
coincides with the density from Eq. (14):

Fx[μ̃] ≡ ρx[vHxc(μ̃)] − ρhom
x (U,μ̃x) = 0. (17)

Before proceeding, we stress that, as indicated by the square
and round brackets on the right-hand side of Eq. (16), in spite
of the local approximation used to define the potential vHxc,
the relation between ρ and μ̃ is nonlocal. Generally, one can
expect that the density from Eq. (16) decreases if the local
vHxc increases. This follows simply from the fact that this
variation is governed by the noninteracting compressibility
which must be positive. Since vHxc is an almost monotonous
increasing function of the local chemical potential μ̃x , the local
density in Eq. (16) should decrease when μ̃x increases. Instead,

the density as a function of μ̃x from Eq. (14) is manifestly
an increasing function of μ̃x . This warrants that the curves
defined by Eqs. (14) and (16) should cross at some value of
μ̃x when one μ̃x is changed. The only potential problem may
occur for μ̃x just below and above the Mott gap region, where
there is a small region of nonmonotonous behavior of Eq. (15)
[dashed line in Fig. 2(b)]. In principle, this may lead to multiple
solutions, but in all numerical implementations we never found
this problem.

While the above arguments do not warrant the convergence
when all μ̃x are moved simultaneously, it is clear that the main
problem related to the discontinuity in Eq. (12) is not there
any more.

In practice, Eqs. (17) can be solved iteratively starting from
some initial guess for the chemical potentials μ(0)

x . Here, we
expand Fx to arrive at a set of linear recursive equations:

Fx[μ̃(r−1)] + ∇μ̃Fx[μ̃]|μ̃=μ̃(r−1) · (μ̃(r) − μ̃(r−1)) = 0, (18)

where we defined the vector μ̃ = (μ̃1, . . . μ̃L). The gradient
in Eq. (18) can be computed analytically using perturbation
theory or numerically from finite differences. We found the
latter option to be faster. For a reasonable initial set μ̃(0)

x ,
Eqs. (18) converge rapidly to the final solution while, in the
presence of cusps, the conventional KS iteration scheme does
not converge.

We stress that our algorithm treats the cusp and normal
sites in a unified way. One does not need to assume or guess
beforehand which site will be a cusp. If the self-consistent
solution μ̃x falls inside (outside) the range [μ̃hom

− ,μ̃hom
+ ], the

site x is a cusp (normal) site [see Fig. 4(a)]. This range
corresponds to the central plateau in the full curve of Fig. 2(b).
Being in the plateau region ensures that such sites have ρx = 1.
The Kohn-Sham potential is determined implicitly by Eq. (16)
with the density of the cusp sites on the left fixed to ρx = 1. The
Kohn-Sham potential for noncusp sites, instead, is determined
by the usual stationary condition which leads to Eq. (5). Thus,
in all sites the Kohn-Sham potential is well defined.

To understand the results discussed below concerning the
inhomogeneous potential case, it is useful to discuss the
behavior of μ̃hom and vHxc in the uniform case as a function of
interaction strength and filling. At zero filling [curves labeled
0 in Fig. 1(c)] and independently of interaction strength, it is
easy to see that our definitions lead to vHxc = 0 (solid blue
curve) and μ̃hom = −2t (dashed line). For larger fillings at a
given interaction strength, vHxc increases due to the effective
repulsion among particles.

For small U , the Hxc potential is dominated by the Hartree
part and it behaves as vHxc ≈ Uρx/2. This behavior is clear
up to U/t ∼ 2 from the curves labeled 1± in Fig. 1(c)
which represent v±

Hxc. For larger U/t , the two curves clearly
diverge. Such difference is actually present for any U/t (but
exponentially small for small U/t) and represents the Mott
gap. Furthermore, for large interaction, v−

Hxc tends to a constant
while v+

Hxc increases linearly with U . The limiting value of
v−

Hxc can be understood from the fact that the charge sector
of the uniform Hubbard model can be mapped [60] for large
U to a spinless fermion model with bandwidth 4t describing
the lower Hubbard band for ρx < 1. This point is also clear
from Fig. 2(a) where we see that, as the filling increases,
the “large-U” chemical potential changes from −2t for zero

205130-4



SOLVING LATTICE DENSITY FUNCTIONALS CLOSE TO . . . PHYSICAL REVIEW B 89, 205130 (2014)

filling to 2t for filling ρ = 1− while the HF chemical potential
increases linearly. Notice that the behavior of the exact BA
chemical potential μ̃hom for U = 6t shown in Fig. 1(b) is
well approximated by the “large-U” chemical potential. We
also see that vHxc has the same limiting values as μ̃hom for
ρ → 1±. For ρx = 1+, both the chemical potential and vHxc

jump by an amount equal to the Hubbard gap which is of order
�Mott = U − 4t in this limit. The behavior for filling larger
than 1 can be understood using particle-hole symmetry.

The fact that vHxc(ρx < 1) saturates for large U (instead of
having the naive mean-field behavior vHxc = Uρx/2) is typical
of approaches where correlations are taken into account so
electrons can avoid the large Coulomb cost. The present picture
can be compared with similar results obtained using Gutzwiller
approximation [see Fig. 1(c) of Ref. [61]). There, the self-
energy and the uniform chemical potential for filling ρx < 1
saturate at large U and they jump by the Mott gap on passing
from ρx = 1− to 1+. One can interpret the limiting value of
vHxc(ρx < 1) as the effect of a residual kinematic interaction
between quasiparticles in the lower Hubbard band.

IV. APPLICATION TO THE IONIC HUBBARD MODEL

We now apply μ-BALDA to the study of the ionic Hubbard
model (IHM), a Hubbard model with onsite interaction and a
staggered potential. In closed lattice models, the single-particle
potential that yields the ground-state density of the interacting
system is determined up to a constant since adding a constant
to the potential leaves the charges invariant. In open systems
which have a “vacuum” region one can fix the constant in
such a way that the potential vanishes when both the density
and the external potential vanish, far from the region where
the particles are bound. In Ref. [13], we considered the open
system shown in Fig. 3, with a vacuum region to completely
determine the exact Hxc potential of the “bulk” Hubbard chain
from a knowledge of the exact density.

In BALDA, in principle, the zero of the Hxc potential
is determined by the explicit expression (12). However, as
explained above, the potential is not determined by this
expression when ρx = 1, thus to remove any ambiguity on the
potential we find it useful to consider the same geometry as in
Ref. [13]. It will become clear in the following that in reality the
vacuum region is not essential but it is enough to have just one
site in the system in which ρx �= 1 to completely determine
the potential. Still, we use the geometry of Ref. [13] which
is conceptually simple and analogous to the real situation

FIG. 3. Schematic picture of the model studied.

in a solid. In addition, this geometry (or any geometry with
a confining potential) presents a challenge to conventional
algorithms because, as we shall see, cusp sites coexist with
noncusp sites.

Specifically, we consider a Hubbard chain of LB sites with
a large binding energy, called “the bulk,” followed by a chain
of LV sites with zero binding energy, termed “the vacuum,”
with open boundary conditions. The external potential vx

includes both a steplike potential which accounts for the “work
function” of the “solid” and the staggered field

vx = −[w0 + V (−1)x]θ (LB − x + 1/2),

where w0 > 0 denotes the well depth and V > 0 is the
amplitude of the staggered field. Here, we study the model
around half-filling and we consider both the band-insulating
(BI) and the Mott-insulating phase (MI), the latter appearing
when the Hubbard interaction U dominates over the staggered
potential U � 2V (see, e.g., Refs. [13,51,54]).

A. Shift in the exchange-correlation potential and
ultranonlocality of the lattice local density approximation

Figure 4 shows the Hxc potential [panels (a) and (b)] and the
density [panels (c) and (d)] when the bulk chain is half-filled
(N = LB) and when one particle is added or subtracted with
respect to half-filling (N = LB ± 1).

At half-filling and for large onsite repulsion, the bulk is in
the Mott phase and the system becomes nearly incompressible.
It therefore does not react to the staggered potential and all bulk
sites have charge ρx ∼ 1 [orange line in Figs. 4(c) and 4(d)].
When this occurs, the KS potential becomes nearly constant in
the bulk and vHxc acquires a staggered component behaving as
V (−1)x which “screens” out the external potential, as shown in
Figs. 4(a) and 4(b). This is a strong correlation effect captured
by BALDA, as opposed to LDA in the continuum which would

FIG. 4. (Color online) Panels (a) and (c): behavior of the local
Hxc potential vHxc

x and of the density ρx for N = LB and LB ± 1 with
U = 8t , w0 = 10t , V = t , LB = 40, and LV = 20. Panels (b) and
(d) are a zoom of panels (a) and (c) where we only plot for N = LB

and LB + 1 and we also show the local chemical potential μ̃x . The
dashed-dotted lines in panels (a) and (b) indicate the potentials μ̃hom

+
and μ̃hom

− .
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ZU-JIAN YING, VALENTINA BROSCO, AND JOSÉ LORENZANA PHYSICAL REVIEW B 89, 205130 (2014)

not be able to describe a similar situation in a heteroatomic
chain of atoms.

What determines the value of vHxc in the bulk with respect
to the vacuum? On a closer look at the density in Fig. 4(d) one
sees that a small amount of charge leaks to the vacuum from the
site with x = 39, which is the site with small ionization energy
closer to the surface. Having a density smaller than 1, this site
is not affected by the cusp problem and it has a well-defined
Hxc potential vHxc

39 ≈ v−
Hxc ≈ 2t . Moreover, since the density

has to be homogeneous and all the sites must have nearly the
same effective potential, the Hxc potential of the other odd
sites will be also very close to v−

Hxc while the Hxc potential
of the even sites has to satisfy the relation vHxc

2x = v−
Hxc + 2V ,

so that vs
2x � vs

2x+1 � v−
Hxc + V . Notice that all these sites are

cusp sites with ρx = 1, so their Hxc potential is not determined
by the local relation (12) but by the ultranonlocal condition
that all sites need to have the same density. In other words,
due to Eq. (16), the condition that the densities of certain
sites is fixed to 1 corresponds to a highly nonlocal condition
for the potential and it is fulfilled through a readjustment of
the potential on all other sites as dictated by Eqs. (17). Our
numerical algorithm correctly converges to this solution with
a mixture of cusp and noncusp sites.

For N = LB + 1, the role of odd and even sites is reversed.
Indeed, as shown by the squares in Fig. 4(c) in this case, some
of the even sites have a density slightly above 1 and, having
their Hxc potential determined by Eq. (12), they play the role of
reference sites while the odd sites have all unitary occupations
and their potential is fixed by the even sites potential. In this
case, we have vHxc

2x = v+
Hxc and vHxc

2x+1 = v+
Hxc − 2V . The case

N = LB − 1 is very similar to the case N = LB , in this case, as
explained above, some of the odd sites have a density slightly
below 1 and they play the role of reference sites.

From the above discussion, we conclude that the external
staggered potential is screened in the even sites for N =
LB,LB − 1 and in the odd sites when N = LB + 1. The net
result is that vHxc jumps by a constant quantity of order of
�xc ∼ �hom

Mott − 2V , with �hom
Mott ∼ U − 4t and where we used

the fact that v+
Hxc − v−

Hxc = �hom
Mott. The relation with the charge

gap will be discussed in Sec. IV B.
It is easy to compute the exact ionization energies in the

atomic limit directly from Eq. (1) setting t = 0. In order to
satisfy Koopmans theorem and in the case of a bulk uniform
system (as found in the Mott regime), the exact KS potential
in the bulk should satisfy vs

x = −I . Therefore, in this limit we
can obtain the exact xc potential quite easily. Interestingly, the
KS potentials obtained by μ-BALDA converge to the same
results as shown next.

At half-filling ionization occurs from odd sites leading to
I � w0 − V and vs ∼ −w0 + V in agreement with the μ-
BALDA results. In the case N = LB + 1 (shown with blue
lines in Fig. 4), the added charge will reside mainly on the
even sites (vx = −w0 − V ) so that ionization will occur from
these sites. In the atomic limit in the Mott regime one obtains
I = w0 + V − U . This leads to vs ∼ −w0 − V + U which
implies vHxc

2x+1 ∼ U − 2V ∼ v+
Hxc − 2V and vHxc

2x ∼ v+
Hxc, again

in agreement with the μ-BALDA results.
Let us conclude the discussion of Fig. 4 with a technical

remark. In the exact many-body solution, only the uniform
compressibility is zero but the compressibility is small but

FIG. 5. (Color online) Hxc potential of even (upper blue band)
and odd sites (lower orange band) across the Mott transition for
fillings of N = LB (a) and N = LB + 1 (b) for LB = 20, LV = 20,
and w0 = 15t . The dashed-dotted lines represent v+

Hxc and v−
Hxc whose

difference equals the Mott gap �Mott.

finite at finite momentum. Therefore, differently from what is
predicted by BALDA, in the exact solution, for all V �= 0 the
charge imbalance between odd and even sites is nonvanishing.
For large U/t , however, the deviations from the BALDA ρx =
1 solution are expected to be small, the compressibility being
trivially zero at all momenta in the atomic limit.

Figure 5 shows how the xc potential of odd and even sites
evolves from the band-insulating regime at small interaction
to the Mott-insulating regime at large interaction. In the band-
insulator regime, the xc potential tends to screen the external
potential but it lies outside the interval [v−

Hxc,v
+
Hxc] marked by

the dotted-dashed red lines. In this regime, the occupation of
the sites is larger or smaller than 1. As the interaction increases,
the system becomes less compressible and the charges tend to
approach one. When the xc potential of the different sites (blue
and orange curves) hits the dotted-dashed red lines (or more
precisely the μx fall inside [μ̃hom

+ ,μ̃hom
− ]), the system enters the

Mott-insulating regime. The density becomes homogeneous
and the difference between the odd and even site potentials
equals 2V . Depending on whether the reference sites have a
density smaller or larger than 1, even sites align to v−

Hxc (a) or
odd sites align to v+

Hxc (b).
We stress again that the above results show how, within

BALDA, strong correlation leads to an ultranonlocality of the
Hxc potential. The potential of the whole system is indeed
fixed by the presence of just one or few sites whose density is
slightly below or above half-filling. As mentioned above, it is
enough to have a single site in the system with density different
from 1 to obtain the absolute value of the xc potential in all
sites. Leakage to the vacuum is a natural way to obtain such a
reference site, but an impurity would work as well. For a large
periodic closed system, the absolute value of the xc potential
can be determined by a limiting procedure considering small
deviations from half-filling from below or from above.

B. Charge gap

As stated in Eq. (8), the fundamental charge gap �c can
be written as the sum of two terms, the KS gap �s , and
a contribution coming from the discontinuity of vxc upon
the addition of an infinitesimal amount of charge to the
system [Eq. (7)]. The latter is site independent and it can
be calculated, in some simple cases even analytically [13,62].
A rigorous definition of the discontinuity in vxc requires using
ensemble DFT [49,50,56]. Alternatively, �xc can be estimated

205130-6



SOLVING LATTICE DENSITY FUNCTIONALS CLOSE TO . . . PHYSICAL REVIEW B 89, 205130 (2014)

employing a formula first derived by Sham and Schlüter in
Ref. [44], based on finite differences, which reads as

�xc � �N,N+1
xc =

∑

x

[
vxc

x (N + 1) − vxc
x (N )

]
ρN

N+1,x , (19)

where ρN
N+1 is the (N + 1)th KS orbital density for N particles

and vxc
x (N ) denotes the xc potential of the N -particle system

at site x. The difference between vxc(N ) and vxc(N + 1) on
the right-hand side of the above equation is in general site
dependent due to the fact that the charge added is finite.

The estimate of Eq. (19), which we adopt here, converges to
the exact result of Eq. (7) when the local change in the density
upon addition of an electron becomes infinitesimally small, as
in extended systems in the thermodynamic limit. Eventually,
we remark that a simple expression of the error �N,N+1

xc − �xc

can be obtained along the lines of the Supplemental Material
of Ref. [13].

We now come to the discussion of μ-BALDA results for
the charge gap. As mentioned in the Introduction, the ionic
Hubbard model displays a transition between an ionic and a
Mott-insulating regime. As thoroughly discussed in a number
of papers (see, e.g., Ref. [54] and references therein), the Mott
regime appears when the Hubbard interaction dominates over
the staggered potential and the charge gap has a minimum at
the transition point.

In Fig. 6, we plot the charge gap (obtained as total energy
differences) as a function of V [Fig. 6(a)] and U [Fig. 6(b)]
obtained with μ-BALDA and compared to practically exact
numerical results. In the Mott regime, the charge gap equals
the xc discontinuity and the μ-BALDA KS gap �KS vanishes
as the density becomes homogeneous. On the contrary, in the
ionic regime the charge gap approximately coincides with the
KS gap while the xc discontinuity becomes vanishingly small,
since in this regime there are no half-filled sites.

Taking into account that the μ-BALDA solution is homoge-
neous in the Mott phase, we can give an analytical expression
for the behavior of the μ-BALDA charge gap in the Mott
regime. In this case, the charge gap in Eq. (8) is exhausted
by the discontinuity in the potential obtained in the previous
section,

�c = �hom
Mott − 2V � U − 4t − 2V, (20)

where the last expression is valid for large U/t . In the large-U
limit, the critical value of the potential is given by

Vc = (U − 4t)/2. (21)

Clearly, the transition from the Mott regime to the band-
insulating regime occurs when V ≈ 3.0t in μ-BALDA and
V ≈ 4.3t in Lanczos [Fig. 6(a)].

Equations (20) and (21) explain the linear behavior ob-
served in the explicit solution of μ-BALDA in the Mott regime
[small V in Fig. 6(a) and large U in Fig. 6(b)] and also
the critical values Vc ≈ 3t in Fig. 6(a) and Uc = 2V + 4t ≈
6t . The latter result overestimates the exact critical U on
Fig. 6(b) which we attribute to the inaccuracy of the large-U
approximation at the critical value.

In general, BALDA underestimates the charge gap in the
Mott regime [small V in Fig. 6(a) and large U in Fig. 6(b)]
and it fails to describe the nonlinear dependence of the gap for
small V [Fig. 6(a)]. These failures can be related to the fact

FIG. 6. (Color online) (a) Charge gap �c as a function of V for a
half-filled ring of L = 12 sites with U = 10t and periodic boundary
conditions. We also show exact results obtained with Lanczos exact
diagonalization [63]. (b) Charge gap �c (dashed blue line) and KS
gap �KS (dotted-dashed orange line) calculated with μ-BALDA. The
results are obtained for LB = 20, LV = 20, and w0 = 15t and V = t .
For comparison, also the DMRG [63] charge gap is shown (dotted
black line).

that in the Mott regime, BALDA tends to generate a ground
state which is more homogeneous than the true one as we
remarked in the previous section. The inhomogeneity in the
exact density will be associated to a small Kohn-Sham gap in
the exact Kohn-Sham spectrum which will tend to diminish the
discrepancy. For large V in the band-insulating regime, the μ-
BALDA charge gap rapidly converges to the exact result which
approximately coincides with the KS gap. This shows that
in the band-insulating regime, despite the strong interaction,
BALDA works remarkably well.

It is interesting to notice that Eqs. (20) and (21) converge to
the exact result in the atomic limit t = 0. In this case, the charge
gap is given by �c � |U − 2V | and the transition occurs
at U � 2V .

V. CONCLUSIONS AND DISCUSSIONS

Probably one of the most popular LDFT approaches called
BALDA has until now required ad hoc regularizations of the xc
energy to describe the Mott phase. In this work, we have solved
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this long-standing problem, developing a method to find the
exchange-correlation potential of a lattice system in the Mott
regime with a fully self-consistent procedure. Differently from
previous works, our algorithm, which we call μ-BALDA, uses
the local chemical potentials as variables. As an example,
we apply the method to the study of the transition between
Mott- and band-insulating regimes of the ionic Hubbard model.
Aside from the general methodological progress, we obtain
several results: (i) we have shown that in the Mott regime the
external potential is completely screened by the xc potential;
(ii) we highlight an ultranonlocality of LDA in the lattice,
i.e., we show that in the presence of the discontinuity, one or
few “reference sites” in the system are capable of fixing the
whole xc potential; (iii) we calculate separately the different
contribution to the gap in the different regimes providing, in
particular, an analytical understanding of the behavior of the
μ-BALDA charge gap in the Mott regime; (iv) in the Mott
phase, due to correlation, ionization occurs from different sites
for a system slightly below or above half-filling. This gives a
contribution to the ionization energy which can not be captured
in a single-particle picture but which is captured by μ-BALDA.
Aside from these nice qualitative features, we have discussed

the quantitative errors of BALDA in the Mott regime and the
high accuracy in the band-insulating regime even when the
interaction is not small.

In this paper, we extract the energy of the homogeneous
system from exact BA [41], but the method can be clearly
also applied when the approximate analytical parametrization
introduced by Lima et al. [9,10] is used. Our results are
therefore relevant for all one-dimensional lattice models where
BALDA is applied, including Kondo systems [23,25–28],
dynamical Coulomb blockade treated with time-dependent
DFT [24], harmonically trapped Hubbard electrons [19,22,33],
and spinless fermions with neighboring interaction [18].
μ-BALDA is actually a rather general approach and it could be
in principle generalized also to higher dimensions or to treat
other discontinuous functionals.
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