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Transient dynamics and approach to steady state

Eli Y. Wilner,1 Haobin Wang,2 Michael Thoss,3 and Eran Rabani4
1School of Physics and Astronomy, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

2Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, USA
3Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg,

Staudtstr. 7/B2, 91058 Erlangen, Germany
4School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

(Received 26 February 2014; published 27 May 2014)

The nonequilibrium dynamics of a quantum dot with electron-phonon interactions described by a generalized
Holstein model is presented. A combination of methodologies, including the reduced density matrix formalism,
the multilayer multiconfiguration time-dependent Hartree method, and a time-dependent nonequilibrium Green’s
function approach, is used to explore the transient behavior on multiple time scales as the system approaches
steady state. The dot population dynamics on short to intermediate times is governed by the dot-lead hybridization
parameter (�) and by the typical phonon frequency (ωc) and depends on the location of the energy level of the
dot relative to the bias window. At longer times, the dynamics shows a distinct behavior depending on whether
the system is in the adiabatic or nonadiabatic regime, with a quantum dot occupation that may depend on the
initial preparation of the phonon degrees of freedom. A “phase” diagram of this effect as a function of the polaron
shift (λ) for various phonon frequencies is derived, suggesting the existence of bistability on experimentally
observable time scales.
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I. INTRODUCTION

The study and understanding of nonequilibrium phenomena
in many-body quantum systems has been of great interest
recently. Among the variety of architectures and processes
considered, energy and charge transport in nanostructures
such as, e.g., single-molecule junctions, carbon nanotubes, and
small quantum dots have received particular attention [1,2]. In
contrast to mesoscopic or bulk systems, these nanosystems
often exhibit strong electron-phonon/vibrational interactions,
which manifests itself in interesting transport phenomena
[3–6]. In molecular junctions, for example, electron-phonon
interaction has been shown to result in a multitude of nonequi-
librium phenomena such as current-induced local heating and
cooling, multistability, switching and hysteresis, as well as
both coherence and decoherence effects [3,7–28].

Most of the studies so far have focused on phenomena in
steady state. Much less is known about transient dynamics in
nanostructures under nonequilibrium conditions. Fundamental
questions to be addressed include the following: What are
the time scales on which a steady state is reached under
nonequilibrium conditions? Which dynamical processes are of
importance? What are the underlying relaxation mechanisms?
What are the preconditions for the existence of a unique steady
state? In fact, the existence of a unique steady state in many-
body quantum systems with electron-phonon interaction has
been a topic of great controversy in recent years [3,25,29–37].

In this paper, we address these questions for a generic
model of charge transport in a quantum dot with electron-
phonon interaction using a reduced density matrix (RDM)
formalism based on projection-operator techniques [25,38–
40]. This formalism requires as input the memory kernel.
To this end, we employ two different approaches: (i) a two-
time nonequilibrium Green’s function (NEGF) method and
(ii) the multilayer multiconfiguration time-dependent Hartree

(ML-MCTDH) [41,42] approach. The latter approach provides
a numerically exact treatment of the nonequilibrium dynamics
within a certain time scale. Because the memory kernel
decays typically on a much shorter time scale than the RDM
matrix itself, this strategy allows a significant extension of
the time scale accessible by the numerically exact ML-
MCTDH technique and by the two-time NEGF approach.
This was demonstrated already in previous studies of impurity
models with electron-electron [39,40] and electron-phonon
[25] interactions.

It should be noted that a variety of other approaches
have been developed and applied to study transient phe-
nomena in nonequilibrium quantum systems with electron-
phonon interaction, including approximate methods such as
master-equation methods [43–45], as well as numerically
exact schemes, such as numerical path-integral approaches
[46–48] and the scattering state numerical renormalization
group technique [49]. The approaches employed in this work
allow a significant extension of such studies with respect to
the complexity of the phonon bath, the range of physical
parameters, and the accessible time scales.

The remainder of the paper is organized as follows. The
model and the theoretical methodology is outlined in Sec. II. In
Sec. III, we analyze the quantum dynamics, in particular with
respect to the different time scales inherent in the transient
dynamics and the approach to steady state. The dependence of
the dynamics on the initial preparation is discussed in Sec. IV.
Section V concludes with a summary.

II. MODEL AND THEORETICAL FRAMEWORK

A. Model Hamiltonian

We consider a generic model for charge transport through a
quantum dot with electron-phonon interaction, often referred
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FIG. 1. (Color online) A sketch of the quantum dot coupled to
left and right leads and to a phonon bath.

to as the extended nonequilibrium Holstein model (see Fig. 1).
The model is described by the Hamiltonian

H = HS + HB + VSB, (1)

where

HS = εdd
†d (2)

is the system (quantum dot) Hamiltonian, comprising a single
electronic state with energy εd and corresponding fermionic
creation/annihilation operators d†/d. The bath is described by
the sum of fermionic leads and bosonic modes HB = H� +
Hph, where

H� =
∑

k∈L,R

εka
†
kak (3)

represents the noninteracting left/right (L/R) leads Hamilto-
nian with fermionic creation/annihilation operators a

†
k/ak . The

bosonic bath Hamiltonian representing the phonons is given
by

Hph =
∑

α

�ωα

(
b†αbα + 1

2

)
, (4)

where b†α/bα are the ladder operators for the phonon mode α

with energy �ωα . Finally, the coupling between the system and
the baths is given by

VSB =
∑

k∈L,R

(tkda
†
k + t∗k akd

†) + d†d
∑

α

Mα(b†α + bα),

(5)

where tk is the coupling strength between the system and lead
state k, determined from the relation

�L,R(ε) = 2π
∑

k∈L,R

|tk|2δ(ε − εk). (6)

Here, �L,R(ε) = a2

b2

√
4b2 − (ε − μL,R)2 is the electron spec-

tral density, which is assumed to be of tight-binding form,
and μL,R is the chemical potential of the left/right lead,
respectively. In the applications reported in the following, we
choose typical parameters for a metal lead, namely, a = 0.2 eV
and b = 1 eV. For convenience, the results in this paper are
mostly presented in dimensionless units scaled by �, where
� = 0.16 eV is the maximum value of �R(ε) + �L(ε).

The second term in Eq. (5) represents the electron-phonon
coupling, where Mα is the coupling strength to mode α

determined from the relation

J (ω) = π
∑

α

M2
αδ(�ω − �ωα), (7)

where J (ω) = π�

2 ηωe− ω
ωc is the phonon spectral function

assumed to be of Ohmic form. The dimensionless Kondo
parameter η = 2λ

�ωc
determines the overall strength of the

electron-phonon couplings, where ωc is the characteristic

phonon bath frequency and λ = ∑
α

M2
α

�ωα
= 1

π

∫
dω
ω

J (ω) is the
reorganization energy (or polaron shift), which also determines
the shifting of the dot energy upon charging. We set realistic
relaxation time scales for the phonon bath, by choosing its
characteristic frequency ωc in the range of 25–1000 cm−1,
which is ≈0.02–0.8 in units of �/�.

The model introduced above and variants thereof have
been widely used to study nonequilibrium charge transport in
nanostructures, such as, for example, semiconductor quantum
dots [50], carbon nanotubes [4], or molecular junctions
[3,7,51–54]. In the latter case, the phonons may include, in
addition to the phonons of the contacts, the vibrational degrees
of freedom of the molecule.

B. Reduced density matrix formalism

To study the dynamic response on multiple time scales
generated by the extended Holstein model as the system is
driven away from equilibrium, we adopt the reduced density
matrix (RDM) formalism [40] discussed in detail in Ref. [39]
for the Anderson impurity model and in Ref. [25] for the
present model. The equation of motion for the RDM, σ (t) =
TrB{ρ(t)}, is given by

i�
∂

∂t
σ (t) = LSσ (t) + ϑ(t) − i

�

∫ t

0
dτ κ(τ )σ (t − τ ),

(8)

where LS = [HS, . . .] is the system’s Liouvillian, TrB{. . .} is
a trace over the baths degrees of freedom (leads and phonon
baths), and ρ(t) is the full density matrix which obeys the von
Neuman equation of motion. In the above,

ϑ(t) = TrB
{
LV e− i

�
QLtQρ(0)

}
(9)

depends on the choice of initial conditions and Lv =
[VSB, . . .]. By construction, ϑ(t) vanishes for an uncorrelated
initial state, i.e., when ρ(0) = σ (0) ⊗ ρB(0), where σ (0) and
ρB(0) are the system and baths initial density matrices,
respectively. In all applications reported below we start from a
factorized initial condition and thus ignore ϑ(t). The memory
kernel, which describes the non-Markovian dependency of the
time propagation of the system, is given by

κ(t) = TrB
{
LV e− i

�
QLtQLρB

}
, (10)

where Q = 1 − P , P = ρB(0)TrB{. . .} is a projection opera-
tor, and L = [H, . . .] is the full Liouvillian super-operator.

To obtain σ (t), one requires as input the supermatrix of
the memory kernel. For a general system, the supermatrix
has N4 elements, where N is the dimension of the density
matrix. Thus, calculating all elements can be a tedious task
[39]. The complexity is considerably reduced for the extended
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Holstein model. First, N = 2 and hence the memory kernel has
only 16 terms. Second, the reduced dynamics of the diagonal
elements of σ (t) (the populations) are decoupled from those of
the off-diagonal elements (the coherences). If one is interested
in the populations alone (as is the case in this study), only
four elements of the memory kernel are necessary to describe
the population dynamics. To further simplify the calculations
of the memory, we express it in terms of a Volterra equation
of the second type, removing the complexity of the projected
dynamics of Eq. (10):

κ(t) = i��̇(t) − �(t)LS + i

�

∫ t

0
dτ �(t − τ )κ(τ ) (11)

with

�(t) = TrB
{
LV e− i

�
Lt ρB

}
. (12)

Since the operator LV appearing in the equation for �(t) and
the full Hamiltonian conserve the total particle number, only
the diagonal matrix elements �(t) need to be computed:

�nn,mm(t) = 2

�
TrB

{
ρB〈m|

∑
k

tkd(t)a†
k(t)|m〉

}
. (13)

Here, |m〉 denotes the electronic state of the quantum dot,
where m can take the values 1 or 0, corresponding to
an occupied or an unoccupied dot, respectively. Note that
�nn,mm(t) is independent on n and thus has only two
independent components. The above expression for �nn,mm(t)
has a simple physical interpretation as the time derivative of
the dot population and can be expressed in terms of the sum
of the left [IL

m (t)] and right [IR
m (t)] currents:

e�nn,mm(t) = IL
m (t) + IR

m (t), (14)

where

IL,R
m (t) = −2e

�
Im

∑
k∈L,R

tk〈m|d(t)a†
k(t)|m〉 (15)

is the left/right current for an initial occupied (m = 1) or empty
(m = 0) dot, and e is the electron charge.

C. Calculation of the memory kernel

The RDM formalism may seem redundant since in order
to obtain the reduced density matrix one requires as input the
memory kernel which is given in terms of the left and right
currents. If the left and right currents are accessible by impurity
solvers, so are the elements of the RDM. This, however, ignores
the fact that the memory kernel typically decays on a much
faster time scale compared to the RDM itself [25,39,40]. Thus,
if the memory decays to zero at t > tc where tc is a cutoff time,
it is sufficient to obtain the memory kernel to tc and infer from
that the dynamics of the RDM at all times. We refer to this
as the “cutoff approximation,” which will become exact if the
memory kernel has a finite range and decays to zero at t > tc.
Since numerical solvers of quantum impurity models scale
exponentially with the propagation time, this saves significant
computational time. As will be shown in the following, the
RDM formalism provides means to study the dynamics on
time scales not accessible by direct impurity solvers [25,55].

We adopt two impurity solvers to calculate the memory
kernel. The first is based on the multilayer multiconfiguration
time-dependent Hartree theory in second quantization repre-
sentation (ML-MCTDH-SQR) [42] and the second, described
below, is based on a two-time nonequilibrium Green’s function
(NEGF) formalism.

1. Multilayer multiconfiguration time-dependent Hartree
(ML-MCTDH) theory

The ML-MCTDH theory is a rigorous variational method
used for propagating wave packets in complex systems with
many degrees of freedom [41]. Extending the original MCTDH
method [56,57], employs a hierarchical, multilayer represen-
tation of the many-body wave function. Originally developed
for treating distinguishable particles, it has recently been
generalized to describe indistinguishable fermionic or bosonic
particles employing the occupation number representation of
the Fock space in the second quantized framework [42]. The
approach has been applied to nonequilibrium transport with
electron-phonon [34,42,58,59] and electron-electron interac-
tions [60]. For completeness, we provide a brief summary of
this approach and its specific implementation for calculating
the memory kernel in the extended Holstein model.

Within ML-MCTDH method, the wave function is repre-
sented by a recursive, layered expansion

|�(t)〉 =
∑
j1

∑
j2

. . .
∑
jp

Aj1j2...jp
(t)

p∏
κ=1

∣∣ϕ(κ)
jκ

(t)
〉
, (16)

∣∣ϕ(κ)
jκ

(t)
〉 =

∑
i1

∑
i2

. . .
∑
iQ(κ)

B
κ,jk

i1i2...iQ(κ)
(t)

Q(κ)∏
q=1

∣∣v(κ,q)
iq

(t)
〉
,

(17)

∣∣v(κ,q)
iq

(t)
〉 =

∑
α1

∑
α2

. . .
∑

αM(κ,q)

×C
κ,jk,iq
α1α2...αM(κ,q) (t)

M(κ,q)∏
q=1

∣∣ξ (κ,q,γ )
αγ

(t)
〉
, (18)

where Aj1j2...jp
,B

κ,jk

i1i2...iQ(κ)
,C

κ,jk,iq
α1α2...αM(κ,q) , and so on are the

expansion coefficients for the first, second, third, . . . , lay-
ers, respectively. |ϕ(κ)

jκ
(t)〉,|v(κ,q)

iq
(t)〉,|ξ (κ,q,γ )

αγ
(t)〉, . . . , are the

single-particle functions for the first, second, third, . . . , layers.
For distinguishable particles, the primitive basis functions
for each degree of freedom in the deepest layer can be any
convenient choice depending on the specific form of the Hamil-
tonian operator, e.g., Fourier grid points, harmonic oscillator
eigenfunctions, Legendre polynomials, etc. When treating
identical particles, a second quantization representation (SQR)
is employed, where the primitive basis functions for each
single-particle group in the deepest layer are the occupation
number states of this Fock subspace [42]. This is referred to
as the ML-MCTDH-SQR approach. In principle, the recursive
multilayer expansion/hierarchical tensor decomposition can
be carried out to an arbitrary number of layers. In practice,
the multilayer hierarchy is terminated at a particular level by
expanding the single-particle functions in the deepest layer
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in terms of time-independent configurations/primitive basis
functions. The ML-MCTDH equations of motion are obtained
by applying the Dirac-Frenkel variational principle to Eq. (16)
[41,42]. In the applications reported below, four dynamical
layers are used to represent the wave function.

Within a certain time scale, the electronic and phonon
continua can be discretized to and represented by a finite
number of electronic states and phonon modes. For the
parameter regimes discussed in this paper, a typical number
of 300–400 electronic states and 800–1200 phonon modes
were sufficient to achieve convergence (to within a few
percent relative error). Systematic test calculations were then
carried out to check against the number of primitive basis
functions and the number of configurations for each layer
until convergence was achieved [41,42]. The computed time-
dependent multilayer wave functions were then used to obtain
the left and right currents IL

0 (t), IL
1 (t), IR

0 (t), and IR
1 (t) and

the currents were used to generate the elements of �nn,mm(t)
and the corresponding elements of the memory kernel were
obtained by solving the Volterra equation [cf. Eq. (11)].

As an illustration of the combined RDM and ML-MCTDH-
SQR approaches, in Fig. 2 we show the four elements of
the memory kernel (upper panel) obtained for an extended
Holstein model and the corresponding average system pop-
ulation (σ11). The time evolution of σ (t) clearly agrees with
the direct calculation based on the ML-MCTDH-SQR result
up to the cutoff time tc ≈ 35 �

�
Beyond this time, it is difficult

to converge the direct ML-MCTDH-SQR calculations and the
RDM formalism employing the memory kernel obtained using
ML-MCTDH-SQR is employed. The results obtained with the
RDM formalism show a pronounced dynamical effect beyond
tc. The inset in Fig. 2 shows the steady-state value of σ11 as a
function of the inverse cutoff time. As 1/tc → 0, we observe

-2

-1

0

1

2

κ nn
,m

m
(t)

κ00,00
κ00,11
κ11,00
κ11,11

10-2 10-1 100 101 102 103 104

t [h_/Γ]

0

0.1

0.2

0.3

σ 11
(t)

0.11/tc
0

1

2

σ 11

x10-4

FIG. 2. (Color online) Upper panel: The elements of the memory
kernel for the extended Holstein model for εd/� = 25

8 , ωc =
500 cm−1 ≈ 0.4�/�, λ/� = 3.5, μL − μR ≈ 5

8 �, and T = 0 K.
Lower panel: Corresponding values of σ11(t) obtained directly from
the ML-MCTDH-SQR (red curve) and from the RDM formalism
(black curve). Inset: Steady-state values for σ11 versus 1/tc. The
dashed vertical line shows the cutoff time.

a plateau for σ11 suggesting that the memory has sufficiently
decayed to 0.

2. Time-dependent nonequilibrium Green’s function approach
within the two-time self-consistent Born approximation

In situations where the calculation of the RDM does
not converge within the cutoff time accessible by the ML-
MCTDH-SQR approach, we obtain the memory kernel from
a nonequilibrium Green’s function approach within the self-
consistent Born approximation (SCBA). This approach is
accurate only for the perturbative regime, i.e., when λ/� is
small [52]. In this regime, the NEGF-SCBA expands the cutoff
time by nearly a factor of 3, thereby providing a valuable
tool to converge the memory kernel and the RDM for weak
electron-phonon couplings.

Most applications based on NEGF within the SCBA
have addressed steady-state properties alone. Naturally, for
nonequilibrium conditions, one requires a two-time represen-
tation of the Green’s functions (GFs), significantly complicat-
ing the calculations. If one wishes to refrain from adopting
any type of time-local approximation [36], the two-time
representation limits the time scales that can be addressed
directly by the NEGF formulation. Therefore, to obtain the
dynamic response on all relevant time scales, the two-time
NEGF formalism must be coupled with the RDM formalism.

Here, we extended the two-time NEGF approach to
calculate the time-dependent left and right currents, obtain
the memory kernel and the corresponding RDM. As far
as we know, this work is also the first application of the
two-time NEGF formalism to the extended Holstein model.
For completeness, we provide a full description of the two-time
NEGF approach. We begin by introducing contour ordered
two-time GFs [61]

G(t,τ ) = − i

�
〈Tcd(t)d†(τ )〉 (19)

for the system, and

Dα(t,τ ) = − i

�
〈Tcxα(t)xα(τ )〉 (20)

for phonon mode α, where xα = 1√
2
(bα + b†α) is the phonon

dimensionless coordinate, and Tc is the Keldysh con-
tour time-ordering operator. We ignore correlations be-
tween different phonon modes, i.e., we assume Dαβ(t,τ ) =
− i

�
〈Tcxα(t)xβ(τ )〉 = 0, if β 
= α. As will become apparent

in the following, this approximation works quite well and is
essential to describe a realistic size of the phonon bath within
the two-time formalism. The GFs in Eqs. (19) and (20) obey
the Dyson equation

G(t,τ ) = G0(t − τ )

+
∫

c

ds1ds2G0(t − s1)�(s1,s2)G(s2,τ ),

Dα(t,τ ) = D0α(t − τ )

+
∫

c

ds1ds2D0α(t − s1)�α(s1,s2)Dα(s2,τ ),

(21)
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where G0(t) and D0α(t) are the bare propagators of the
electronic degrees of freedom on the quantum dot and phonon
mode α, respectively, evolving under Hs + Hph, and

∫
c

is
a time integration on the Keldysh contour. In the above, �

and �α are the system and phonon self-energies, respectively.
As pointed out above, we apply the SCBA to obtain these
self-energies, which corresponds to a partial summation of
the diagrams beyond the simpler second-order approximation
where each bare GF is replaced by the full propagator. A self-
consistence solution is computationally far more demanding,
but leads to a result which is more satisfactory from a
theoretical point of view. In fact, we find that the SCBA is
accurate even for electron-phonon couplings of the order of
λ/� ≈ 3, slightly outside the perturbative regime. Within the
SCBA, the system and phonon self-energies are given by

�(t,τ ) = ��(t − τ ) + i�
∑

α

M2
αDα(t,τ )G(t,τ ) (22)

and

�α(t,τ ) = −i�M2
αG(t,τ )G(τ,t), (23)

respectively. In the above expression, we neglected virtual
processes coupling different phonon modes contributing to
the self-energies. ��(t) = ��,L(t) + ��,R(t) represents the
self-energy arising from the coupling to the leads, with retarded
(“r”) and lesser (“<”) self-energies defined by i�r

�,L/R(t) =
1

2π

∫
�L/R(ε)e− i

�
εt dε and i�<

�,L/R(t) = − 1
2π

∫
�L/R(ε)f (ε −

μL/R)e− i
�

εt dε, respectively, and f (ε) is the Fermi-Dirac
distribution. These Keldysh GFs and self-energies are obtained
using Langreth rules [62,63].

Once the expressions for the self-energies are given, we
seek a solution for the two-time GFs. Instead of solving the
usual Dyson equations, a simple Leibniz rule can be applied to
reduce these equations to the Kadanoff-Baym form [63–65].
For the retarded GFs, this reads as

i�
∂Gr (t,τ )

∂t
= δ(t − τ ) + εdGr (t,τ )

+
∫ t

τ

�R(t,s)Gr (s,τ )ds, (24)

∂2Dr
α(t,τ )

∂t2
= −2ωα

�
δ(t − τ ) − ω2

αDr
α(t,τ )

− 2ωα

�

∫ t

τ

�r
α(t,s)Dr

α(s,τ )ds, (25)

and for the lesser GFs one finds

i�
∂G<(t,τ )

∂t
= εdG<(t,τ ) +

∫ t

0
�r (t,s)G<(s,τ )ds

+
∫ τ

0
�<(t,s)(Gr (τ,s))†ds, (26)

∂2D<
α (t,τ )

∂t2
= −ω2

αD<
α (t,τ ) − 2ωα

�

∫ t

0
�r

α(t,s)D<
α (s,τ )ds

− 2ωα

�

∫ τ

0
�<

α (t,s)
[
Dr

α(τ,s)
]†

ds. (27)

The left and right currents can be obtained from the Meir-
Wingreen formula [66]

IL,R
m (t) = −2e

�
Im

{∫ t

0
G<(t,s)i�r

�,L/R(t − s)ds

+
∫ t

0
Gr (t,s)i�<

�,L/R(t − s)ds

}
. (28)

Here, m denotes the dependence on the initial preparation,
which enters through the initial values taken for G<

0 (0) =
− i

�
〈m|d†(0)d(0)|m〉 = − i

�
m.

D. Initial conditions

To characterize the population dynamics, we must define
the initial condition for the full density matrix of the system and
bath. To simplify the description within the RDM formalism,
we start with a factorized initial condition, which implies that
ϑ(t) in Eq. (9) vanishes for all times. The initial density matrix
ρ(0) is given by

ρ(0) = σ (0) ⊗ ρB(0) = σ (0) ⊗ ρph(0) ⊗ ρL
� (0) ⊗ ρR

� (0),

(29)

where σ (0) determines whether the electronic level is initially
occupied/unoccupied.

ρ
L/R

� (0) = exp

⎡
⎣−β

⎛
⎝ ∑

k∈L/R

(εk − μL/R)a†
kak

⎞
⎠

⎤
⎦ (30)

is the initial density matrix for the leads, and

ρph(0) = exp

[
−β

{∑
α

�ωα

(
b†αbα + 1

2

)

+
∑

α

δαMα(b†α + bα)

}]
(31)

represents the initial density matrix of the phonon bath. In the
above equations, β = 1

kBT
is the inverse temperature.

The calculation of the different elements of the memory
kernel require the calculation of the current for different initial
occupation of the system [IL,R

m (t)], i.e., for different values
of σ (0). For the ML-MCTDH-SQR approach, this amounts to
selecting different initial wave functions for the system while,
as pointed out above, for the NEGF, the only term that depends
on the initial electronic preparation of the system is G<

0 (0). It
has been shown that for the extended Holstein model, the
steady-state values of σ are independent of the choice σ (0)
[25], i.e., the choice of G<

0 (0), but the dynamic response and
relaxation to steady state does depend on σ (0).

We will also consider two different initial conditions for
the phonons, one where δα = 0 in Eq. (31) corresponding to
phonons initially equilibrated with an unoccupied dot, and
another where δα = 1 corresponding to phonons equilibrated
to an occupied dot. Again, the description of these two initial
conditions is rather simple within the ML-MCTDH-SQR
approach, where one selects the initial phonon wave function
to correspond to one of these initial conditions. Within the
NEGF formalism, this is a bit more delicate. The phonon
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FIG. 3. (Color online) Comparison of the dot population [σ11(t)] obtained from the ML-MCTDH-SQR (solid lines) and NEGF-SCBA
(dashed lines) approaches for εd/� = 25

8 , λ/� ≈ 1.5 (left panels), and λ/� ≈ 2.3 (right panels), for frequencies in the range of 25–500 cm−1

(≈0.02–0.4 in units of �/�). All figures concern applied bias of �μ = 5
8 �. The different curves correspond to different initial conditions:

Black curves: unoccupied with δα = 0; red curves: occupied with δα = 0; blue curves: unoccupied with δα = 1; and green curves: occupied
with δα = 1.

initial condition enters the Kadanoff-Baym equations through
the equitime lesser bare phonon GF, D<

0,α(0). For δα = 0, we
set D<

0,α(0) = − i
�

[2n(�ωα) + 1], where n(ω) = 1
eβω−1 is the

Bose-Einstein distribution.
For δα = 1, one can use a similar strategy and determine

D<
0,α(0) according to Eq. (31). However, this would lead to

large deviations of the NEGF approach from the numerically
exact ML-MCTDH-SQR results since this initial condition
amounts to a situation where the phonons are equilibrated
in the well corresponding to the occupied dot, i.e., a situation
from the perturbative regime about which the NEGF equations
were derived. To resolve this and provide an equally accurate
description of the NEGF-SCBA for the shifted phonon
distribution, we propose to transform the phonon Hamiltonian
in Eq. (4) by redefining a set of shifted ladder operators
b̃α = bα + Mα

�ωα
combined with particle/hole transformation

d → d̃†,d† → d̃. With that, the shifted phonon Hamiltonian
is given by

Hδ=1 = (2λ − εd )d̃†d̃ +
∑

k∈L,R

εka
†
kak +

∑
α

�ωα

(
b̃†αb̃α + 1

2

)

+
∑

k∈L,R

(tkd̃
†a†

k + t∗k d̃ak) − d̃†d̃
∑

α

Mα(b̃†α + b̃α),

(32)

which is identical to the phonon Hamiltonian in Eq. (4)
with εd → 2λ − εd and Mα → −Mα . Thus, one can adopt
the NEGF-SCBA equations derived above with parameters
reflecting this transformation. The initial condition for the
shifted phonons will now correspond to 〈d̃†d̃〉 = 0. In practice,
we use the NEGF-SCBA equations for both initial conditions
of the phonons with the original set of parameters and
D<

0,α(0) = − i
�

[2n(�ωα) + 1] for δα = 0 and with εd → 2λ −
εd , Mα → −Mα for δα = 1 with the same values for D<

0,α(0).

In Fig. 3, we compare the short-time behavior of the RDM
obtained from the NEGF-SCBA to the numerically converged
ML-MCTDH-SQR approach. Four initial preparations of
the system were considered at different values of λ and
ωc. The agreement between the NEGF-SCBA and the ML-
MCTDH-SQR results is remarkable even slightly outside the
perturbative regime by which the SCBA is expected to fail, i.e.,
for λ/� > 1 [52]. While the ML-MCTDH-SQR is limited to
times of the order of 35 �

�
, the NEGF-SCBA can be used (within

our computational resources) to times of the order of 100 �

�
,

which as shown in following is necessary to converge the RDM
to steady state for certain parameters. We note in passing
that for values of λ/� > 3 we find that the NEGF-SCBA
shows a pronounced deviation from the numerically converged
results and thus can only provide a qualitative picture.
However, for λ/� < 5

2 , it seems safe to use the NEGF-SCBA
approach.

III. ANALYSIS OF THE NONEQUILIBRIUM DYNAMICS
AT DIFFERENT TIME SCALES

The nonequilibrium dynamics of the quantum dot, repre-
sented by the RDM, exhibits various time scales, which are
analyzed in this section using the approaches introduced above.
We first consider the dynamics for relatively short times, i.e.,
on time scales characterized by the dot-lead coupling (τ� ≈ �

�
)

and the typical phonon frequency τph ≈ 1
ωc

. We show that the
appearance of rapid decays of the RDM to steady state depends
also the specific model parameters, in particular whether the
coupling to the phonons shifts the energy of the dot in or out of
the bias window, which is defined by the chemical potentials of
the two leads. Next, we study the long-time decay of the RDM
to steady state and address both the adiabatic (�ωc � �) and
nonadiabatic limits. In all results presented in the following,
we consider the low-temperature limit (T = 0).
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FIG. 4. (Color online) Left matrix panels: Dot population [σ11(t)] obtained from the RDM combined with the NEGF-SCBA for λ/� = 3
2

(upper row panels) and λ/� = 3
4 (lower row panels) for frequencies in the range of 25–500 cm−1 (≈0.02–0.4 in units of �/�). Black, red,

blue, and green curves correspond to unoccupied/occupied and δα = 0/δα = 1, respectively. Right column panels: Schematic sketch of the
diabatic harmonic potential energy surfaces of the neutral (orange) and charged (green) state for the two values of λ. The marked values to the
right label the dot and phonon minimum energy corresponding to each of the four initial conditions. For each initial condition, we label the
minimum energy with a solid circle with matching colors.

A. Short and intermediate time scales

In Fig. 4, we plot the average dot population given by
the diagonal occupied element of the RDM [σ11(t)] for
several typical phonon frequencies, for two values of the
reorganization energy, λ/� ≈ 3

4 (lower panel) and λ/� ≈ 3
2

(upper panel), for μL = −μR ≈ 1
3�. As shown above, this

regime of electron-phonon coupling is well suited for the
two-time NEGF-SCBA combined with the RDM formalism.
We consider four different initial preparations of the dot and
phonon density matrices: occupied/empty dot where σ (0) =
(0 0
0 1) for an occupied dot and σ (0) = (1 0

0 0) otherwise, and
shifted/unshifted phonons with δα = 1,0, respectively. In all
cases shown, the dot population decays to the same steady-state
value, regardless of the initial preparation of the dot/phonons.
For the case of δα = 0 (black and red curves), we find that
the dynamics is characterized by a single time scale governed
by τ� ≈ �

�
. For δα = 1 (blue and green curves), this initial

transient is followed by a decay on time scales of τph ≈ 1
ωc

for the larger reorganization energy (upper panels), while for
λ/� ≈ 3

4 the phonon frequency is not always noticeable (lower
panels). For higher values of λ not shown in Fig. 4, the picture
will reverse, namely, dynamics on time scales of τph will appear
for an initially unshifted phonon distribution.

To better understand the intermediate time behavior, we
provide a sketch of the two diabatic potential energy surfaces
for a typical phonon frequency of ωc = 100 cm−1 for the two
values of λ. For each plot, we also indicate the sum of dot and
phonon energy of the four different initial conditions. It is quite

clear that the most stable configuration is that of an empty dot
with an unshifted phonon (δα = 0), which for small-bias volt-
ages would likely be the steady-state configuration. Therefore,
regardless of the value of λ, when the system initial phonon
distribution corresponds to the unshifted case (black and red
curves), the phonons are already close to their steady-state
distribution and the dynamics of the RDM is governed by the
electronic decay determined by the coupling to the leads (�).

Considering the case of λ/� = 3
2 for the shifted initial

phonon distribution, at short times (τ�) the population of the
dot decreases or increases to a value of 1

2 , depending on
whether the dot was occupied or empty initially, respectively.
To understand this, we define the instantaneous difference in
energy between an occupied and empty dot as δε. For x = 0
(the minimum of the unshifted well), δε = εd and for x =
−√

2 M
�ωc

(the minimum of the shifted well), δε = εd − 2λ.

Returning to the case λ/� = 3
2 for the shifted initial phonon

distribution, δε = εd − 2λ ≈ 0 is nearly at the symmetric
point about the bias window of conduction. Thus, freezing
the phonons would lead to a steady-state population close to
1
2 ,which is indeed observed for times τ� < t < τph where the
dot population levels at ≈ 1

2 . The phonons, of course, are not
frozen and as the system relaxes to the more stable well on
time scales given by τph. During this process, the instantaneous
value of δε shifts above the bias conduction windows, resulting
in a decay of the dot population.

For the smaller reorganization energy (λ/� = 3
4 ), the

energy difference δε is well above the bias window of
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Black, red, blue, and green curves correspond to unoccupied/occupied and δα = 0/δα = 1, respectively.

conduction and thus the population of the dot never levels at
values typical for resonance situations. Inevitably, the system
will relax to the more stable well corresponding to δα = 0
on a time scale τph. Whether this appears in the dynamics
of the RDM depends on the value of the dot population. For
nonvanishing σ11(t), a clear signature of τph is still evident.

The picture that emerges is rather simple. At short times,
the dynamics of the RDM is always characterized by the
coupling to the leads as long as �ωc < �. The appearance
of an additional time scale (τph) depends on whether the
phonons are initially equilibrated at the more stable well or
not, and also whether the instantaneous energy difference
between the occupied and empty dot passes through the bias
conduction window as the system relaxes to steady state. To
further support this, we show in Fig. 5 results for the dot
population for different values of εd and a higher-bias voltage
μL = −μR ≈ 2

3�, for the same values of λ. The two left
panels show results for εd = 0 in which the shifted well is the
more stable one. As clearly evident, the role of the different
initial conditions is reversed and the dynamics of the RDM
corresponding to the shifted initial condition relaxes rapidly to
the steady state, while the case of the unshifted initial condition
shows intermediate transient behavior (with dot population
approaching 1

2 since δε = 0 for this case) with a characteristic
time scale τph.

The case of εd = 7
3� and λ = 3

2� is special since δε = εd −
2λ = − 2

3� equals to the lower conduction edge (μR = − 2
3�).

As the system relaxes to the stable well, the instantaneous
value of δε scans the entire bias conduction window and
the population of the dot increases above 1

2 , as it should
for asymmetric resonant situations. When δε increases above

the upper conduction edge, the dot population decreases with
a typical time scale equal to τph. This increase of the dot
population above 1

2 is not observed for λ = 3
4� since for this

case δε = 5
6 is slightly above the upper conduction edge, and

the system is never at resonance throughout the dynamics. This
explains the lower values of the dot population at intermediate
times.

B. Dynamics on longer time scales induced
by electron-phonon interaction

Next, we consider the dynamics on longer time scales,
induced by the coupling between the electron and phonon
degrees of freedom. In Fig. 6, we plot the dot population for a
range of values of ωc and λ, and for the four different initial
conditions discussed above. The results span the crossover
between the adiabatic (�ωc � �) to the nonadiabatic (�ωc →
�) limits. The values of the reorganization energy chosen are
somewhat above the perturbative regime (λ/� > 3) in which
the NEGF-SCBA is accurate. Therefore, we obtain the input
required to generate the memory kernel and the RDM from the
ML-MCTDH-SQR approach. In all cases shown, we used a
cutoff time tc ≈ 25 �

�
, sufficient to converge the rate of decay of

the RDM at long times. The value of the steady state obtained
from the cutoff approximation for these results, however, is not
converged within the maximal cutoff time used of tc ≈ 35 �

�
,

which implies that there maybe a longer time scale by which
the system relaxes.

The two left column panels of Fig. 6 show results for slow
phonons (ωc � 100 cm−1 ≈ 0.08�/�), i.e., in the adiabatic
regime. For the specific choice of parameters, we find that the
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FIG. 6. (Color online) Left matrix panels: Dot population obtained from the RDM formalism combined with the ML-MCTDH-SQR
approach for λ/� = 3.1 (upper row panels), λ/� = 3.5 (middle row panels), and λ/� = 3.9 (lower row panels) for frequencies in the range
of 25−1000 cm−1 (≈0.02–0.8 in units of �/�). Black, red, blue, and green curves correspond to unoccupied/occupied and δα = 0/δα = 1,
respectively. Dashed curves were obtained from the RDM formalism combined with the NEGF-SCBA and the solid circles are the NEGF-SCBA
steady-state values. Right column panels: The effective potentials corresponding to each value of λ. Black, orange, and deep green curves are
for ωc = 25, 100, and 1000 cm−1, respectively. The horizontal solid and dashed lines represent the ground-state energy of the right and left
wells, respectively.

long-time limit of the dot population depends on the initial
phonon distribution but not on the initial dot occupation. The
difference between the long-time plateau solutions diminishes
as the phonon frequency increases, and will eventually vanish
at the crossover to the nonadiabatic limit. The dependence of
the dot occupation for long times on the initial state suggests
the existence of bistability. This bistability has been the subject
of our recent study [25] and previous work [3,34,67]. It will
be addressed briefly later in this section and in more detail in
Sec. IV.

Concerning the dynamics, we find that in the adiabatic
limit the RDM decays rapidly to a plateau, with a value that
depends on the initial phonon distribution. The RDM decay
is characterized by a single time scale τ�, determined by the
coupling to the leads. The existence of the plateau and the
plateau value are insensitive to further increasing the cutoff
time up to the limit of the ML-MCTDH-SQR approach, which
is tc ≈ 35 �

�
. A significantly different behavior is observed

for ωc � 500 cm−1 ≈ 0.4�/�, which is near the crossover to
the nonadiabatic limit. While the short-time dynamics is very
similar and is governed by the coupling to the leads with a
time scale τ�, a pronounced long-time decay is observed and
then the system levels at a plateau. We note in passing that a
similar long-time decay has been reported by Albrecht et al.
[36] for a single-phonon Holstein model (rather than a bath
of phonons), using a NEGF approach within a quasiadiabatic,
single-time approximation. The results shown in Fig. 6 are
based on a numerically exact formalism, and are, therefore,
free of any approximation or bias.

To understand the long-time behavior in the adiabatic limit,
we have calculated the adiabatic tunneling times as well as
the transition probabilities for an effective adiabatic potential
sketched in the right column panels of Fig. 6. The effective
potential

Ueff(x) = U (x) +
∫ x

−∞
dy n(y)

dε(y)

dy
(33)

is given as a sum of the bare potential U (x) = �

2 ωcx
2 and

the potential of mean force
∫ x

−∞ dy n(y) dε(y)
dy

. Here, ε(x) =
εd + √

2Mcx is the unweighted instantaneous dot energy and

n(x) =
∫

dω

π

�L(ω)fL(ω) + �R(ω)fR(ω)

[ω − ε(x)]2 + �2(ω)
(34)

is the average, out-of-equilibrium, dot population valid for the
adiabatic limit [68]. We find that the adiabatic tunneling times
for ωc = 25 and 100 cm−1 are of the order of 1500 �

�
and 150 �

�
,

respectively and the tunneling probabilities are smaller than
10−5. For the former case (ωc = 25 cm−1), one may argue
that this time scale is too long to be captured by the RDM
formalism with a cutoff time of tc ≈ 35 �

�
and perhaps, for

larger cutoff times which are not accessible to us, the RDM will
decay due to tunneling between the two wells. However, this
argument seems much less likely for ωc = 100 cm−1, where
the tunneling time is much smaller (150 �

�
) and, thus, tunneling

should be captured even with cutoff times of the order of
tc ≈ 35 �

�
.
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8 �.

The fact that we do not observe any long-time relaxation
to a unique steady state in the adiabatic limit is consistent
with the notion that tunneling is suppressed by the dynamical
coupling to the phonons, which was assumed static in the
above estimation of the tunneling process. Additionally,
the low tunneling probability may also be used to explain the
vanishing long-time transient behavior in the adiabatic limit.
To further elaborate on this and to elucidate the underlying
time scales and mechanisms, we have considered the simpler
scenario of the decay of an initially occupied dot state coupled
only to the unoccupied states in the right lead, i.e., the states
above the chemical potential of the right electrode. This
simplified version of the Anderson-Newns model of heteroge-
neous electron transfer reduces dramatically the computational
complexity of the ML-MCTDH calculations and allows us to
directly access times that are of the order or longer than the
adiabatic tunneling times. In the upper panel of Fig. 7, we
show the population dynamics corresponding to this case for
ωc = 100 cm−1 and λ/� = 2.7, for an initially occupied dot
and shifted phonon distribution (δα = 1). We consider both
a single-phonon mode and an Ohmic bath. The estimated
adiabatic tunneling time on Ueff(x) for this case is 300 �

�
. The

results for a single-phonon mode show relaxation of the dot
population on time scales exceeding 103 �

�
, which indicate

that the dynamical coupling to a single mode increases the
tunneling time between the two wells compared with the pure
adiabatic limit. For the Ohmic bath, the dot population is
stable even on times approaching 104 �

�
and tunneling is not

observed, suggesting stronger localization. This localization
can be understood in terms of the reaction mode representation
of the phonons, which for an Ohmic bath corresponds to
an overdamped oscillator [69–71]. Whether localization will
suppress tunneling even at longer times remains an open
problem.

The lower panel of Fig. 7 shows the results for the
same simplified Anderson-Newns model, but for ωc =
500 cm−1 ≈ 0.4�/�, which is near the adiabatic/nonadiabatic
crossover. The remaining parameters are the same as

those shown in the upper panel of Fig. 7 for ωc =
100 cm−1 ≈ 0.08�/�. The dot population shows a two-step
relaxation even for the Ohmic case, eventually, relaxing to
zero. The analysis shows that the longer-time decay can be
associated with a nonadiabatic transition, with a time constant
that can be approximated by τna ≈ �

�
eλ/�ωc for the single-mode

case [36,72]. Comparing the single-mode to the Ohmic case
reveals that the nonadiabatic transition is much slower for
the latter. This behavior is similar to the dynamics of the
population in the adiabatic limit, which showed vanishing
tunneling for the Ohmic case.

By analogy, we can associate the long-time decay of the full
extended Holstein model with two leads (right column panels
of Fig. 6) to a nonadiabatic transition from the occupied to
the unoccupied state. Despite the fact that the dot population
does not decay to zero, the time scales and behavior are
similar to the single-lead case, and the decay rate scales
roughly as e−λ/�ωc . Interestingly, the nonadiabatic transition
does not destroy the bistability (in some cases). This is rather
surprising, but also very significant. Despite having transitions
between the two diabatic surfaces, the long-time limit plateau
of the RDM still depends on the initial phonon distribution!
We note in passing that the NEGF-SCBA approach does not
describe the nonadiabatic process (dashed curves in Fig. 6)
and, therefore, does not show any long-time transient behavior
in this parameter regime.

IV. SIGNATURES OF BISTABILITY

We have shown previously that the value of the RDM
at steady state is independent of the initial occupation of
the dot, i.e., on the initial state of the electronic degrees of
freedom [25]. The proof is rather simple and is based on
the Laplace final value theorem which relates σ (t → ∞)
to the integral of the memory kernel K = 1

�2

∫ ∞
0 dτ κ(τ ).

Indeed, for all the results shown above, the long-time limit
of the RDM is independent of the initial dot occupation,
as it should be. However, for certain model parameters, we
find (and also others [3,25,30,33,34,73]) that the long-time
value of the RDM can depend on the initial preparation
of the phonon degrees of freedom. This finding suggests
the existence of bistability in the system. The value of the
population difference of the two initial phonon preparation
�σ = σ

δα=1
11 (t → ∞) − σ

δα=0
11 (t → ∞) for long times is a

measure of the importance of bistability, and will in the
following be referred to simply as bistability. In the current
section, we analyze the dependence of bistability on the various
model parameters.

In Fig. 8, we plot the results for �σ for two values of the
dot energy εd and the bias voltage �μ = μL − μR , and for a
range of frequencies (ωc) and reorganization energies (λ). The
upper two panels correspond to εd/� = 25/16. In this case,
the results were generated using the steady-state NEGF-SCBA
and, thus, the approach is limited to relatively low values of λ.
Note, however, that bistability is not observed for λ/� > 2,
which is exactly the regime where NEGF-SCBA is accurate,
as shown above (cf. Fig. 3). In fact, comparing the dynamics
for one of the values of ωc generated by the NEGF-SCBA
with the numerically converged ML-MCTDH-SQR for which
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FIG. 8. (Color online) A plot of the value of the bistability
�σ as a function of λ and ωc. Upper, middle, and lower
panels are for εd/� = 25

16 and μL − μR = 0, εd/� = 25
16 and

μL − μR = 5
8 �, and εd/� = 25

8 and μL − μR = 5
8 �, respectively.

The upper two panels were generated by the steady-state
NEGF-SCBA approach. For the lower panel, the steady-state
NEGF-SCBA was used for λ/� � 2 1

3 and ML-MCTDH-SQR
combined with the RDM otherwise. Black, red, dark green,
blue, and magenta show results for ωc = 25, 50, 100, 500, and
1000 cm−1(≈0.02,≈0.04,≈0.08,≈0.4 and ≈0.8 in units of �/�),
respectively.

�σ 
= 0 indicates excellent agreement (data not shown here)
even for εd/� = 25

16 .
In the lower panel of Fig. 8, we show results for εd/� = 25

8

and �μ = 5
8�. Here, the results were generated by the ML-

MCTDH-SQR approach combined with the RDM formalism
and, thus, are not limited to small values of λ. In most cases, we
used a cutoff time tc � 35 �

�
. This cutoff time was not always

sufficient to converge the long time values of the RDM. In
the upper panel of Fig. 9, we illustrate this for a case where
�σ = 0 and for a sufficiently small value of λ so that the
ML-MCTDH-SQR results can be compared with the NEGF-
SCBA. For the initial condition corresponding to δα = 0 (black
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FIG. 9. (Color online) The steady-state dot population as a func-
tion of 1/tc. Solid and dashed curves are results obtained by the
ML-MCTDH-SQR and NEGF-SCBA combined with the RDM
formalism, respectively. The black and blue lines are results for
δα = 0 and 1, respectively. The solid circle is the steady-state
NEGF-SCBA result. εd/� = 25

8 for all panels.

curves), we find that the values of the RDM are insensitive to
the cutoff time for tc � 10 �

�
. This is expected since the steady

state of the system is close to the initial condition δα = 0
and, thus, the phonons are nearly at steady state initially. This
is not the case for the other initial conditions corresponding
to δα = 1 (blue curves). As 1

tc
decreases, the dot population

decreases and never levels off. In fact, the steady-state value
of the dot population obtained from the steady-state NEGF-
SCBA is rather small and equals that value for δα = 0 (i.e.,
�σ = 0). In this case, it seems that a much larger cutoff time
is needed to converge the RDM in this case, even larger than
the limit of the two-time NEGF-SCBA which is tc ≈ 100 �

�
.

The middle panel of Fig. 9 shows results for a relatively
small coupling parameter for which the ML-MCTDH-SQR
results can be compared with those of the NEGF-SCBA
approach. Again, for δα = 0, a rather small cutoff time is
sufficient to converge the results since the phonon initial
density matrix is close to its steady-state value. The case of
δα = 1 requires a much larger cutoff time. In fact, larger than
the computational limit of the ML-MCTDH-SQR approach,
but still within the reach of the two-time NEGF-SCBA,
for which a clear plateau is observed as 1

tc
decreases. The

plateau value agrees well with the steady-state NEGF-SCBA
calculation (solid circle). Situations of this sort are considered
converged.

In the lower panel of Fig. 9, we show results for a large value
of λ/� > 3, and thus only the ML-MCTDH-SQR was used to
obtain the RDM. Here, the well corresponding to δα = 1 is the
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more stable one and, therefore, it is rather easy to converge the
dot population for this initial condition (blue curve). For the
other initial condition, a clear leveling of the dot population
as 1

tc
→ 0 is evident. However, the value of the steady state

is quite noisy due to computational limitations of the ML-
MCTDH-SQR method. Situations of this sort, for which we
observe the beginning of the leveling of the dot population as
tc is increased to the computational limit, will be considered
converged. However, to indicate the fact that the long-time
limit of the dot population is noisy, we assign a large error
bar of the size of the fluctuations to the value of �σ shown in
Fig. 8.

Returning to discuss the results of Fig. 8 within the above
limitations concerning the convergence of the results, several
important conclusions can be drawn:

(i) As the source-drain bias voltage V increases the
window of bistability decreases and will eventually disappear
[3]. It is important to note, however, that we find a finite value
for �σ on time scales much longer than �

�μ
. A similar effect

is expected if the temperature is increased.
(ii) The window of bistability also decreases as the dot

energy εd decreases. For the adiabatic limit, this is strongly
correlated with the range of reorganization energies λ for
which the effective potential of the phonons shows a distinct
double-well structure. This range decreases with εd .

(iii) As ωc increases, the window of bistability decreases
and so does the value of �σ . Surprisingly, however, even for
relatively large values of �ωc ≈ � away from the adiabatic
limit, we still observe bistability.
In the adiabatic limit, the first two findings can be rationalized
by the already mentioned fact that a precondition for bistability
is the existence of an effective potential for the phonons with
two stable minima, which have to have energies outside the
bias window, i.e., εd − 2λ � μL/R � εd and �,V � λ (see
also the discussion in Refs. [3,67]). The most striking result is
that the phenomenon of bistability exists away from the strictly
adiabatic limit and prevails on time scales longer than the
nonadiabatic transition time, i.e., on much longer time scales
than previously thought [34]. The question remains, however,
as to whether bistability in the extended Holstein model exists
in the strict long-time limit. The unambiguous clarification of
this question requires a numerically exact methodology which
can address directly the long-time limit of this model, which
is yet to be developed.

V. CONCLUDING REMARKS

In this paper, we have investigated the nonequilibrium
quantum dynamics of the extended Holstein model as a
generic model for charge transport in a quantum dot with

electron-phonon interactions. We have specifically focused
on the transient dynamics and the approach to steady state.
To this end, we have used a methodology, which combines
a reduced density matrix formalism based on projection-
operator techniques and two different approaches to calculate
the memory kernel, a two-time NEGF with the SCBA and the
ML-MCTDH-SQR. The latter method provides a numerically
exact treatment of the many-body quantum dynamics up to a
certain time.

The results obtained in a wide range of parameters reveal
dynamics on multiple time scales. In addition to the short
and intermediate time scales associated with the separate
electronic and phononic degrees of freedom, the electron-
phonon coupling introduces longer time scales related to the
adiabatic or nonadiabatic tunneling between the two charge
states. The analysis shows, furthermore, that the value of
the dot occupation may depend on the initial preparation of
the phonon degrees of freedom, suggesting the existence of
bistability. Intriguingly, the phenomenon of bistability persists
even on time scales longer than the adiabatic/nonadiabatic
tunneling time. Considering different parameter ranges, we
have formulated conditions for bistability. This analysis shows
that bistability is particularly pronounced for low characteristic
frequencies of the phonons and moderate to large electron-
phonon couplings. On the other hand, bistability is quenched
for larger voltages. A similar effect is expected for higher
temperatures.

This study, employing time-dependent methods, can not
address the strict long-time limit and, therefore, can not give
a final answer to the controversial question as to whether a
unique steady state always exists for the extended Holstein
model. The results do show, however, a significant dependence
on the initial state on time scales which are accessible by time-
resolved spectroscopy and, thus, should be experimentally
observable.
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[11] R. Härtle, C. Benesch, and M. Thoss, Phys. Rev. Lett. 102,
146801 (2009).
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A. Arnau, D. Sánchez-Portal, and N. Agraı̈t, Phys. Rev. B 81,
075405 (2010).

[18] D. Secker, S. Wagner, S. Ballmann, R. Härtle, M. Thoss, and
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[65] P. Myöhänen, A. Stan, G. Stefanucci, and R. v. Leeuwen,
J. Phys.: Conf. Ser. 220, 012017 (2010).

[66] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512
(1992).

205129-13

http://dx.doi.org/10.1038/nphys2842
http://dx.doi.org/10.1038/nphys2842
http://dx.doi.org/10.1038/nphys2842
http://dx.doi.org/10.1038/nphys2842
http://dx.doi.org/10.1088/0953-8984/19/10/103201
http://dx.doi.org/10.1088/0953-8984/19/10/103201
http://dx.doi.org/10.1088/0953-8984/19/10/103201
http://dx.doi.org/10.1088/0953-8984/19/10/103201
http://dx.doi.org/10.1021/nl8018824
http://dx.doi.org/10.1021/nl8018824
http://dx.doi.org/10.1021/nl8018824
http://dx.doi.org/10.1021/nl8018824
http://dx.doi.org/10.1038/nnano.2008.304
http://dx.doi.org/10.1038/nnano.2008.304
http://dx.doi.org/10.1038/nnano.2008.304
http://dx.doi.org/10.1038/nnano.2008.304
http://dx.doi.org/10.1021/nl073346h
http://dx.doi.org/10.1021/nl073346h
http://dx.doi.org/10.1021/nl073346h
http://dx.doi.org/10.1021/nl073346h
http://dx.doi.org/10.1103/PhysRevLett.102.146801
http://dx.doi.org/10.1103/PhysRevLett.102.146801
http://dx.doi.org/10.1103/PhysRevLett.102.146801
http://dx.doi.org/10.1103/PhysRevLett.102.146801
http://dx.doi.org/10.1103/PhysRevLett.102.225501
http://dx.doi.org/10.1103/PhysRevLett.102.225501
http://dx.doi.org/10.1103/PhysRevLett.102.225501
http://dx.doi.org/10.1103/PhysRevLett.102.225501
http://dx.doi.org/10.1038/nphys1802
http://dx.doi.org/10.1038/nphys1802
http://dx.doi.org/10.1038/nphys1802
http://dx.doi.org/10.1038/nphys1802
http://dx.doi.org/10.1021/nn100470s
http://dx.doi.org/10.1021/nn100470s
http://dx.doi.org/10.1021/nn100470s
http://dx.doi.org/10.1021/nn100470s
http://dx.doi.org/10.1002/cphc.200900974
http://dx.doi.org/10.1002/cphc.200900974
http://dx.doi.org/10.1002/cphc.200900974
http://dx.doi.org/10.1002/cphc.200900974
http://dx.doi.org/10.1002/smll.200901559
http://dx.doi.org/10.1002/smll.200901559
http://dx.doi.org/10.1002/smll.200901559
http://dx.doi.org/10.1002/smll.200901559
http://dx.doi.org/10.1103/PhysRevB.81.075405
http://dx.doi.org/10.1103/PhysRevB.81.075405
http://dx.doi.org/10.1103/PhysRevB.81.075405
http://dx.doi.org/10.1103/PhysRevB.81.075405
http://dx.doi.org/10.1103/PhysRevLett.106.136807
http://dx.doi.org/10.1103/PhysRevLett.106.136807
http://dx.doi.org/10.1103/PhysRevLett.106.136807
http://dx.doi.org/10.1103/PhysRevLett.106.136807
http://dx.doi.org/10.1103/PhysRevB.83.125419
http://dx.doi.org/10.1103/PhysRevB.83.125419
http://dx.doi.org/10.1103/PhysRevB.83.125419
http://dx.doi.org/10.1103/PhysRevB.83.125419
http://dx.doi.org/10.1103/PhysRevLett.106.196804
http://dx.doi.org/10.1103/PhysRevLett.106.196804
http://dx.doi.org/10.1103/PhysRevLett.106.196804
http://dx.doi.org/10.1103/PhysRevLett.106.196804
http://dx.doi.org/10.1038/nnano.2010.240
http://dx.doi.org/10.1038/nnano.2010.240
http://dx.doi.org/10.1038/nnano.2010.240
http://dx.doi.org/10.1038/nnano.2010.240
http://dx.doi.org/10.1103/PhysRevLett.109.056801
http://dx.doi.org/10.1103/PhysRevLett.109.056801
http://dx.doi.org/10.1103/PhysRevLett.109.056801
http://dx.doi.org/10.1103/PhysRevLett.109.056801
http://dx.doi.org/10.1103/PhysRevB.72.165426
http://dx.doi.org/10.1103/PhysRevB.72.165426
http://dx.doi.org/10.1103/PhysRevB.72.165426
http://dx.doi.org/10.1103/PhysRevB.72.165426
http://dx.doi.org/10.1002/pssb.201350025
http://dx.doi.org/10.1002/pssb.201350025
http://dx.doi.org/10.1002/pssb.201350025
http://dx.doi.org/10.1002/pssb.201350025
http://dx.doi.org/10.1103/PhysRevB.88.045137
http://dx.doi.org/10.1103/PhysRevB.88.045137
http://dx.doi.org/10.1103/PhysRevB.88.045137
http://dx.doi.org/10.1103/PhysRevB.88.045137
http://dx.doi.org/10.1103/PhysRevB.87.085422
http://dx.doi.org/10.1103/PhysRevB.87.085422
http://dx.doi.org/10.1103/PhysRevB.87.085422
http://dx.doi.org/10.1103/PhysRevB.87.085422
http://dx.doi.org/10.1002/pssb.201349165
http://dx.doi.org/10.1002/pssb.201349165
http://dx.doi.org/10.1002/pssb.201349165
http://dx.doi.org/10.1002/pssb.201349165
http://dx.doi.org/10.1021/jp308222q
http://dx.doi.org/10.1021/jp308222q
http://dx.doi.org/10.1021/jp308222q
http://dx.doi.org/10.1021/jp308222q
http://dx.doi.org/10.1103/PhysRevLett.94.076404
http://dx.doi.org/10.1103/PhysRevLett.94.076404
http://dx.doi.org/10.1103/PhysRevLett.94.076404
http://dx.doi.org/10.1103/PhysRevLett.94.076404
http://dx.doi.org/10.1088/0953-8984/20/37/374107
http://dx.doi.org/10.1088/0953-8984/20/37/374107
http://dx.doi.org/10.1088/0953-8984/20/37/374107
http://dx.doi.org/10.1088/0953-8984/20/37/374107
http://dx.doi.org/10.1088/0953-8984/19/25/255203
http://dx.doi.org/10.1088/0953-8984/19/25/255203
http://dx.doi.org/10.1088/0953-8984/19/25/255203
http://dx.doi.org/10.1088/0953-8984/19/25/255203
http://dx.doi.org/10.1103/PhysRevB.80.115321
http://dx.doi.org/10.1103/PhysRevB.80.115321
http://dx.doi.org/10.1103/PhysRevB.80.115321
http://dx.doi.org/10.1103/PhysRevB.80.115321
http://dx.doi.org/10.1063/1.3658736
http://dx.doi.org/10.1063/1.3658736
http://dx.doi.org/10.1063/1.3658736
http://dx.doi.org/10.1063/1.3658736
http://dx.doi.org/10.1103/PhysRevB.86.081412
http://dx.doi.org/10.1103/PhysRevB.86.081412
http://dx.doi.org/10.1103/PhysRevB.86.081412
http://dx.doi.org/10.1103/PhysRevB.86.081412
http://arxiv.org/abs/arXiv:0207513
http://dx.doi.org/10.1103/PhysRevB.87.085127
http://dx.doi.org/10.1103/PhysRevB.87.085127
http://dx.doi.org/10.1103/PhysRevB.87.085127
http://dx.doi.org/10.1103/PhysRevB.87.085127
http://dx.doi.org/10.1103/PhysRevB.88.245437
http://dx.doi.org/10.1103/PhysRevB.88.245437
http://dx.doi.org/10.1103/PhysRevB.88.245437
http://dx.doi.org/10.1103/PhysRevB.88.245437
http://dx.doi.org/10.1103/PhysRevB.78.235424
http://dx.doi.org/10.1103/PhysRevB.78.235424
http://dx.doi.org/10.1103/PhysRevB.78.235424
http://dx.doi.org/10.1103/PhysRevB.78.235424
http://dx.doi.org/10.1103/PhysRevB.84.075150
http://dx.doi.org/10.1103/PhysRevB.84.075150
http://dx.doi.org/10.1103/PhysRevB.84.075150
http://dx.doi.org/10.1103/PhysRevB.84.075150
http://dx.doi.org/10.1088/1367-2630/15/7/073018
http://dx.doi.org/10.1088/1367-2630/15/7/073018
http://dx.doi.org/10.1088/1367-2630/15/7/073018
http://dx.doi.org/10.1088/1367-2630/15/7/073018
http://dx.doi.org/10.1063/1.1580111
http://dx.doi.org/10.1063/1.1580111
http://dx.doi.org/10.1063/1.1580111
http://dx.doi.org/10.1063/1.1580111
http://dx.doi.org/10.1063/1.3173823
http://dx.doi.org/10.1063/1.3173823
http://dx.doi.org/10.1063/1.3173823
http://dx.doi.org/10.1063/1.3173823
http://dx.doi.org/10.1016/j.physrep.2004.11.002
http://dx.doi.org/10.1016/j.physrep.2004.11.002
http://dx.doi.org/10.1016/j.physrep.2004.11.002
http://dx.doi.org/10.1016/j.physrep.2004.11.002
http://dx.doi.org/10.1209/0295-5075/79/27006
http://dx.doi.org/10.1209/0295-5075/79/27006
http://dx.doi.org/10.1209/0295-5075/79/27006
http://dx.doi.org/10.1209/0295-5075/79/27006
http://dx.doi.org/10.1103/PhysRevB.81.165310
http://dx.doi.org/10.1103/PhysRevB.81.165310
http://dx.doi.org/10.1103/PhysRevB.81.165310
http://dx.doi.org/10.1103/PhysRevB.81.165310
http://dx.doi.org/10.1103/PhysRevLett.100.176403
http://dx.doi.org/10.1103/PhysRevLett.100.176403
http://dx.doi.org/10.1103/PhysRevLett.100.176403
http://dx.doi.org/10.1103/PhysRevLett.100.176403
http://dx.doi.org/10.1103/PhysRevB.85.121408
http://dx.doi.org/10.1103/PhysRevB.85.121408
http://dx.doi.org/10.1103/PhysRevB.85.121408
http://dx.doi.org/10.1103/PhysRevB.85.121408
http://dx.doi.org/10.1063/1.4808108
http://dx.doi.org/10.1063/1.4808108
http://dx.doi.org/10.1063/1.4808108
http://dx.doi.org/10.1063/1.4808108
http://dx.doi.org/10.1103/PhysRevB.87.195112
http://dx.doi.org/10.1103/PhysRevB.87.195112
http://dx.doi.org/10.1103/PhysRevB.87.195112
http://dx.doi.org/10.1103/PhysRevB.87.195112
http://dx.doi.org/10.1103/PhysRevB.81.115319
http://dx.doi.org/10.1103/PhysRevB.81.115319
http://dx.doi.org/10.1103/PhysRevB.81.115319
http://dx.doi.org/10.1103/PhysRevB.81.115319
http://dx.doi.org/10.1103/PhysRevB.70.125406
http://dx.doi.org/10.1103/PhysRevB.70.125406
http://dx.doi.org/10.1103/PhysRevB.70.125406
http://dx.doi.org/10.1103/PhysRevB.70.125406
http://dx.doi.org/10.1103/PhysRevB.69.245302
http://dx.doi.org/10.1103/PhysRevB.69.245302
http://dx.doi.org/10.1103/PhysRevB.69.245302
http://dx.doi.org/10.1103/PhysRevB.69.245302
http://dx.doi.org/10.1103/PhysRevLett.94.206804
http://dx.doi.org/10.1103/PhysRevLett.94.206804
http://dx.doi.org/10.1103/PhysRevLett.94.206804
http://dx.doi.org/10.1103/PhysRevLett.94.206804
http://dx.doi.org/10.1021/jp711940n
http://dx.doi.org/10.1021/jp711940n
http://dx.doi.org/10.1021/jp711940n
http://dx.doi.org/10.1021/jp711940n
http://dx.doi.org/10.1103/PhysRevB.87.195108
http://dx.doi.org/10.1103/PhysRevB.87.195108
http://dx.doi.org/10.1103/PhysRevB.87.195108
http://dx.doi.org/10.1103/PhysRevB.87.195108
http://dx.doi.org/10.1016/0009-2614(90)87014-I
http://dx.doi.org/10.1016/0009-2614(90)87014-I
http://dx.doi.org/10.1016/0009-2614(90)87014-I
http://dx.doi.org/10.1016/0009-2614(90)87014-I
http://dx.doi.org/10.1063/1.3660206
http://dx.doi.org/10.1063/1.3660206
http://dx.doi.org/10.1063/1.3660206
http://dx.doi.org/10.1063/1.3660206
http://dx.doi.org/10.1021/jp401464b
http://dx.doi.org/10.1021/jp401464b
http://dx.doi.org/10.1021/jp401464b
http://dx.doi.org/10.1021/jp401464b
http://dx.doi.org/10.1063/1.4798404
http://dx.doi.org/10.1063/1.4798404
http://dx.doi.org/10.1063/1.4798404
http://dx.doi.org/10.1063/1.4798404
http://dx.doi.org/10.1103/PhysRevB.50.5528
http://dx.doi.org/10.1103/PhysRevB.50.5528
http://dx.doi.org/10.1103/PhysRevB.50.5528
http://dx.doi.org/10.1103/PhysRevB.50.5528
http://dx.doi.org/10.1088/1742-6596/220/1/012017
http://dx.doi.org/10.1088/1742-6596/220/1/012017
http://dx.doi.org/10.1088/1742-6596/220/1/012017
http://dx.doi.org/10.1088/1742-6596/220/1/012017
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.68.2512


WILNER, WANG, THOSS, AND RABANI PHYSICAL REVIEW B 89, 205129 (2014)

[67] D. Mozyrsky, M. B. Hastings, and I. Martin, Phys. Rev. B 73,
035104 (2006).

[68] D. S. Kosov, J. Chem. Phys. 131, 171102 (2009).
[69] M. Thoss, H. Wang, and W. H. Miller, J. Chem. Phys. 115, 2991

(2001).
[70] H. Wang and M. Thoss, New J. Phys. 10, 115005 (2008).

[71] U. Weiss, Quantum Dissipative Systems (World Scientific,
Singapore, 1999).

[72] E. Eidelstein, D. Goberman, and A. Schiller, Phys. Rev. B 87,
075319 (2013).

[73] A. A. Dzhioev and D. S. Kosov, J. Chem. Phys. 135, 074701
(2011).

205129-14

http://dx.doi.org/10.1103/PhysRevB.73.035104
http://dx.doi.org/10.1103/PhysRevB.73.035104
http://dx.doi.org/10.1103/PhysRevB.73.035104
http://dx.doi.org/10.1103/PhysRevB.73.035104
http://dx.doi.org/10.1063/1.3262519
http://dx.doi.org/10.1063/1.3262519
http://dx.doi.org/10.1063/1.3262519
http://dx.doi.org/10.1063/1.3262519
http://dx.doi.org/10.1063/1.1385562
http://dx.doi.org/10.1063/1.1385562
http://dx.doi.org/10.1063/1.1385562
http://dx.doi.org/10.1063/1.1385562
http://dx.doi.org/10.1088/1367-2630/10/11/115005
http://dx.doi.org/10.1088/1367-2630/10/11/115005
http://dx.doi.org/10.1088/1367-2630/10/11/115005
http://dx.doi.org/10.1088/1367-2630/10/11/115005
http://dx.doi.org/10.1103/PhysRevB.87.075319
http://dx.doi.org/10.1103/PhysRevB.87.075319
http://dx.doi.org/10.1103/PhysRevB.87.075319
http://dx.doi.org/10.1103/PhysRevB.87.075319
http://dx.doi.org/10.1063/1.3626521
http://dx.doi.org/10.1063/1.3626521
http://dx.doi.org/10.1063/1.3626521
http://dx.doi.org/10.1063/1.3626521



