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How to represent crystal structures for machine learning:
Towards fast prediction of electronic properties
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High-throughput density functional calculations of solids are highly time-consuming. As an alternative, we
propose a machine learning approach for the fast prediction of solid-state properties. To achieve this, local
spin-density approximation calculations are used as a training set. We focus on predicting the value of the density
of electronic states at the Fermi energy. We find that conventional representations of the input data, such as the
Coulomb matrix, are not suitable for the training of learning machines in the case of periodic solids. We propose
a novel crystal structure representation for which learning and competitive prediction accuracies become possible
within an unrestricted class of spd systems of arbitrary unit-cell size.
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I. INTRODUCTION

In recent years ab initio high-throughput computational
methods (HTM) have proven to be a powerful and successful
tool to predict new materials and to optimize desired materials
properties. Phase diagrams of multicomponent crystals [1–3]
and alloys [4] have been successfully predicted. High-impact
technological applications have been achieved by improving
the performance of lithium-based batteries [5–7], by tailoring
the nonlinear optical response in organic molecules [8] for
optical signal processing, by designing desired current-voltage
characteristics [9] for photovoltaic materials, by optimizing
the electrode transparency and conductivity [10] for solar cell
technology, and by screening metals for the highest amalga-
mation enthalpy [11] to efficiently remove Hg pollutants in
coal gasification.

However, the computational cost of electronic structure
calculations poses a serious bottleneck for HTM. Thinking of
quaternary, quinternary, etc., compounds, the space of possible
materials becomes so large and the complexity of the unit
cells so high that, even within efficient Kohn-Sham density
functional theory (KS-DFT), a systematic high-throughput
exploration grows beyond reach for present-day computing
facilities. As a way out, one would like to have a more
direct way to access the physical property of interest without
actually solving the KS-DFT equations. Machine learning
(ML) techniques offer an attractive possibility of this type.
ML-based calculations are very fast, typically requiring only
fractions of a second to predict a specific property of a
given material, after the ML model has been trained on a
representative training set of materials.

ML methods rely on two main ingredients, the learning
algorithm itself and the representation of the input data. There
are many different ways of representing a given material or
compound. While, from the physicist’s point of view, the
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information is simply given by the charges and the positions of
the nuclei, for ML algorithms the specific mathematical form
in which this information is given to the machine is crucial.
Roughly speaking, ML algorithms assume a nonlinear map
between input data (representing the materials or compounds
in our case) and the material-specific property to be predicted.
Whether or not a machine can approximate the unknown
nonlinear map between input and property well and efficiently
mainly depends on a good representation [12–14]. Recently,
ML has contributed accurate models for predicting molecular
properties [15,16], transition states [17], potentials [18], and
self-consistent solutions for DFT [19]. All these applications
deal with finite systems (atoms, molecules, clusters). For
this type of system, one particular way of representing the
material, namely, the so-called Coulomb matrix, has been very
successful.

In electronic-structure problems, the single most important
property is the value of the density of states (DOS) at the Fermi
energy. Susceptibilities, transport coefficients, the Seebeck
coefficient, and the critical temperature of superconductors
are all closely related to the DOS at the Fermi energy.
Therefore, we have chosen this quantity to be predicted
by ML.

In this work, we shall report a fundamental step forward
in the application of machine learning to predict the DOS at
the Fermi energy. The two main questions this work aims to
address are as follows: (a) How can we describe an infinite
periodic system in a way that supports the learning process
well? (b) How large should the data basis for ML training be,
i.e., the training set of calculations? Answering these questions
will provide us with exactly the sought-after method of direct
and fast prediction and with the knowledge of whether such
prediction is indeed possible given the finite amount of training
data compatible with present-day computing power.

II. LEARNING AND REPRESENTATION

We employ so-called kernel-based learning methods
[20,21] that are based on a mapping to a high-dimensional
feature space such that an accurate prediction can be achieved
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with a linear model in this space. The so-called kernel
trick allows us to perform this mapping implicitly using a
kernel function, e.g., the Gaussian kernel k(x,y) = exp(−‖x −
y‖2/σ 2) or the Laplacian kernel k(x,y) = exp(−‖x − y‖/σ ).
Kernels can be viewed as a similarity measure between data; in
our case they should measure the proximity between materials
for a certain property. The property to be predicted is computed
as a linear combination of kernel functions of the material of
interest and the training materials. Therefore, constructing a
structure representation in which crystals have a small distance
when their properties are similar is beneficial for the learning
process (see below for details).

In order to predict the DOS, we employ kernel ridge
regression (KRR), which is a kernelized variant of least-
squares regression with �2 regularization. Additionally, the
predictive variance can be estimated, which can serve as a
measure of how well a material of interest is represented in
the training set. We use nested cross-validation for the model
selection process [22,23]; that is, the parameter selection and
performance evaluation are performed on separate held-out
subsets of the data that are independent from the set of training
materials. This ensures we find optimal parameters for the
kernel and the model regularization in terms of generalization
while avoiding overfitting.

In the solid-state community crystals are conventionally
described by the combination of the Bravais matrix, containing
the primitive translation vectors, and the basis, setting the
position and type of atoms in the unit cell. This type of
description is not unique and thus not a suitable representation
for the learning process since it depends on an arbitrary choice
of the coordinate system in which the Bravais matrix is given.
Namely, there exists an infinite number of equivalent repre-
sentations that would be perceived as distinct crystals by the
machine. In principle, recognizing equivalent representations
could also be tackled by machine learning directly as done
for molecules in Refs. [16,24,25]. However, a significant
computational cost in terms of size of the training set had
to be paid. Due to the aforementioned larger ambiguity in the
case of crystals, an even higher cost is expected.

For the case of molecules the Coulomb matrix has proven to
be a well-performing representation [15,16]. This is given by

Cmol
ij =

{
0.5Z2.4

i for i = j,
ZiZj

‖ri−rj ‖ for i �= j,

with nuclear charges Zi and positions ri of the atoms. This
description is invariant under rotation and translation, but
unfortunately, it cannot be applied directly to infinite periodic
crystals.

A simple extension to crystals is to combine a Coulomb
matrix of one single unit cell with the Bravais matrix (B+CM).
However, this representation suffers from the degeneracy
problem mentioned above. The Coulomb matrix representation
assumes a similarity relation between atoms with close nuclear
charges. However, this is most often not the case for the
chemical properties.

In order to include more physical knowledge about crystals,
we propose a crystal representation inspired by radial distribu-
tion functions as used in the physics of x-ray powder diffraction
[26] and text mining from computer science [27,28]. The

FIG. 1. (Color online) Alternative crystal representations. (left)
A crystal unit cell indicating the Bravais vectors (blue) and base
(pink). (right) Illustration of one shell of the discrete partial radial
distribution function gαβ (r) with width dr .

partial radial distribution function (PRDF) representation
considers the distribution of pairwise distances dαβ between
two atom types, α and β. This can be seen as the density of
atoms of type β in a shell of radius r and width dr centered
around an atom of type α (see Fig. 1). Averaged over all atoms
of a type, the discrete (PRDF) representation is given by

gαβ(r) = 1

NαVr

Nα∑
i=1

Nβ∑
j=1

θ (dαiβj
− r)θ (r + dr − dαiβj

),

where Nα and Nβ are the numbers of atoms of types α and β,
respectively, while Vr is the volume of the shell. We only need
to consider the atoms in one primitive cell as shell centers
for calculation. The distribution is globally valid due to the
periodicity of the crystal and the normalization with respect to
the considered crystal volume. In this work, the type criterion
for “counting” an atom is its nuclear charge; however, other
more general criteria could, in principle, also be used, such as
the number of valence electrons or the electron configuration.

As input for the learning algorithm, we employ the
feature matrix X with entries xαβ,n = gαβ(rn), i.e., the PRDF
representation of all possible pairs of elements as well as shells
up to an empirically chosen cutoff radius. The distance of
two crystals is then defined as the distance induced by the
Frobenius norm between those matrices and may be plugged
into one of the previously described kernels. In this manner, we
have defined a global descriptor as well as a similarity measure
for crystals which is invariant under translation, rotation, and
the choice of the unit cell.

The DOSF we use to train and validate the learning
are computed [29] for crystals from the inorganic crystal
structure database (ICSD) [35] with the experimental lattice
parameters reported therein. The chosen subset contains only
nonduplicated materials with a maximum of six atoms per
primitive cell. We subdivide the set into sp (1716 crystals) and
spd (5548 crystals).

For the DOSF prediction, we first consider the sp and
spd material sets separately. The mean absolute errors of
the predictions of all presented crystal representations are
collected in Table I. Furthermore, we list the mean predictor
that always predicts the average DOSF value of the training
set as a simple baseline. Both representations yield models
that are significantly better than the mean predictor. Figure 2
illustrates how the error decreases steadily with an increasing
number of materials used for training. However, the PRDF
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TABLE I. Mean absolute errors and standard errors of DOS
predictions in 10−2 states/eV/Å3. Errors in bold indicate the best
performance.

Predictor Features sp systems spd systems

Mean predictor 1.50 ± 0.02 1.82 ± 0.03
KRR (linear) B+CM 1.45 ± 0.04 1.68 ± 0.01
KRR (Gaussian) B+CM 1.19 ± 0.03 1.62 ± 0.01
KRR (Laplacian) B+CM 1.20 ± 0.04 1.63 ± 0.02
KRR (linear) PRDF 0.87 ± 0.02 1.68 ± 0.03
KRR (Gaussian) PRDF 0.74 ± 0.03 0.95 ± 0.02
KRR (Laplacian) PRDF 0.68 ± 0.03 0.86 ± 0.01

features consistently outperform the B+CM description. The
further analysis will therefore focus on PRDF with the slightly
better performing Laplacian kernel.

The higher complexity of the spd systems can clearly
be observed in the learning curves, which show how much
better the prediction problem can be solved as a function
of the available data. The mean error is much lower in sp
materials. Furthermore, the learning curves are steeper; that is,
increasing the training set size within the restricted materials
class improves the prediction accuracy rapidly. One origin
of this higher complexity lies in the growing dimensionality
of the input space: given Nel possible chemical elements
in all material compositions, dim(X) ∝ N2

el. Furthermore, by
including materials with d electrons, the physics becomes
richer. For both reasons, much more training data are required
to achieve an improvement comparable to that of sp systems.

The prediction of DOSF for spd systems is shown in Fig. 3
as a density plot of computed versus predicted values. It is
evident that the density is accumulated along the diagonal of
the plot, demonstrating that the machine is giving meaningful
predictions. However, the average error is smaller than 6% of
the DOS value range. Thus, this result represents a proof of
principle that a complex output of the Kohn-Sham equations
can be predicted directly by means of machine learning, despite
the considerable variance of errors.

FIG. 2. (Color online) Learning process as a function of the num-
ber of materials used for training for all three feature representations
(conventional B+CM and PRDF) and for the two data sets.

FIG. 3. (Color online) Comparison between predicted and cal-
culated DOSF for spd systems. The background density distribution
refers to the cross-validation systems. Dots are additional systems
(see legend) of far larger size than those used for training.

III. PREDICTIONS FOR LARGER SYSTEMS

From Fig. 2, it is clear that, in order to increase the
prediction accuracy, the size of the training set should be
extended, possibly at the limits of present computing facilities.
Instead of a brute-force approach, the problem may become
less costly by using an active learning scheme, e.g., by
extending the set where the predicted variance is higher. We
still expect that in order to obtain highly accurate results the
computation costs will be large. Can the proposed approach
still be useful at the present accuracy level?

To answer this question we first point out that ML is at least
2 or 3 orders of magnitude faster than any direct computational
approach; this means that a fast ML scan may always be of
use as a preliminary step before consuming precious resources
on detailed calculations. Second, a remarkable feature of the
PRDF representation is that it is not fixed to a certain number of
atoms in the unit cell of the training materials. This means that
once the machine has been trained, it can be used to predict the
properties of any other system. This is virtually independent
of its size as long as it is well represented by the training
set.

As a proof for this ability, we consider additional test
systems, divided into three sets: The first set (pink circles in
Fig. 3) contains only systems taken from the ICSD database,
chosen among those with between 30 and 80 atoms per unit
cell that are well represented by the training set. Therefore,
only ICSD materials with a relatively low predictive variance
were chosen for calculation. The second set (orange triangles
in Fig. 3) contains a purely metallic alloy (within the unit
cell) of lead and aluminum. All the systems in this set are
crystals with 125 atoms per unit cell, differing by the Al/Pb
concentration. The third set (black squares in Fig. 3) is a solid
solution of three atomic types in a diamond lattice, carbon,
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K. T. SCHÜTT et al. PHYSICAL REVIEW B 89, 205118 (2014)

boron, and nitrogen, at different compositions and with a total
of 45 atoms per periodic unit cell.

Unlike the training systems, each of these involve a large
computational cost and would not be feasible without access
to a computation facility. While the PbAl alloys are quite
well predicted, some of the DOSF for the large ICSD systems
(mostly oxides) are overestimated, as well as some of the DOSF

of the CBN solid solution. Again, a clear diagonal accumu-
lation is achieved. Nevertheless, for these large systems that
the learning machine has never been trained on, the average
quality of the prediction of large systems is comparable to that
of the much smaller, cross-validated systems.

IV. CONCLUSION

We have investigated a machine learning approach for
fast solid-state predictions. A set of local spin-density ap-
proximation calculations has been used to train a DOSF

predictor. We expect that our method can be extended to
directly predict other complex materials properties as well. It
certainly can be combined with other, more accurate, electronic
structure techniques such as GW . The accuracy of predictions
depends strongly on how crystals are represented. We found
that Coulomb matrices, while being successful for predicting
properties in molecules [24,25], are not suitable to describe
crystal structures well enough. Instead, we have proposed a
representation inspired by partial radial distribution functions

which is invariant with respect to translation, rotation, and
the choice of the unit cell. Our results clearly demonstrate
that a fast prediction of electronic properties in solids with ML
algorithms is indeed possible. Although currently the accuracy
leaves room for improvement, we consider the predictions
useful for a first screening of a huge number of materials
for properties within a desired value range. In a second
step, high-accuracy electronic structure calculations are then
performed on the promising candidates only. What makes the
approach extremely appealing is that the PRDF representation
allows us to learn on small systems with low computational
cost and then extrapolate to crystals with arbitrary numbers of
atoms per unit cell for which conventional DFT calculations
would be prohibitive.
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