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Topological insulators have surface states with a remarkable helical spin structure, with promising prospects
for applications in spintronics. Strategies for generating spin-polarized currents, such as the use of magnetic
contacts and photoinjection, have been the focus of extensive research. While several optical methods for
injecting currents have been explored, they have all focused on one-photon absorption. Here we consider the use
of both a fundamental optical field and its second harmonic, which allows the injection of spin-polarized carriers
and current by a nonlinear process involving quantum interference between one- and two-photon absorption.
General expressions are derived for the injection rates in a generic two-band system, including those for one-
and two-photon absorption processes as well as their interference. Results are given for carrier, spin density, and
current injection rates on the surface of topological insulators, for both linearly and circularly polarized light. We
identify the conditions that would be necessary for experimentally verifying these predictions.
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I. INTRODUCTION

Three-dimensional topological insulators are fascinating
materials, with a band gap in the bulk and protected midgap
states at their surfaces [1,2]. The surface electronic bands
are described by a single Dirac cone with a helical spin
structure, which is the equivalent of a dominant Rashba spin-
orbit coupling term in the Hamiltonian. This property leads
to a number of interesting features, including nonmagnetic
scattering, the magnetoelectric effect [3,4], and the formation
of Majorana fermions in the proximity of superconductors [5].
Due to the effective spin-orbit coupling, the spin and current
of the surface states are closely related [6], providing an
exciting opportunity for technological applications using spin-
polarized currents. There have already been several studies
using the proximity of a magnetic metal for injecting spin
polarization and current [7–10].

Another fruitful approach for manipulating currents in
materials involves optical excitation. The optical properties
of topological insulator surface states are very interesting
themselves, with features such as the injected current depend-
ing explicitly on the Berry phase [11,12]. The injection of
spin and current by one-photon absorption processes has been
studied in different circumstances [12–14]. In order to break
the rotational symmetry stemming from the Dirac cone—a
necessary step for generating a current—the use of an in-plane
magnetic field, the application of strain, and an oblique angle
of incidence have all been considered. Corrections due to
snowflake warping have been included; even a surprisingly
relevant contribution from the Zeeman coupling of the light
field has been identified [15]. Nonlinear effects due to the sec-
ond harmonic have also been considered [16–19], especially
in the treatment of pulses. However, the focus of even these
studies has been on one-photon absorption processes.

One of the most interesting techniques for optical injection
is coherent control, an example of which involves tuning
the interference of one- and two-photon absorption processes
to achieve a target response. This has been employed for
injecting carriers, spin polarization, currents, and spin currents
in semiconductors [20,21] and currents in graphene [22–24].
It has even been proposed that it could be used to inject

a macroscopic Berry curvature in semiconductor quantum
wells [25]. Here we present predictions of the optical injection
of carrier density, spin polarization, charge current, and spin
current at the surface of a topological insulator. In order to
identify the fundamental properties of coherent control in
topological insulators, we use a Hamiltonian with a perfectly
symmetric Dirac cone, and we restrict the analysis to light
at normal incidence. This also helps to contrast the results of
coherent control with those obtained by other means. We keep
a σz mass term in the Hamiltonian in order to analyze the
dependence on the Berry phase, which has interesting effects
on the injection rates.

In Sec. II we present the method used for the calculation
of optical injection rates for an arbitrary quantity using
Fermi’s golden rule, considering one- and two-photon ab-
sorption processes as well as their interference. In Sec. III
we provide general expressions for the injection rates of
a generic two-band system, especially for carrier-density,
spin-density, charge-current, and spin-current operators. Since
two-band models can be used, as a first approximation, to
compute optical properties of a large number of materials,
the expressions derived there should be of use even beyond
their application to topological insulators. In Sec. IV we apply
the results of Sec. III to topological insulators. In Sec. V we
present the results for linearly and circularly polarized light,
referring to Appendixes A and B for details. In Sec. VI we
end with a discussion of interesting features in our results and
the possibilities for their experimental verification, including
estimates for the expected experimental results. Since the
experimental techniques required to confirm our results are
well established, we can expect that such experiments will
help advance the understanding and applications of topological
insulators.

II. RESPONSE TO LIGHT FIELDS

There are several methods for computing the response of
a system to external perturbations; one of the simplest and
most standard methods is Fermi’s golden rule. It is especially
suitable for coherent control calculations because it makes
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evident all the contributions stemming from one- and two-
photon processes and their interference. This is a feature not
shared by the Kubo formalism, for instance.

The calculation for the injection rates using Fermi’s golden
rule has been already well explained in previous studies [20].
However, it has been typically assumed that the fundamental
photon energy is below the band gap, as is the case for most
studies of semiconductors. Since we deal with systems that
are gapless, there will be an additional interference term [26].
And in order to make the notation clear we present the main
steps of the full calculation in the Supplemental Material [27].
Below we only show the main results.

We consider two incident light fields corresponding to
the vector potential A (t) = ∑

ωα
A (ωα) e−i(ωα+iε)t , with ωα =

±ω,±2ω, and ε → 0+ describes the turning on of the field

from t = −∞. The associated electric field is given by E (t) =
−c−1∂t A (t). We then compute the injection rate for the density
〈M〉 of a quantity associated with a single-particle operator
M = ∑

k a
†
α,kMαβ,kaβ,k; here α and β are band indices. It

can be decomposed into contributions from one- and two-
photon absorption processes with an additional interference
term 〈Ṁ〉 = 〈Ṁ1〉 + 〈Ṁ2〉 + 〈Ṁi〉, where

〈Ṁ1〉 =
∑
n=1,2

�bc
1 (nω)Eb(−nω)Ec(nω),

〈Ṁ2〉 = �bcde
2 (ω)Eb(−ω)Ec(−ω)Ed (ω)Ee(ω), (1)

〈Ṁi〉 =
∑
n=1,2

�bcd
i(n)(ω)Eb(−ω)Ec(−ω)Ed (2ω) + c.c.,

with

�bc
1 (nω) = π

LD

∑
cv,c′v′,k

(Mc′c,kδv′v − Mv′v,kδc′c)�bc
1,c′v′,cv(k,ω)[δ(nω − ωcv,k) + δ(nω − ωc′v′,k)],

�bcde
2 (ω) = π

LD

∑
cv,c′v′,k

(Mc′c,kδv′v − Mv′v,kδc′c)�bcde
2,c′v′,cv(k,ω)[δ(2ω − ωcv,k) + δ(2ω − ωc′v′,k)], (2)

�bcd
i(n)(ω) = π

LD

∑
cv,c′v′,k

(Mc′c,kδv′v − Mv′v,kδc′c)�bcd
i(n),c′v′,cv(k,ω)[δ(nω − ωcv,k) + δ(nω − ωc′v′,k)],

and

�bc
1,c′v′,cv(k,ω) = e2

�2ω2
vb

v′c′v
c
cv,

�bcde
2,c′v′,cv(k,ω) = Wbc

c′v′,k(ω,ω)∗Wde
cv,k(ω,ω),

(3)

�bcd
i(1),c′v′,cv(k,ω) = ie

�ω
vb

v′c′Wcd
cv,k(2ω,−ω),

�bcd
i(2),c′v′,cv(k,ω) = ie

2�ω
Wbc

cv,k(ω,ω)∗vd
c′v′ ,

where

�bc
cv,k(ωα) = −e2

�2ω2

∑
n

vb
cnv

c
nv

ωα − ωnv

,

(4)
Wbc

cv,k(ωα,ωβ) = �bc
cv,k(ωα) + �cb

cv,k(ωβ).

In the above equations, v is the velocity operator, the indices
v and c correspond respectively to valence and conduction
bands, �ωn is the energy of electrons at band n, and ωcv =
ωc − ωv; L is the unidimensional normalization length, and D

is the number of spatial dimensions of the system.
The �bc

1 (ω) and �bcd
i(1)(ω) terms have usually been ignored

in the literature, since they vanish for systems with a gap
where the first harmonic falls below the band gap. The two
interference processes are shown in Fig. 1. The quantities for
which the injection rates will be computed are the densities
associated with the carriers 〈n〉, spin 〈S〉, charge current 〈J c〉,
and spin current 〈JS〉. We denote the response coefficients
associated with the quantities 〈ṅ〉, 〈Ṡ〉, 〈 J̇ c〉, and 〈 J̇S〉,
respectively, by ξ , ζ , η, and μ.

III. TWO-BAND SYSTEMS

Any Hermitian 2 × 2 matrix can be written as a linear
combination of Pauli matrices σ and the identity σ0. So a
generic Hamiltonian for two bands is H = ∑

k a
†
α,kHαβ,kaβ,k,

where α,β = 1,2 are band indices, and

Hk = ��kσ0 + �dk · σ (5)

denotes the Hamiltonian at each lattice momentum k. The
eigenenergies are Ek± = �(�k ± dk) where dk = |dk|, with
(+) = c and (−) = v representing the conduction and valence
bands, respectively, so ωcv,k = 2dk. The eigenstates satisfy
d̂ k · σψk± = ±ψk±, so when d̂ k · σ is diagonalized it is

FIG. 1. (Color online) One- and two-photon interference pro-
cesses illustrated on the helical Dirac cone. The one on the left has
energy �ω and corresponds to (i)1, while the one on the right has
energy 2�ω and corresponds to (i)2.

205113-2



COHERENT CONTROL OF OPTICAL INJECTION OF SPIN . . . PHYSICAL REVIEW B 89, 205113 (2014)

represented by σz, and there is a unitary matrix Uk that
performs the change of basis, d̂ k · σ = UkσzU

†
k . Because

SU(2) and SO(3) have the same algebra, we can write
UkσzU

†
k = (Rk ẑ) · σ , where Rk represents a rotation around

the axis n̂k by an angle φk, so Uk = exp(−i
φk
2 n̂k · σ ); we

put n̂k = ẑ × d̂ k/| ẑ × d̂ k| and cos φk = ẑ · d̂ k. The triad � =
{n̂k,d̂ k,n̂k × d̂ k} forms an orthonormal basis, so an arbitrary
operator ŵ · σ can be easily written in the basis of eigenvectors
U

†
k(ŵ · σ )Uk by decomposing ŵ in the triad � and performing

the rotation Rk.

A. Operators

We keep track of the injected carriers by computing the
density of electrons injected into the conduction band. The
corresponding number operator has matrix elements ncc = 1
and nvv = 0. We suppose that the components of the spin
operator are given by Sa = �

2 â · σ , and we decompose â · σ

according to �, so

Sa
cc = �

2
d̂ k · â,

(6)

Sa
vv = −�

2
d̂ k · â

are the matrix elements needed. Note that even though Sa
cc

and Sa
vv are matrix elements of the spin operator in the basis of

eigenstates, they are being expressed in terms of the parameters
of the Hamiltonian in its nondiagonal form of Eq. (5).

The matrix associated with the velocity operator is [28]

va
k = 1

�
∂kaHk = ∂ka�kσ0 + ∂ka dk · σ , (7)

and decomposing it according to � gives the matrix elements

va
cc = ∂ka�k + ∂kadk,

va
vv = ∂ka�k − ∂kadk,

(8)
va

cv = dk(n̂k + in̂k × d̂ k) · (∂ka d̂ k)n̂k · (x̂ − i ŷ),

va
vc = dk(n̂k − in̂k × d̂ k) · (∂ka d̂ k)n̂k · (x̂ + i ŷ).

It is also necessary to compute products of two velocity matrix
elements,

va
cvv

b
vc = d2

k[∂ka d̂ k · ∂kb d̂ k + i d̂ k · (∂ka d̂ k × ∂kb d̂ k)]. (9)

The second term above is the Berry curvature; we can track
the contributions to optical properties that depend on it. The
charge current is expressed in terms of the velocity operator
by J c = ev.

We define the spin-current operator as J ab
S,k = 1

2 (Savb
k +

vb
kS

a), so for a system where Sa = �

2 â · σ we have

J ab
S,cc = �

â · d̂ k(∂kbdk) + dk â · ∂kb d̂ k + (∂kb�k)â · d̂ k

2
,

(10)

J ab
S,vv = �

â · d̂ k(∂kbdk) + dk â · ∂kb d̂ k − (∂kb�k)â · d̂ k

2
,

which completes the list of necessary matrix elements. Based
on this, the coefficients used in Eqs. (2)–(4) are computed and
shown explicitly in the Supplemental Material [29].

IV. TOPOLOGICAL INSULATORS

When the photon energy is smaller than the bulk band gap
of a topological insulator, only the protected states localized
on their surfaces will contribute to the optical absorption and
injection.

The standard effective model describing the states on
the surface of a topological insulator has a 2 × 2 Hamilto-
nian [30,31] given by

Hk = �(C0 + D0k
2)σ0 − �A0( ẑ × k) · σ + ��mσz, (11)

including terms up to the second order in k. The �mσz

mass term is kept to keep track of how the Berry curvature
affects the optical response; it would correspond to an external
magnetic field along the ẑ direction, for instance. This
Hamiltonian corresponds to Eq. (5) with �k = C0 − Dk2 and
dk = A0( ẑ × k) + �m ẑ, so n̂k = −k̂ and

∂kbdk = A2
0k

b

dk
,

(12)

∂kb d̂ k = −A0( ẑ × b̂)

dk
− A2

0k
b d̂ k

d2
k

.

This allows us to compute the optical injection coefficients.
Since in the basis of Eq. (11) the spin operator is represented
by Sa = �

2 â · σ , from Eqs. (6), (8), and (10) we can identify
the matrix elements of the operators of interest:

Sa
cc − Sa

vv = �â · d̂ k = �A0k
z×a + ��m ẑ · â

dk
,

va
cc − va

vv = 2∂kadk = 2A2
0k

a

dk
, (13)

J ab
S,cc − J ab

S,vv = �(∂kbεk)â · d̂ k = 2�D0k
b[A0k

z×a + �m ẑ · â]

dk
.

They satisfy the relations

Sz
cc − Sz

vv = ��m

dk
= ��m

dk
(ncc − nvv),

v = −2A0 ẑ × S
�

, (14)

J zb
S,cc − J zb

S,vv = 2�D0k
b�m

dk
= �D0�m

A2
0

(
vb

cc − vb
vv

)
,

where the second equation is the identity explored by Raghu
et al. [6]; the first states that the ẑ component of the spin
density Sz merely corresponds to the spin polarization of the
injected carriers, and the third identifies the ẑ component of
the spin current J z

S as entirely due to the spin polarization of
the charge current. Both spin density and current are nonzero
only in the presence of the σz mass �m. It should be noted
that the spin current is typically not a conserved quantity,
and indeed it is not conserved at the surface of topological
insulators. Nevertheless, we still compute its optical injection
rate because, depending on the experimental technique, the
spin separation to which it leads might be detected (or tunneled
to another material) before the spins relax [32,33].

The equations necessary for computing the optical injection
coefficients are shown in the Supplemental Material [34]. The
expressions for the various coefficients that follow from these

205113-3



RODRIGO A. MUNIZ AND J. E. SIPE PHYSICAL REVIEW B 89, 205113 (2014)

TABLE I. Values of the parameters used for the plots.

A0 (m/s) D0 (m2/s) ��m (eV) |E(ω)| (V/m) |E(2ω)| (V/m)

5 × 105 7 × 10−4 1.5 × 10−2 1 × 104 72

expressions are the main results of this paper and are detailed
in Appendix B.

V. RESULTS

For the system we are considering, one- and two-photon
absorption processes inject scalar quantities while interference
processes inject vectorial ones. We confirm within our model
that carriers are injected by one- and two-photon absorption
processes, but not from the interference between them. Con-
versely, charge current is injected solely from the interference
processes and not from the one- and two-photon absorption
processes. However, there are additional peculiarities for the
spin density and spin current injection.

Due to relations (14), the in-plane spin density follows the
charge current injection, stemming only from the interference
processes; the out-of-plane spin density only has contributions
from the one- and two-photon absorption processes. It simply
corresponds to the spin polarization of the injected carriers,
which is proportional to the σz mass term in the Hamiltonian.

A similar situation holds for the spin current. The spin
current of the ẑ component of spin follows the charge current
and simply amounts to the net spin polarization of the carriers
of the current; it is obtained from the interference terms. On
the other hand, the in-plane spin current is a result of the
Dirac cone with chiral spins; it does not require a net spin
polarization generated by a σz mass term. It is obtained from
one- and two-photon absorption and has no contribution from
interference processes.

Below we present the injection rates for the quantities
of interest, considering linear and circular polarizations. In
Appendix A we show the general expressions for the optical
injection coefficients, and in Appendix B we present the
explicit form of the coefficients related to linear and circular
polarizations of the incident light, which are referred to below.

The values of the parameters A0, D0, and �m =
μBgB/(2�) used for the plots or specific estimates are given
in Table I; they correspond to the parameters of Bi2Te3 for an
applied magnetic field around 10 T [30].

We consider field amplitudes of Eω = 104 V/m for the
fundamental and E2ω = 72 V/m for the second harmonic,
which are indicative of the largest field intensities allowed
within the perturbative regime. These values depend on the
expressions for the injected carrier density, so we explain how
they are obtained in Sec. VI.

A. Linear polarizations

The one- and two-photon processes do not depend on the
relative orientation of the fundamental E(ω) = Eωeiθ1 êω and
second harmonic E(2ω) = E2ωeiθ2 ê2ω fields, where Eω and
E2ω are real. Therefore, we show here the results for the
injection coefficients �1 and �2, while the results for �i(1)

and �i(2) are displayed for the special cases of parallel and
perpendicular polarizations.

The carrier-density injection rate is given by

〈ṅ1〉 = ξxx
1 (ω)E2

ω + ξxx
1 (2ω)E2

2ω,
(15)

〈ṅ2〉 = ξxxxx
2 (ω)E4

ω,

and the ẑ component of the spin-density injection rate is given
by

〈
Ṡz

1

〉 = 2��m

ω

[
ξxx

1 (ω) E2
ω + 1

2
ξxx

1 (2ω) E2
2ω

]
,

〈
Ṡz

2

〉 = ��m

ω
ξxxxx

2 (ω) E4
ω. (16)

This result simply corresponds to the net polarization of the
injected carriers.

The charge-current injection rate vanishes; 〈J̇ a
1 〉 =

〈J̇ a
2 〉 = 0.
The spin-current injection rate is

〈
J̇ ab

S,1

〉 =
∑
n=1,2

( ẑ × ênω) · â(ênω · b̂)μyxxx

1 (nω) E2
nω

+
∑
n=1,2

ênω · â( ẑ × ênω) · b̂μ
xyxx

1 (nω) E2
nω,

(17)〈
J̇ ab

S,2

〉 = ( ẑ × ênω) · â(ênω · b̂)μyxxxxx

2 (ω) E4
ω

+ êω · â ( ẑ × êω) · b̂μ
xyxxxx

2 (ω) E4
ω,

where the first term in each equation gives a spin current
independent of the applied field polarization and is due the
helical spin structure.

1. Parallel orientations

Only the interference processes depend on the rela-
tive orientation of the E (ω) and E (2ω). Here the fields
are E (ω) = Eωeiθ1 êω and E (2ω) = E2ωeiθ2 êω. The relative
phase parameter is �θ = θ2 − 2θ1.

The charge-current injection rate is given by

〈 J̇ i〉 = −2êωIm
[
ηxxxx

i(1) (ω) + ηxxxx
i(2) (ω)

]
sin (�θ ) E2

ωE2ω.

(18)

Due to Eq. (14), the in-plane spin density and the spin ẑ current
injection rates are given in terms of 〈 J̇ i(ω)〉 by

〈Ṡi〉 = �

2A0e
ẑ × 〈 J̇ i〉,

(19)〈
J̇

z

S,i

〉 = �D0�m

A2
0e

〈 J̇ i〉,

and the spin current merely corresponds to the magnetization
of the carriers of the charge current.

The direction of the polarization vector provides control of
the angle of the injected vectorial quantities, while the relative
phase parameter of the light beams can control only their
magnitude and orientation.
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2. Perpendicular orientations

Here we have E (ω) = Eωeiθ1 êω and E (2ω) = E2ωeiθ2 ê2ω

with ê2ω = ẑ × êω. The relative phase parameter is again
�θ = θ2 − 2θ1.

The charge-current injection rate is given by〈
J̇ a

i

〉 = −2ê2ω · âIm
[
η

yxxy

i(1) (ω) + η
yxxy

i(2) (ω)
]

sin (�θ ) E2
ωE2ω

+ 2êω · âRe
[
η

xxxy

i(1) (ω) + η
xxxy

i(2) (ω)
]

× cos (�θ ) E2
ωE2ω, (20)

and the spin density and current follow Eq. (19). From
Eqs. (B6) and (B7) in Appendix B we can identify two
different contributions to the injection: one that is related to
the Berry curvature and thus depends on �m, and another that
is independent of �m. Again the direction of the polarization
vector provides control of the angle of the injected vectorial
quantities. The relative phase can still control their magnitude
and orientation, but it can also switch between the two
regimes: the first where the photoinjection stems from the
Berry curvature, and the second where it does not.

B. Circular polarizations

For circular polarizations E (ω) = Eωeiθ1 p̂τ1
and E (2ω) =

E2ωeiθ2 p̂τ2
, where τ1,τ2 = ±1 and p̂± = (x̂ ± i ŷ) /

√
2, so

p̂τ · p̂τ = 0 and p̂+ · p̂− = 1 as well as p̂− × p̂+ = i ẑ. The
relative phase parameter is still �θ = θ2 − 2θ1. Again the one-
and two-photon processes do not depend on the relative helicity
of the E (ω) and E (2ω) fields and are presented first.

The carrier-density injection rate is now given by

〈ṅ1〉 = ξ−+
1 (ω) E2

ω + ξ−+
1 (2ω) E2

2ω,
(21)

〈ṅ2〉 = ξ−−++
2 (ω) E4

ω.

The spin-density injection is still given by Eq. (16), and for
the spin current we have〈

J̇ ab
S,1

〉 = 2i(â × b̂) · ẑ
∑
n=1,2

μ−+−+
1 (nω) E2

nω,

(22)〈
J̇ ab

S,2

〉 = 2i(â × b̂) · ẑμ−+−−++
2 (ω) E4

ω.

Circularly polarized light does not break rotational symmetry;
therefore, the second term of Eq. (17) is not present.

1. Equal helicities

The interference processes depend on the relative helicity
of the two fields. We first consider the fields with the same
helicity, E (ω) = Eωeiθ1 p̂τ and E (2ω) = E2ωeiθ2 p̂τ .

The charge-current injection rate is given by〈
J̇ a

i

〉 = 2[ay cos(�θ ) + ax sin(�θ )]

× i[η+−−+
i(1) (ω) + η+−−+

i(2) (ω)]E2
ωE2ω. (23)

The spin density and current follow Eq. (19).
The relative phase displacement between the two light

beams can now control the direction of the injected quantities.
Especially for frequencies near the gap, the injection rates

for different helicities τ depend strongly on the chirality of the
electronic states, identified by �m/ |�m|. The helicity of the
incident light has no effect for vanishing �m.

2. Opposite helicities

Here we have E (ω) = Eωeiθ1 p̂τ and E (2ω) =
E2ωeiθ2 p̂−τ . The injection rates from interference all
vanish for the four operators of interest.

VI. DISCUSSION

In order to determine the validity of our calculations for
the optical injection rates, we have to consider the fraction
of the injected carrier population relative to the total number
of states in the range of energies covered by the laser pulse.
The duration of the pulse, T , sets the minimum frequency
broadening of the laser pulse �ω = 2π

T , which in turn—via
the dispersion relation, which we assume is Ek = �A0k here
for simplicity—determines the area of the Brillouin zone that
can be populated by carriers: a = 2πk�k, where k = ω

A0
and

�k = �ω
A0

. The number of states available in this area of the

Brillouin zone is a/a1, where a1 = (2π)2

L2 is the area occupied
by one state. The maximum amplitudes of the laser fields are
restricted by the condition that the number of injected carriers
with additional energy 2�ω is at most 5% of the total number
of carrier states in the allowed energy range:

(
ξxx

1 (2ω) E2
2ω + ξxxxx

2 (ω) E4
ω

)
T L2 < 0.05

a

a1
. (24)

We then estimate the amplitudes by imposing the additional
condition ξxx

1 (2ω) E2
2ω = ξxxxx

2 (ω) E4
ω, which gives optimal

interference between the absorption processes [20]. Finally,
the field amplitudes are limited by

(eE2ω)2 = 4A2
0 (eEω)4

�2ω4
<

1.6�
2ω2

A2
0T 2

. (25)

For pulses lasting 1 ns with a frequency of 30 meV, the field am-
plitudes found are Eω = 1 × 104 V/m for the fundamental and
E2ω = 72 V/m for the second harmonic, which correspond to
laser intensities of 9.9 W/cm2 and 0.65 mW/cm2, respectively.
We use these values for all �ω in Figs. 2–4, although for �ω <

30 meV smaller amplitudes would be required to guarantee
Eq. (24) and could be found by using Eq. (25). Our estimates
on the limit of perturbation theory neglect any relaxation
of the injected carriers. Its presence will allow the use of
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ṅ1(2ω)
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FIG. 2. (Color online) (a) Carrier-density injection rates from
one- and two-photon absorption processes at total energy 2�ω.
(b) Carrier-density injection rates for linear (êω = x̂) and circular
(τ = ±1) polarizations of the incident fields.
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FIG. 3. (Color online) Planar spin current density injection rates
for (a) linear polarizations along the x̂ direction and (b) circular
polarizations.

higher-energy laser pulses to compensate for the relaxation, at
least partially, without leaving the perturbative regime.

In the absence of the σz mass term, the carrier and charge-
current injection rates are very similar to the ones found for
graphene [23], except for the adjustments due to having only
one Dirac cone and a smaller Fermi velocity. However, even in
this case there is also injection of the transverse spin following
the same form of the injected current, a signature characteristic
of topological insulators. The magnitude of these injected
quantities is also of the same order as the values for graphene,
where the current injected by the processes discussed here
has already been measured [22]. The carrier relaxation time is
also longer for the surface of topological insulators than for
graphene [35].

Another distinctive trait shared with graphene is the
relatively low average velocity of the injected carriers when
compared to semiconductors. This is due to the one-photon
absorption at the fundamental frequency, forbidden in semi-
conductors because of the band gap. This gives rise to the
extra interference process with total energy �ω, which usually
partially cancels the injected current stemming from the
interference process with total energy 2�ω.

Several particular features are found in the presence of
the Berry phase inducing the �mσz term, especially for
circular polarizations of the optical fields, when an interesting
interplay between the helicity τ of the incident fields and the
chirality �m/ |�m| of the Dirac cone can greatly suppress or
enhance optical injection. In order to observe these features

a combination of high magnetic field and low temperature
is necessary, because the Zeeman coupling ��m = μBgB/2
needs to be above temperature kBT . We estimate that 77 K and
6 T should be enough for Bi2Te3. For a pronounced effect, the
photon energy should not be much larger than the Zeeman gap.
Reasonable photon energies for the fundamental field would
not be much larger than �ω = 30 meV, which can be achieved
with quantum cascade lasers.

When lasers of similar intensity are considered, the
predicted magnitude of the injected currents obtained from
coherent control seem to be considerably larger than the
values found by other approaches, such as applying an in-
plane magnetic field or using oblique incidence. Therefore,
it can play a crucial role in the quest for harnessing the
exotic properties of topological insulators for spintronics
applications.
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APPENDIX A: GENERAL EXPRESSIONS FOR THE
OPTICAL INJECTION COEFFICIENTS

In order to express the optical injection coefficients, it is
helpful to introduce the following quantities:

ϕab =
∫

dθ

2π

kakb

k2
= â · b̂

2
,

ϕabcd =
∫

dθ

2π

kakbkckd

k4

= â · b̂(ĉ · d̂) + â · ĉ(b̂ · d̂) + â · d̂(b̂ · ĉ)

8
, (A1)

ϕabcdef =
∫

dθ

2π

kakbkckdkekf

k6

=
∑

pairings

â · b̂(ĉ · d̂)ê · f̂
48

.

Intermediate steps are shown in the Supplemental Mate-
rial [36], which give the following results.
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FIG. 4. (Color online) Current-density injection rates for (a) linear polarizations with parallel orientations, (b) linear polarizations with
perpendicular orientations, showing the components of the current along the êω and ê2ω directions, and (c) circular polarizations.
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1. One- and two-photon absorption

The carrier-density coefficients are

ξbc
1 (ω) = � (ω − 2�m) e2

2�2ω

[
b̂ · ĉ

4

(
1 + 4�2

m

ω2

)
− i

�m ẑ · (b̂ × ĉ)

ω

]
,

ξ bcde
2 (ω) = � (ω − �m) e4A2

0

�4ω5

(
1 − �2

m

ω2

) {[
(b̂ · d̂)ĉ · ê + (b̂ · ê)ĉ · d̂

2
− 2ϕbcde

(
1 − �2

m

ω2

) ]

+ i
�m

ω

[
ĉ · ê(d̂ × b̂) · ẑ + b̂ · ê(d̂ × ĉ) · ẑ + ĉ · d̂(ê × b̂) · ẑ + d̂ · b̂ (ê × ĉ) · ẑ

4

]}
. (A2)

The charge-current coefficients vanish: ηabc
1 (ω) = ηabcde

2 (ω) = 0.
The spin-density coefficients can be written in terms of the carrier-density ones as

ζ abc
1 (ω) = 2��m ( ẑ · â)

ω
ξbc

1 (ω) , ζ abcde
2 (ω) = ��m ( ẑ · â)

ω
ξbcde

2 (ω) , (A3)

which is a consequence of Eq. (14).
And the spin-current coefficients are

μabcd
1 (ω) = � (ω − 2�m) e2D0

4A0�

(
1 − 4�2

m

ω2

) [
( ẑ × â) · b̂(ĉ · d̂)

2
− ϕ(z×a)bcd

(
1 − 4�2

m

ω2

)
+ i

�m (ẑ × â) · b̂(d̂ × ĉ) · ẑ
ω

]
,

μ
abcdef

2 (ω) = 4� (ω − �m) e4D0A0

�3ω4

(
1 − �2

m

ω2

)2 [
ϕ(z×a)bdf ĉ · ê + ϕ(z×a)bcf d̂ · ê + ϕ(z×a)bde ĉ · f̂ + ϕ(z×a)bce d̂ · f̂

4
(A4)

−ϕ(z×a)bcdef

(
1 − �2

m

ω2

) ]
+ i

4� (ω − �m) e4D0A0

�3ω4

�m

ω

(
1 − �2

m

ω2

)2

×
[
ϕ(z×a)bdf (ê × ĉ) · ẑ + ϕ(z×a)bcf (ê × d̂) · ẑ + ϕ(z×a)bde( f̂ × ĉ) · ẑ + ϕ(z×a)bce( f̂ × d̂) · ẑ

4

]
,

giving spin currents with only in-plane components of spin, which is independent of the �mσz mass term.

2. Interference processes

The carrier-density coefficients vanish: ξbcd
i(n) (ω) = 0. The charge-current coefficients are

ηabcd
i(1) (ω) = i� (ω − 2�m) e4A2

0

4�3ω3

(
1 − 4�2

m

ω2

) {[
(â · d̂)b̂ · ĉ − 2(â · ĉ)b̂ · d̂

2
+ ϕabcd

(
1 − 4�2

m

ω2

) ]

+ i
2�m

ω

[
â · d̂(ĉ × b̂) · ẑ − 2â · ĉ(d̂ × b̂) · ẑ

2

]}
,

(A5)

ηabcd
i(2) (ω) = i� (ω − �m) e4A2

0

2�3ω3

(
1 − �2

m

ω2

) {[
(â · ĉ)b̂ · d̂ + (â · b̂)ĉ · d̂

2
− 2ϕabcd

(
1 − �2

m

ω2

) ]

+ i
�m

ω

[
â · ĉ(d̂ × b̂) · ẑ + â · b̂(d̂ × ĉ) · ẑ

2

]}
,

due to Eq. (14), the spin-density coefficients can be written in
terms of the ones for the charge current as

ζ abcd
i(n) (ω) = �

2eA0
η

(z×a)bcd
i(n) (ω) , (A6)

and the spin-current coefficients can also be written in terms
of the ones for the charge current as

μabcde
i(n) (ω) = �D0�m ẑ · â

eA2
0

ηbcde
i(n) (ω) , (A7)

which finishes the list of optical injection coefficients.

APPENDIX B: OPTICAL INJECTION COEFFICIENTS FOR
LINEAR AND CIRCULAR POLARIZATIONS

The coefficients used in Sec. V for one- and two-photon
absorption processes are

ξxx
1 (ω) = � (ω − 2�m) e2

8�2ω

(
1 + 4�2

m

ω2

)
,

(B1)

ξxxxx
2 (ω) = � (ω − �m) e4A2

0

4�4ω5

(
1 − �2

m

ω2

) (
1 + 3�2

m

ω2

)
,
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and

μ
xyxx

1 (ω) = � (ω − 2�m) e2D0

8�A0

(
1 − 4�2

m

ω2

) (
3

4
+ �2

m

ω2

)
,

μ
yxxx

1 (ω) = −� (ω−2�m) e2D0

8�A0

(
1−4�2

m

ω2

) (
1

4
+3�2

m

ω2

)
,

μ
xyxxxx

2 (ω) = � (ω −�m) e4D0A0

4�3ω4

(
1 − �2

m

ω2

)2 (
1 + �2

m

ω2

)
,

μ
yxxxxx

2 (ω) = −� (ω−�m) e4D0A0

4�3ω4

(
1−�2

m

ω2

)2 (
1+5�2

m

ω2

)
,

(B2)

for linear polarization.
For circular polarization we have

ξ
−τ,+τ
1 (ω) = � (ω − 2�m) e2

8�2ω

(
1 + τ

2�m

ω2

)2

,

(B3)

ξ−−++
2 (ω) = � (ω − �m) e4A2

0

2�4ω5

(
1 − �2

m

ω2

) (
1 + τ

�m

ω

)2

,

and

μ−+−+
1 (ω)

= i� (ω − 2�m) e2D0

16�A0

(
1 − 4�2

m

ω2

)(
1 + τ

2�m

ω

)2

,

(B4)
μ−+−−++

2 (ω)

= i� (ω − �m) e4D0A0

2�3ω4

(
1 − �2

m

ω2

)2 (
1 + τ

�m

ω

)2

,

also μ+−−+
1 (ω) = −μ−+−+

1 (ω) and μ−+−−++
2 (ω) =

−μ−+−−++
2 (ω).

The interference coefficients are

ηxxxx
i(1) (ω) = −i� (ω−2�m) e4A2

0

32�3ω3

(
1−4�2

m

ω2

)(
1 + 12�2

m

ω2

)
,

ηxxxx
i(2) (ω) = i� (ω − �m) e4A2

0

8�3ω3

(
1 − �2

m

ω2

)(
1 + 3�2

m

ω2

)
,

(B5)

and

η
xxxy

i(1) (ω) = −� (ω − 2�m) e4A2
0

2�3ω3

(
1 − 4�2

m

ω2

)
�m

ω
,

(B6)

η
xxxy

i(2) (ω) = � (ω − �m) e4A2
0

2�3ω3

(
1 − �2

m

ω2

)
�m

ω
,

also

η
yxxy

i(1) (ω) = i� (ω − 2�m) e4A2
0

32�3ω3

(
1 − 4�2

m

ω2

)(
5 − 4�2

m

ω2

)
,

η
yxxy

i(2) (ω) = −i� (ω − �m) e4A2
0

8�3ω3

(
1 − �2

m

ω2

)2

, (B7)

and

η+−−+
i(1) (ω) = i� (ω − 2�m) e4A2

0

4�3ω3

(
1 − 4�2

m

ω2

)

×
[

1

4
−

(
1 + τ

�m

ω

)2 ]
, (B8)

η+−−+
i(2) (ω) = i� (ω − �m) e4A2

0

4�3ω3

(
1 − �2

m

ω2

) (
1 + τ

�m

ω

)2

,

from which the other injection coefficients are obtained.
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