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Topological properties of energy spectra of general one-dimensional quasiperiodic systems, describing also
Bloch electrons in magnetic fields, are studied for an infinity of irrational modulation frequencies corresponding
to irrational numbers of flux quanta per unit cell. These frequencies include well-known ones considered in works
on Fibonacci quasicrystals. It is shown that the spectrum for any such frequency exhibits a self-similar hierarchy of
clusters characterized by universal (system-independent) values of Chern topological integers which are exactly
determined. The cluster hierarchy provides a simple and systematic organization of all the spectral gaps, labeled
by universal topological numbers which are exactly determinable, thus avoiding their numerical evaluation using
rational approximants of the irrational frequency. These numbers give both the quantum Hall conductance of the
system and the winding number of the edge-state energy traversing a gap as a Bloch quasimomentum is varied.
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I. INTRODUCTION

The topological characterization of band spectra was
introduced in the seminal paper by Thouless, Kohmoto,
Nightingale, and den Nijs (TKNN) [1] to explain the quantum
Hall effect in a two-dimensional (2D) periodic potential.
This characterization was subsequently studied in detail and
extended to many other systems [2–21]. TKNN considered
particular models of Bloch electrons in “rational” magnetic
fields with flux φ = φ0p/q per unit cell, where φ0 = hc/e

is the quantum of flux and (p,q) are coprime integers. They
showed that a magnetic band b is characterized by an integer,
here denoted by σb, giving the contribution σbe

2/h of the
band to the quantized Hall conductance of the system in
linear-response theory. This integer is a Chern topological
invariant for the band [2,3] and satisfies the Diophantine
equation [1,4,6,7]:

pσb + qμb = 1, (1)

where μb is a second integer. It was later shown [6,7] that
Eq. (1) is a general result which follows just from magnetic
(phase-space) translational invariance [22,23] and reflects the
q-fold degeneracy of a magnetic band [7]. Summing Eq. (1)
over N bands, with the Fermi energy lying in the gap between
the N th and (N + 1)th bands, leads to the second general result
of work [6]:

ϕσ + μ = ρ, (2)

where ϕ = φ/φ0 = p/q, ρ = N/q is the number of electrons
per unit cell, and (σ,μ) are topological integers having the
following meaning: σe2/h is the quantum Hall conductance
of the system [6,24] and μe is the charge per unit cell that is
transported when the periodic potential is dragged adiabati-
cally by one lattice constant [24]. A significant advantage of
Eq. (2) over Eq. (1) is that it can be immediately extended to
irrational ϕ [6], by taking the limit of p, q → ∞. Equation (1)
is not defined in this limit since a band reduces to an infinitely
degenerate level [25]. For irrational ϕ and for ρ corresponding
to a gap, Eq. (2) has only one solution (σ,μ), which is thus
universal (system independent). In contrast, for rational ϕ

and ρ in a gap, Eq. (2) has an infinite number of solutions
(σ ′ + lq,μ′ − lp), where (σ ′,μ′) is some solution and l is any

integer. In fact, the value of σ (or μ) for rational ϕ is system
dependent [1,4,9,10] and changes generically by ±q (or ∓p)
at band degeneracies [3,10,13,16].

It is then natural to ask whether and how one can determine
the universal topological numbers of gaps, systematically
organized in some spectral hierarchy for irrational ϕ, without
using rational approximants of ϕ. This question is most
relevant also in the broader context of general one-dimensional
(1D) quasiperiodic systems. In fact, it is now well established
that effective Hamiltonians for Bloch electrons in magnetic
fields [7,26–28] can describe, for irrational ϕ, a large class
of 1D quasiperiodic systems [20,21,26–28], ranging from
Harper models or generalized Harper models [26–34] to quite
different systems such as Fibonacci quasicrystals [34–44].
Then, remarkable spectral structures of Fibonacci quasicrys-
tals [38–43] can be exhibited by Bloch electrons in a magnetic
field and the gaps in these structures can thus be labeled
by topological numbers (σ,μ). Besides giving the quantum
Hall conductance, σ is the winding number of the edge-state
energy [11] traversing the gap (σ,μ) of the 1D system as a
parameter is varied. Recently [19], this phenomenon has been
experimentally observed.

In this paper, we study topological properties of the energy
spectra of general 1D quasiperiodic systems, describing also
Bloch electrons in magnetic fields, for an infinity of irrational
values of ϕ. These values correspond to quasiperiodicity
frequencies including well-known frequencies assumed in
studies of Fibonacci quasicrystals. We show that for any
such value of ϕ the energy spectrum exhibits a self-similar
hierarchy of clusters characterized by universal values of
Chern integers which are exactly determined. This cluster
hierarchy provides a simple and systematic organization of all
the spectral gaps, labeled by universal topological numbers
which are exactly determinable, thus avoiding their numerical
evaluation using rational approximants of ϕ. Smaller gaps
with generally larger values of topological numbers are found
in higher generations of the hierarchy.

Section II is a brief summary of known facts about effective
Hamiltonians for Bloch electrons in magnetic fields. The main
results appear in Sec. III. Examples are given in Sec. IV and
conclusions are presented in Sec. V.
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II. EFFECTIVE HAMILTONIANS AND 1D
QUASIPERIODIC SYSTEMS

It is well known [7,27,28] that for rational ϕ = p/q and for
a sufficiently weak 2D periodic potential V (x,y) a Landau
level splits into p magnetic bands. The energy spectrum
E of these bands can be shown to be the spectrum of an
effective Hamiltonian Ĥeff , an operator which is derived from
V (x,y) and whose eigenvalue problem can be expressed as
a difference equation in some representation. For example, in
the simple case of V (x,y) = v1V1(x) + v2 cos(y), where V1(x)
is an arbitrary 2π -periodic function and v1 and v2 are suitably
chosen coefficients, the difference equation is

ψn+1 + ψn−1 + λV1(2πnν + k)ψn = Eψn. (3)

Here ψn is a representation of the magnetic Bloch states,
λ is an arbitrary parameter, ν = 1/ϕ, and k is a Bloch
quasimomentum. Equation (3) describes a tight-binding chain
with modulation frequency ν. For irrational ν, this chain is
a 1D quasiperiodic system. Extreme cases of this system are
the Harper model with V1(x) = cos(x) and the Fibonacci qua-
sicrystal with V1(x) = {�x/(2π ) + 2ν� − �x/(2π ) + ν�} − 1,
where �·� is the floor function. Much more general periodic
potentials V (x,y) lead to a large class of 1D difference
equations [7,20] in which ν still appears only in the argument
2πnν of 2π -periodic functions as in Eq. (3). Then, one can
replace ν by �ν�, i.e., one can assume that ν < 1; for irrational
ν, the difference equation describes a 1D quasiperiodic system.

In the regime of strong periodic potential relative to the
Landau-level spacing and for ϕ = p/q, a Bloch band “splits”
into q magnetic bands whose energy spectrum is that of
an effective Hamiltonian Ĥeff , derived from the Bloch-band
function using the Peierls substitution [26,28]. For irrational ϕ,
the eigenvalue problem for Ĥeff is again described by a 1D
quasiperiodic system but with modulation frequency ν = ϕ.
For the sake of definiteness and without loss of generality,
we shall assume in what follows the regime above of weak
periodic potential.

III. TOPOLOGICALLY UNIVERSAL
SPECTRAL HIERARCHIES

Consider the p magnetic bands splitting from one Landau
level for ϕ = p/q. Summing Eq. (1) over a cluster of
N neighboring bands, N � p, we see that the cluster is
characterized by topological integers (σ,μ) satisfying the
Diophantine equation:

σ + νμ = η, (4)

where σe2/h is the contribution of the cluster to the total
Hall conductance e2/h of the Landau level, ν = 1/ϕ is the
modulation frequency (see Sec. II), and η = N/p is the
spectral occupation fraction (SOF) of the cluster. Equation (4)
extends straightforwardly to irrational ϕ or ν, as in the case of
Eq. (2). As mentioned in Sec. II, we can restrict our attention
to frequencies ν < 1, without loss of generality. We shall
consider irrational values of ν < 1 that are the positive root of
the equation

mν + ν2 = 1, (5)

for arbitrary positive integer m. Explicitly, ν and its continued-
fraction expansion are given by

ν =
√

m2 + 4 − m

2
= [0,m,m,m, . . .]. (6)

Well-known frequencies (6) considered in works on Fibonacci
quasicrystals [38–43] are the inverse of the golden mean
(m = 1), of the silver mean (m = 2), and of the bronze mean
(m = 3). The sth rational approximant νs = qs/ps of ν, s � 1,
is obtained by truncating the continued-fraction expansion
in Eq. (6) at the sth stage. One then gets qs = Fs−1 and
ps = Fs , where Fs are the generalized Fibonacci numbers [41]
satisfying the recursion relation:

Fs = mFs−1 + Fs−2, s > 0, (7)

with initial conditions F−1 = 1 and F0 = 0.
In order to get a full topological characterization of the

spectrum, we assume from now on that all the spectral gaps for
the frequencies νs = Fs−1/Fs (arbitrary s, including ν∞ = ν)
are open. This is known to hold at least for generalized Harper
models (3) with smooth V1 [31,33] and for the Fibonacci
quasicrystal [44] in some parameter range. Equation (7) then
clearly shows that the Fs isolated bands for ν = νs can be
naturally grouped into m + 1 clusters: m clusters, each with
Fs−1 bands and SOF η1 = Fs−1/Fs , and one cluster with Fs−2

bands and SOF η2 = Fs−2/Fs . To remove some arbitrariness
in this grouping of the Fs bands, we impose a convenient
energy ordering of the m + 1 clusters: The cluster with SOF
η2 consists of the Fs−2 bands that are the highest in energy,
i.e., the energy of this cluster is above that of all the m

clusters with SOF η1. The m + 1 clusters with this energy
ordering define the first generation of a hierarchy. In the
second generation, each of these clusters splits into m + 1
subclusters according to Fs−1 = mFs−2 + Fs−3 (for SOF η1)
or Fs−2 = mFs−3 + Fs−4 (for SOF η2) with energy ordering
similar to the above one. This process can be continued up to
generation ḡ = �(s − 1)/2�.

Taking now the limit of s,ḡ → ∞, we see that η1 → ν,
η2 → ν2, Fs−3/Fs → ν3, Fs−4/Fs → ν4, etc. We then get for
irrational ν an infinite hierarchy of generations of clusters as
follows: In the first (g = 1) generation, one has m clusters
Cj with SOF ηj = ν each, j = 1, . . . ,m, and, above them in
energy, one cluster Cm+1 with SOF ηm+1 = ν2; the “resolution
of the identity”

∑m+1
j=1 ηj = 1 is guaranteed by Eq. (5). For

any fixed j1 = 1, . . . ,m + 1, a cluster Cj=j1 splits into m +
1 subclusters Cj1,j2 in generation g = 2, with SOFs ηj1,j2 =
ηj1ηj2 , j2 = 1, . . . ,m + 1; again, the energy of Cj1,m+1 is above
that of Cj1,j2 , j2 = 1, . . . ,m. In general, the gth generation
consists of the (m + 1)g “elementary” clusters Cj1,...,jg

with
SOFs

ηj1,...,jg
=

g∏

l=1

ηjl
= νc, g � c � 2g, (8)

for jl = 1, . . . ,m + 1 and l = 1, . . . ,g. The resolution of the
identity

∑m+1
j1,...,jg=1 ηj1,...,jg

= 1 is just the gth power of Eq. (5).
This hierarchy is self-similar in the sense that each elementary
cluster in generation g always splits into m + 1 subclusters
in generation g + 1 with an energy ordering similar to that
in generation g. Also, according to Eq. (8), the SOFs of the
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m + 1 subclusters are obtained by scaling the SOF of the parent
cluster with the simple factor ηjg+1 = ν or ν2.

Let us show that the elementary clusters with SOF η = νc

have well-defined Chern integers (σc,μc). We first derive
a formula for νc in terms of the generalized Fibonacci
numbers Fs . Using the fact that ν and −1/ν are the two roots of
Eq. (5), it is easy to check that Fs = aν−s + d(−ν)s satisfies
Eq. (7) for some constants a and d that are determined from
F−1 = 1 and F0 = 0. We get

Fs = ν−s − (−ν)s√
m2 + 4

. (9)

Writing Eq. (9) for s = c and c − 1, we can then extract the
formula for νc:

νc = (−1)c(Fc−1 − νFc). (10)

Using Eqs. (10) and (4) with η = νc, σ = σc, and μ = μc, we
obtain

σc = (−1)cFc−1, μc = σc+1 = (−1)c+1Fc, (11)

where σ0 = F−1 = 1 corresponds to the entire Landau level
with η = 1. Equations (11) give the universal system-
independent values of the Chern integers of the elementary
clusters for frequency (6). Remarkably, Eqs. (11) do not
depend explicitly on m, only implicitly through Fc−1 and
Fc. Using Eqs. (7) and (11), we get the following recursion
relations between the Chern integers (σc,μc) of elementary
clusters with SOFs η = νc:

σc+1 = σc−1 − mσc, μc+1 = μc−1 − mμc. (12)

For large m, Eqs. (12) connect, in most cases, topological
numbers in one generation with those in the two previous
generations.

All the general results above are illustrated in Fig. 1 for the
silver-mean case of ν = √

2 − 1 (m = 2).
An arbitrary, generally nonelementary cluster with given

SOF η � 1 is composed of elementary clusters with SOFs νc,
c � 1. One can express η in terms of νc by expanding η in the
noninteger basis [45] ν−1:

η =
∞∑

c=1

rcν
c, (13)

where the “digits” rc are integers which range in the interval
0 � rc � �ν−1� = m; rc is the number of elementary clusters
with SOF νc in the given nonelementary cluster. The integers
rc are determined by the following algorithm [45]:

rc = �χc/ν� , χc = χc−1/ν − �χc−1/ν� , (14)

for c > 1 and r1 = �η/ν�, χ1 = η. Since the SOF νc is
associated with Chern integers (11), the cluster with SOF (13)
has the formal topological characterization

σ =
∞∑

c=1

(−1)crcFc−1, μ =
∞∑

c=1

(−1)c+1rcFc. (15)

Thus, if the sum in Eq. (13) contains a finite number of terms,
as it will be required below, (σ,μ) in Eqs. (15) exist and the
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FIG. 1. (Color online) Schematic illustration of the spectral hi-
erarchy in the silver-mean case of ν = √

2 − 1 (m = 2), showing
the first two generations. In the first generation, there are m + 1 = 3
elementary clustersCj , j = 1,2,3 (thick blue segments). As indicated,
both C1 and C2 have SOF η = ν and Chern integers (σ,μ) = (0,1),
while C3 has η = ν2, (σ,μ) = (1, − 2), and energy higher than that of
C1 and C2. In the second generation, each cluster Cj splits into three
subclusters Cj,j ′ , j ′ = 1,2,3 (thinner red segments), whose SOFs η

and Chern integers (σ,μ) are indicated. Again, the third subcluster has
characteristics different from the first two ones and is higher in energy
than them. The thickness of each segment qualitatively represents the
value of the SOF η for the corresponding cluster.

cluster is topologically well defined. For rational η, as well
as for an infinity of irrational values of η, (σ,μ) do not exist;
see [46].

A gap in some generation of the hierarchy is labeled by
universal topological numbers σ and μ given by the sum of
σc and μc, respectively, for all the energy-ordered elementary
clusters in that generation below the gap.

We now show how to determine the precise location in the
hierarchy of any gap in the spectrum. The gap is defined by
a filling factor, i.e., the SOF η of a generally nonelementary
cluster starting from the bottom of the Landau level and above
which the gap lies. As we shall see, the gap will be located
in a well-defined (finite) generation g only if the expansion
(13) for η is finite; we denote by c̄ the largest value of c in
Eq. (13). Then, the location of the gap in the hierarchy, with the
given energy ordering of the elementary clusters, is determined
from this finite expansion as follows. Let us form the sequence
j1,j2, . . . ,jc̄, where jc = rc + 1 for c < c̄ and jc̄ = rc̄. Every
time that rc = m for c < c̄ one must necessarily have rc+1 = 0
from the algorithm (14). We delete from the sequence above
all elements with rc = 0 (jc = 1) if rc−1 = m (jc−1 = m + 1),
thus obtaining the (usually shorter) sequence j1,j2, . . . ,jg ,
g � c̄. It is then easy to see that the gap is located just above
the elementary cluster Cj1,j2,...,jg

in the gth generation of the
hierarchy. The topological numbers (σ,μ) labeling the gap
are obtained from the expansions (15) using the integers rc

determined from the given value of η by the algorithm (14).
Due to Eqs. (8), (11), and (12), the absolute values of the

Chern integers of the clusters and of the spectral gaps have

205111-3



ITZHACK DANA PHYSICAL REVIEW B 89, 205111 (2014)

a generally increasing trend in successive generations of the
hierarchy.

IV. EXAMPLES

We show here how the topologically universal spectral
hierarchy in the golden-mean case of ν = (

√
5 − 1)/2 (m = 1)

is exhibited by two systems having significantly different
spectra. These are the Harper model and the Fibonacci
quasicrystal given by the quasiperiodic chain (3) with two quite
different functions V1(x) (see Sec. II). Figures 2 and 3 show
the first four generations, or parts of them, of the topologically
universal hierarchy in the spectra of the two systems for λ = 2.
The relevant values of cluster SOFs and topological numbers
of spectral gaps were exactly determined from the general
results in Sec. III. The plotted spectra are the band spectra
for the rational approximant 34/55 of ν. The elementary
clusters in each of the four generations were identified as
the corresponding band clusters for this approximant; see
the definition of such clusters at the beginning of Sec. III.
We have checked that all the gaps between the band clusters
are indeed open and are stable, i.e., they essentially do not
change for higher-order approximants. In Figs. 2(a) and 3(a)
all the spectrum is shown and the clusters C1 and C2 in the
first generation are indicated by boxes. The other figures show
three successive zooms of the cluster C1.

The spectral hierarchy illustrated in Figs. 2 and 3 should
be compared with the well-known trifurcation hierarchy
naturally exhibited by the Harper model [28] and the Fibonacci
quasicrystal [38–42]. The latter hierarchy is based on the
band-cluster splitting with Fs−2 + Fs−3 + Fs−2 = Fs (or ν2 +
ν3 + ν2 = 1 for s → ∞) and is clearly visible in Figs. 2(a)
and 3(a). Of course, this is fully equivalent to our bifurcation
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FIG. 2. (Color online) (a) Energy spectrum (red thick segments
looking like dots) of the Harper model [Eq. (3) with V1(x) = cos(x)]
for ν = (

√
5 − 1)/2 and λ = 2, plotted using the rational approximant

34/55 of ν. The two boxes define the m + 1 = 2 clusters in the first
generation of the spectral hierarchy, with indication of their SOFs, ν

and ν2, and topological numbers (σ,μ) = (0,1) of the gap between
them. (b–d) Parts of the second, third, and fourth generation of the
spectral hierarchy, obtained by zooming the lower cluster in (a)–(c),
respectively; the notation is as in (a).
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FIG. 3. (Color online) Similar to Fig. 2 but for the Fibonacci
quasicrystal, i.e., Eq. (3) with V1(x) = {�x/(2π ) + 2ν� − �x/(2π ) +
ν�} − 1. In the calculations, a very accurate smooth approximation
of V1(x) was used, given by [20] V1(x) ≈ tanh{β[cos(x + 3πν) −
cos(πν)]}/ tanh(β), with β = 100.

(m + 1 = 2) hierarchy with Fs−1 + Fs−2 = Fs or ν + ν2 = 1.
The general results in Sec. III can be easily expressed, for
m = 1, in terms of the trifurcation hierarchy. This hierarchy,
however, may not be a natural one for a general 1D
quasiperiodic system. Therefore, for the sake of simplicity
and definiteness, we adopt the m + 1 hierarchy for arbitrary
m to all systems.

V. CONCLUSIONS

In conclusion, we have exactly determined, apparently for
the first time, the universal topological numbers of all spectral
clusters and gaps, systematically organized in well-defined
self-similar hierarchies, for general 1D quasiperiodic systems
with irrational modulation frequencies (6). These frequencies
include well-known ones considered in previous works. In
general, it is difficult to calculate numerically the universal
topological numbers using the standard, system-dependent
approach based on successive rational approximants of the
irrational frequency. Our results straightforwardly provide
the universal values of the quantum Hall conductances
[or winding numbers of edge-state energies as a Bloch
quasimomentum such as k in Eq. (3) is varied [11]] for a
large class of interesting systems [18–21,32–44]. It should be
possible to extend our results to a set of irrational frequencies
even larger than the set (6).

If two systems have the same irrational frequency and can
be continuously deformed into each other, such as the Harper
model and the Fibonacci quasicrystal [20], the topological
numbers of a gap will not change if this gap closes and reopens
during the deformation. However, such changes (quantum
phase transitions) will generally occur if the frequency is
varied. This was experimentally observed quite recently [21]
by deforming a system with golden-mean frequency (m = 1)
to one with irrational frequency not in the set (6). It would
be interesting to study, both theoretically and experimentally,
the nature of the quantum phase transition when both the
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initial and final frequency belong to the set (6). This is
a transition between two different universality classes of
topological numbers associated with the well-defined spectral
hierarchies above.
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