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Critical exponent of metal-insulator transition in doped semiconductors:
The relevance of the Coulomb interaction
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We report a simulation of the metal-insulator transition in a model of a doped semiconductor that treats disorder
and interactions on an equal footing. The model is analyzed using density functional theory. From a multifractal
analysis of the Kohn-Sham eigenfunctions, we find ν ≈ 1.3 for the critical exponent of the correlation length.
This differs from that of Anderson’s model of localization and suggests that the Coulomb interaction changes the
universality class of the transition.
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I. INTRODUCTION

In heavily doped semiconductors a zero temperature metal-
insulator transition (MIT) is observed as a function of doping
concentration Nd. For samples with doping concentrations
below a critical concentration Nc, the conductivity extrap-
olated to zero temperature σ (T = 0) is found to be zero,
while for samples with concentrations exceeding this critical
concentration, σ (T = 0) is finite. Well studied examples
are the transition in Si:P [1–3] and Ge:Ga [4] and there
are many others (see Ref. [4] and references therein). The
observed critical concentrations obey, approximately at least,
the relation [5]

N1/3
c a∗

B ≈ 0.26. (1)

Here a∗
B ≡ (εr/m∗)aB is the effective Bohr radius of a

hydrogenic impurity state for a carrier with effective mass
m∗ in a medium with relative dielectric constant εr .

The transition is continuous and considerable effort has
been expended to study the critical phenomena observed at
the transition and the associated critical exponents, the values
of which are expected to be universal. As the transition is
approached from higher concentration Nd > Nc it is found
that the zero temperature conductivity obeys a power law with
a critical exponent μ,

σ (Nd,T = 0) ∝ (Nd − Nc)μ. (2)

Analyses have also been performed which avoid the extrap-
olation to zero temperature and fit data at finite temperatures
directly to the dynamic scaling law [6]

σ (Nd,T ) = T xf [(Nd/Nc − 1)T −y]. (3)

Here x = 1/z and y = 1/(zν) with ν the critical exponent
describing the divergence of the correlation length at the tran-
sition and z the dynamic exponent. Demanding consistency
between these scaling laws gives μ = ν, which is known as
Wegner’s scaling relation.

For Si:P there has been debate over the value of the critical
exponent; μ ≈ 0.5 or μ ≈ 1.3 [7,8]. Itoh et al. addressed
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this controversy by a careful study of the MIT in neutron
transmutation doped Ge:Ga [4]. They demonstrated that the
width of the critical region depends on the compensation. For
intentionally compensated samples they found both Eq. (2)
and dynamic scaling Eq. (3) are observed with μ ≈ 1 and
z ≈ 3. In nominally uncompensated samples, Eq. (2) with
μ ≈ 0.5 is observed over a wide range of concentrations on
the metallic side but dynamic scaling is violated. However,
when attention is focused on a much narrower region around
the critical point, Eq. (2) with μ ≈ 1 is a better fit and dynamic
scaling is recovered with μ ≈ 1 and z ≈ 3. Dynamic scaling
with similar values of the exponents has also been reported in
Si:P [3].

There is still no explanation of the critical behavior
described above. Since the impurities used to dope the
semiconductor are randomly distributed in space, an Anderson
transition is a possibility. However, the value of the critical
exponent is not consistent with this. While z = 3 is expected
for Anderson’s model of localization, since the only relevant
energy scale at the transition is the level spacing, numerical
finite size scaling of this model has established that ν = 1.57 ±
0.02 [9]. This estimate has been confirmed in subsequent
work [10–13]. Clear demonstrations of the universality of
this value include its confirmation in a noninteracting tight-
binding model with random hopping of a doped semiconductor
[14], and its experimental measurement in a quasiperiodic
atomic kicked rotor [15]. This suggests that an explanation of
the critical behavior must incorporate both electron-electron
interactions and disorder. While there have been serious efforts
to develop such a theory (see [16] and [17] for an up to date
discussion), it remains one of the most challenging problems
in condensed matter physics.

The object of this paper is to take a step closer to
an understanding of the MIT in doped semiconductors by
determining how the Coulomb interaction affects the critical
behavior of the Anderson transition. We do this by simulating a
model of a doped semiconductor that treats on an equal footing
both the disorder due to the random spatial distribution of the
dopants and the Coulomb interaction between the carriers.
Applying a multifractal finite size scaling method [12,13],
we find that the model exhibits a localization-delocalization
transition at approximately the right carrier concentration
(see Fig. 1). Moreover, we find that the critical exponent
ν ≈ 1.3, which is different from that for the standard Anderson
transition.
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FIG. 1. The generalized multifractal exponent α̃0 as a function
of donor concentration for several system sizes. The solid lines are a
finite size scaling fit to the data. The critical concentration is indicated
by an arrow.

II. MODEL AND SIMULATION METHOD

The main difficulty in a numerical study of this problem is
to find a model that is numerically tractable but still captures
the physics of both disorder and interactions. The wide
applicability of the Mott criterion suggests that a good starting
point is to treat the semiconductor as an effective medium with
appropriate dielectric constant and effective mass. The donors
are modeled as unit positive charges randomly distributed in
this medium. The Hamiltonian (in Hartree atomic units) is [18]

H = − 1

2m∗

N∑
i=1

∇2
i − 1

εr

N∑
i,I=1

1

|�ri − �RI |

+ 1

2εr

N∑
i �=j

1

|�ri − �rj | + 1

2εr

N∑
I �=J

1

| �RI − �RJ | . (4)

Here { �RI } are the random positions of the donors and N is the
number of donors. Each impurity donates a single electron so
the number of electrons is also N and the total charge is zero.

The properties of the model scale exactly with the dielectric
constant and effective mass. By rescaling lengths according to

�̃r = (m∗/εr )�r, (5)

and energies as according to

Ẽ = (
ε2
r /m∗)E, (6)

the Hamiltonian becomes

H̃ = −1

2

N∑
i=1

∇̃2
i −

N∑
i,I=1

1

|�̃ri − �̃RI |

+1

2

N∑
i �=j

1

|�̃ri − �̃rj |
+ 1

2

N∑
I �=J

1

| �̃RI − �̃RJ |
, (7)

i.e., after rescaling the effective medium is replaced by the
vacuum. This means, for example, that the Mott criterion
must be obeyed, though with a constant on the right-hand

side that will be determined numerically below. For easier
comparison with experiment it is, however, convenient to retain
the effective medium. Below we use the values for silicon
m∗ = 0.32 and εr = 12.

The next question is how to treat the model. To study a phase
transition we need to consider a reasonably large number of
electrons, so exact diagonalization is impractical. Instead we
use the Kohn-Sham formulation of density functional theory
[19,20]. The Kohn-Sham eigenfunctions ψi and eigenvalues
εi satisfy (

− 1

2m∗ ∇2 + Veff

)
ψi(�r) = εiψi(�r). (8)

The effective potential

Veff = Vext + VHartree + VXC (9)

appearing in these equations is comprised of three terms. The
first is the random potential due to the donors

Vext(�r) = − 1

εr

N∑
I=1

1

|�r − �RI |
. (10)

The second is the Hartree potential

VHartree(�r) = 1

εr

∫
d3r ′ n(�r ′)

|�r − �r ′| , (11)

where

n(�r) =
N∑

i=1

|ψi(�r)|2 (12)

is the number density of electrons. The third is the exchange-
correlation potential which is given by the functional derivative
of the exchange-correlation energy functional EXC[n] with
respect to the number density

VXC(�r) = δEXC

δn(�r)
. (13)

If this functional were known exactly, the solution of the Kohn-
Sham equations would yield the exact ground state density and
energy of the interacting system. In practice, the exact form of
the exchange-correlation energy functional is not known and
an approximation is required. In this work we use the local
density approximation (LDA)

EXC ≈ ELDA
XC ≡

∫
d3rεXC(n(�r))n(�r). (14)

For εXC we use the form given in Eq. (2) of Ref. [21], with
the parameter values of Ref. [22]. Note that the expressions
given in these references are for vacuum. To use them for
our effective medium we need to rescale lengths and energies
as described previously. The expression for the exchange-
correlation energy becomes

EXC[n] = m∗
e

ε2
r

ẼXC[ñ], (15)

where the quantity with the tilde is the exchange-correlation
energy found in the literature for vacuum. To render the
model more numerically tractable we assume complete spin
polarization, i.e., we set the spin polarization ζ = 1.
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For numerical purpose we replace the continuous effective
medium with a cubic finite difference grid and Eq. (8) with
a next-nearest neighbor finite difference approximation. In
the LDA the resulting matrix equations are sparse and the
eigenvectors and eigenvalues of the occupied states can be
found using iterative techniques [23]. The potential due to
the impurities and the Hartree potential are found using fast
Fourier transform. The self-consistent solution of the equations
is found iteratively starting from an initial guess for the
Kohn-Sham eigenfunctions. For details the reader is referred
to Ref. [18].

III. DENSITY OF STATES

We take the density of Kohn-Sham eigenvalues as an
approximation to the single particle density of states. For the
unphysical situation that the donors are regularly arranged on
a simple cubic lattice, we have found that the impurity band
merges with the conduction band at Nd ≈ 1.59 × 1018 cm−3

(Fig. 2). The average DOS for the more realistic random
distribution of donors is shown, for several concentrations,
in Fig. 3. In this case, the bands merge at a much smaller
concentration of Nd ≈ 0.42 × 1018 cm−3. We should note this
value is not directly comparable with experiment for two
reasons. First, we have assumed complete spin polarization.
Second, the LDA is known to underestimate band gaps.
Nevertheless, we can be sure that the MIT we observe below
occurs after the impurity and conduction bands have merged.

In the metallic regime an anomaly is expected in the density
of states at the Fermi level. This anomaly is then expected to
develop into a pseudogap (called the Coulomb gap) on passing
far into the insulating regime [24]. This behavior has been seen
clearly in a recent numerical analysis using the Hartree-Fock
method of a lattice model incorporating both disorder and
Coulomb interactions [25]. For the model we consider here,
the Coulomb gap will not be observable until after the impurity
band starts to merge with the conduction band. For lower
concentrations the impurity band is fully occupied (full spin
polarization) and separated from the conduction band by a
gap. For the lowest concentration shown in Fig. 3, which

FIG. 2. The density of states for simple cubic systems. Points
indicated by (i′), (ii′), and (iii′) are Fermi levels for Nd = 0.87, 1.59,
and 2.26 × 1018 cm−3, respectively.

FIG. 3. The average density of states for a random spatial
distribution of donor impurities. Points indicated by (i), (ii), and
(iii) are Fermi levels for Nd = 0.42, 0.86, and 1.33 × 1018 cm−3,
respectively.

corresponds to the concentration at which the merging of
the impurity and conduction band begins, a feature which
we associate with the Coulomb gap is visible at the Fermi
level. For the next highest concentration a dip but not a
pseudogap can be seen. At this concentration the highest
occupied Kohn-Sham orbital is still localized. For the highest
concentration shown, which corresponds to a concentration
where the highest occupied Kohn-Sham orbital is delocalized,
no anomaly is discernible.

IV. MULTIFRACTAL FINITE SIZE SCALING ANALYSIS

We observe a localization-delocalization transition of the
highest occupied Kohn-Sham eigenfunction as a function of
donor concentration. Before describing this, however, we now
turn to the multifractal finite size scaling analysis. We divide
the L × L × L system into boxes of linear size l. We define a
coarse grained intensity {μk} by

μk ≡
∫

k

d3r|ψ(�r)|2. (16)

The subscript k indexes the (L/l)3 boxes. To analyze the
transition we focus on the intensity distribution of the highest
occupied Kohn-Sham orbital. We define a generalized inverse
participation ratio by

Rq ≡
∑

k

(μk)q (17)

and the related quantity obtained by its differentiation with
respect to the exponent q,

Sq ≡
∑

k

(μk)q ln μk. (18)

Generalized multifractal exponents τ̃q and α̃q are defined from
these:

τ̃q ≡ ln〈Rq〉
ln λ

, α̃q ≡ 〈Sq〉
〈Rq〉 ln λ

. (19)
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Here λ is the ratio of box size to system size

λ ≡ l

L
. (20)

In the limit λ → 0 the generalized exponents become the
standard multifractal exponents.

We proceed by assuming that, in the vicinity of the critical
donor concentration, the generalized multifractal exponents
obey the scaling law [13]

�(Nd,L,l) = F (φ1L
1/ν,φ2L

y2 ,λ). (21)

Here � indicates τ̃q or α̃q , φ1 is a relevant scaling variable, and
φ2 is an irrelevant scaling variable with irrelevant exponent
y2 < 0. (For brevity, the dependence on q is not written
explicitly.) The scaling variables are functions of the reduced
impurity donor concentration

nr ≡ Nd − Nc

Nc
. (22)

To apply standard finite size scaling we fix λ at a constant value,
i.e., we scale the box size simultaneously with the system size
so that we can omit the dependence on λ,

�(Nd,L) = F (φ1L
1/ν,φ2L

y2 ). (23)

The correlation length ξ is given by

ξ = ξ0|φ1(nr)|−ν, (24)

with ξ0 a constant. We allow for nonlinearity of φ1 and φ2 by
expanding them as

φ1(nr) =
m1∑
i=1

ain
i
r, φ2(nr) =

m2∑
i=0

bin
i
r. (25)

At the critical point φ1 must be zero, so we fix the constant
term in the expansion to zero. The scaling function Eq. (23) is
expanded as

F (X,Y ) =
n1,n2∑
i,j=0

FijX
iY j . (26)

We estimate the critical concentration and the critical exponent
by fitting this model to our simulation data.

This method has previously been successfully applied to
the Anderson transition [12,13]. In addition, two recent papers
[25,26] have shown that multifractality survives in the presence
of the Coulomb interaction.

V. METAL-INSULATOR TRANSITION

Simulations were performed for system sizes in the range
L = 229–400 Å and donor concentrations of Nd ≡ N/L3 =
0.4–1.3 × 1018 cm−3. This corresponds to 5–85 electrons. We
set the finite difference grid spacing to 18 bohrs, which is
about half of the effective Bohr radius for Si. The donors
were randomly distributed on a simple cubic lattice with
spacing 36 bohrs. This avoids the situation that two donors are
unphysically close. The number of samples for each system
size and donor concentration varies between 1500 and 3000.
For a few percent of samples, the self-consistent calculation
does not converge. These samples are neglected in the analysis.
For the multifractal analysis we set λ = 1/6.

FIG. 4. The estimates of the critical concentration Nc and the
critical exponent ν obtained for different powers q. The data shown
above are estimated from αq and similar behavior can be observed
for τq .

Figure 1 shows the generalized exponent α̃0 as a function of
the donor concentration. For low concentration α̃0 increases
with system size. This is the typical behavior for localized
states. Opposite behavior, typical of extended states, is found
for higher concentration. The scale invariant point between
these concentration regions indicates the transition. The solid
lines in Fig. 1 are the result of fitting the finite size scaling
model to the data. The number of data points is 67. The
orders of the expansions are m1 = 2, m2 = 1, n1 = 3, n2 = 1
and the number of corresponding fitting parameters is 13.
The critical concentration and critical exponent obtained
from the fitting are Nc = 1.09(+0.07, − 0.01) × 1018 cm−3

and ν = 1.30(+0.12, − 0.06). The errors are 95% confidence
intervals obtained by Monte Carlo simulation.

The estimates of the critical concentration and the critical
exponent should not depend on q. To check this, we performed
the multifractal analysis for various q = −0.75–1.25. The
results are shown in Fig. 4. On the one hand, the estimate of the
critical concentration varies by about 20% for the range of q

considered, which is not completely satisfactory. On the other
hand, the estimate of the critical exponent is independent of q.

The measured critical concentration for Si:P is 3.52 ×
1018 cm−3. The predicted critical concentration based on the
Mott criterion is 2.25 × 1018 cm−3 and we should certainly
not expect to do better than this in a theoretical approach
that uses an effective medium. The MIT in our model
occurs at 1–1.2 × 1018 cm−3, which corresponds to a value
of 0.2 in the Mott criterion. Possible explanations for this
discrepancy include the neglect of the spin degree of freedom
and limitations of the LDA.

Our result for the critical exponent ν ≈ 1.3 should have a
wide applicability since the values of critical exponents are
universal. While our range of system sizes is limited, the q in-
dependence of the estimate of the exponent seen in Fig. 4 gives
us some confidence that the critical exponent is different from
that of the standard Anderson model. This is puzzling because
the Kohn-Sham equations appear to be in the same Dyson
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symmetry class as Anderson’s model of localization. In the lo-
cal density approximation there is no long range hopping. And
while the long range nature of the Coulomb interaction leads
to spatial correlations in the diagonal matrix elements of the
Kohn-Sham Hamiltonian, a numerical investigation showed
that these correlations appear to be exponential with a decay
length roughly equal to the Thomas-Fermi screening length.

VI. DISCUSSION

We estimated the critical concentration and critical expo-
nent of the metal-insulator transition in a simulation of a doped
semiconductor. Our simulation incorporates both the disorder
due to the random positions of the donor impurities and the
Coulomb interaction between electrons. We took account of
the Coulomb interactions using density functional theory in the
local density approximation, and used multifractal finite size
scaling to analyze the metal-insulator transition. We found
that the correlation length critical exponent appears to be
different from that of the noninteracting Anderson model
of localization. This suggests that the Coulomb interaction
changes the universality class. This is consistent with the
analytic study reported in Ref. [26] where it was found that
the multifractal spectrum differs from that in the absence
of interaction. Our estimate of the critical exponent differs
from the obtained in a study of a lattice model within the
Hartree-Fock approximation reported recently in Ref. [25].
Those authors found different values of the critical exponent
on the insulating and metallic sides of the transition, something
which is very difficult to reconcile with our results.

In principle, density functional theory is exact and gives the
energy and density of the many-body ground state. In practice,
of course, density functional calculations are approximate. The
principle approximations in this work are twofold. The first
is the use of the local density approximation. It might be
possible to improve on this by the use of generalized gradient
approximations. The second is the use of the Kohn-Sham
wave functions in place of the true many-body ground state
wave function. This might be addressed by using the current
calculation as a starting point for many-body perturbation
calculations. The current study could also be extended in
several other simpler ways. It should be possible to study
the role of compensation by introducing negatively charged
donors. The restriction of complete spin polarization may be
relaxed by using the local spin density approximation, which
would allow issues related to local moments to be addressed
[16,27–31].
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[3] H. v. Löhneysen, Ann. Phys. 523, 599 (2011).
[4] K. M. Itoh, M. Watanabe, Y. Ootuka, E. E. Haller, and T. Ohtsuki,

JPSJ 73, 173 (2004).
[5] P. P. Edwards and M. J. Sienko, Phys. Rev. B 17, 2575 (1978).
[6] F. J. Wegner, Z. Phys. B 25, 327 (1976).
[7] T. F. Rosenbaum, G. A. Thomas, and M. A. Paalanen, Phys.

Rev. Lett. 72, 2121 (1994).
[8] H. Stupp, M. Hornung, M. Lakner, O. Madel, and H. v.
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