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A fascinating type of symmetry-protected topological states of matter are topological Kondo insulators, where
insulating behavior arises from Kondo screening of localized moments via conduction electrons, and nontrivial
topology emerges from the structure of the hybridization between the local-moment and conduction bands.
Here we study the physics of Kondo holes, i.e., missing local moments, in three-dimensional topological Kondo
insulators, using a self-consistent real-space mean-field theory. Such Kondo holes quite generically induce
in-gap states which, for Kondo holes at or near the surface, hybridize with the topological surface states. In
particular, we study the surface-state quasiparticle interference (QPI) induced by a dilute concentration of surface
Kondo holes and compare this to QPI from conventional potential scatterers. We treat both strong and weak
topological-insulator phases and, for the latter, specifically discuss the contributions to QPI from inter-Dirac-cone
scattering.
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I. INTRODUCTION

In the exciting field of topological insulators [1,2], topologi-
cal Kondo insulators (TKIs) play a particularly interesting role:
In these strongly correlated electron systems, theoretically
proposed in Refs. [3,4], a topologically nontrivial band
structure emerges at low energies and temperatures from the
Kondo screening of f -electron local moments due to the
specific form of the hybridization between conduction and
f electrons. As with standard topological insulators, TKIs can
exist in both two and three space dimensions, in the latter case
as strong and weak topological insulators. TKIs display helical
low-energy surface states which are expected to be heavy in the
heavy-fermion sense, i.e., with a strong mass renormalization
and a small quasiparticle weight.

The material SmB6 was proposed to be a three-dimensional
(3D) TKI [3–5], and a number of recent experiments appear to
support this hypothesis: transport studies have been interpreted
in terms of quantized surface transport [6], quantum oscillation
measurements indicate the presence of a two-dimensional
Dirac state [7], and results from photoemission measurements
[8,9] and scanning tunneling spectroscopy (STS) [10] appear
consistent with this assertion. However, to date, the topo-
logical nature of the surface states of SmB6 has not been
unambiguously verified. Moreover, it has been suggested [11]
that the observed surface metallicity is polarity-driven, raising
questions about the proper interpretation of the experimental
data. This calls for more detailed studies of the surface-state
physics of SmB6 and other candidate TKI materials.

A powerful probe of the surface electronic structure is
Fourier-transform scanning tunneling spectroscopy [12,13]
(FTSTS), applied in recent years, e.g., to both cuprate and iron-
pnictide superconductors. Within FTSTS energy-dependent
spatial variations of the local density of states (LDOS) are
analyzed in terms of quasiparticle interference (QPI), i.e.,
elastic quasiparticle scattering processes due to impurities.
Such experiments were performed on the topological insula-
tors Bi1−xSbx and Bi2Te3, and the results were found to be
consistent with a suppression of backscattering, k ↔ (−k),

due to the spin-momentum locking of the helical surface state
[14–18].

Theoretically, impurity scattering and QPI on the surface of
3D topological insulators have been studied for lattice models
[19] and within effective surface theories for nonmagnetic
[20,21], magnetic [20,22], and Kondo [23,24] impurities.
In these works, the surface electrons were assumed to be
noninteracting, such that the interplay of impurity and strong-
correlation effects, expected to be important for TKIs, has not
been covered.

In this paper, we aim at closing this gap, by studying
the physics of local defects in Anderson lattice models of
TKIs. In particular, we will focus at local-moment vacancies,
so-called Kondo holes [25,26]. QPI from Kondo holes has been
considered before [27,28] for conventional heavy-fermion
metals and has been found to be particularly revealing due
to the interplay of defect and Kondo physics. Kondo holes on
the surface of TKIs promise to be interesting also because they
represent strong scatterers for which the simplest arguments of
topological protection no longer apply [29,30]. Here we will
employ a fully self-consistent mean-field description of the
Kondo insulator, taking into account the local modification
of Kondo screening by defects. Applying this methodology
to both the weak topological insulator (WTI) and strong
topological insulator (STI) phases, we will calculate the
electronic structure and the surface QPI patterns for dilute
surface Kondo holes as well as for other types of impurities.
We will also present selected results for a finite concentration
of Kondo holes.

A. Summary of results

Our main results can be summarized as follows. Kondo
holes on the surface of TKIs tend to create localized states,
which hybridize with surface states. This gives rise to distinct
features in the LDOS in the immediate vicinity of the hole,
with an energy dependence mainly determined by the degree
of particle-hole symmetry breaking; in the present model,
the WTI phase occurs closer to the Kondo limit and is less
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particle-hole asymmetric, such that a strong in-gap resonance
occurs. In the STI phase, particle-hole symmetry is strongly
broken, and the hole-induced weight in the LDOS is shifted to
elevated energies.

As expected, QPI patterns closely reflect the dispersion of
surface states and are distinctly different for STI and WTI
phases, with one and two surface Dirac cones, respectively.
In the STI case the QPI signal close to the Dirac point is
weak and weakly momentum-dependent, due to forbidden
backscattering within a single Dirac cone. In contrast, the WTI
displays a strong and strongly peaked QPI signal arising from
intercone scattering.

To gain analytical insights into intercone scattering, we have
extended the continuum Born-limit calculation of Ref. [20]
to two Dirac cones for nonmagnetic impurities, and we also
sketch the extension for magnetic ones.

Our comparison of different types of impurities reveals
surprisingly strong differences in the resulting QPI patterns,
arising from (i) extended scattering regions (as compared to
pointlike defects) for Kondo holes due to a modification of the
Kondo effect in the hole’s vicinity and (ii) real parts of Greens
functions entering the QPI signal invalidating the naive joint-
density-of-states picture. In turn, this implies that experimental
QPI results, in connection with careful modeling, can be used
to determine the nature of the underlying scatterers.

For a finite concentration of Kondo holes, we find the
expected disorder-induced broadening of the surface states. In
the WTI phase, the low-energy resonances hybridize to yield
an impurity-induced band. On a technical level, we note that
the Kondo effect is strongly modified both at the surface and
near vacancies as compared to the bulk of the system, rendering
fully self-consistent calculations necessary for a reasonably
accurate description of QPI.

B. Outline

The body of the paper is organized as follows. In Sec. II,
we briefly describe the model for TKIs and the type of
impurities we studied. Section III summarizes the slave-boson
mean-field treatment for the translationally invariant case; its
modifications for systems with surfaces and/or impurities are
described in Sec. IV. In particular, we discuss how to efficiently
calculate propagators for the case of isolated Kondo holes with
fully self-consistent mean-field parameters. Numerical results
are shown in the remainder of the paper, starting with the
clean system in Sec. V. The main body of results is given in
Sec. VI for isolated impurities, covering the impurity-induced
density of states and the QPI patterns. Finally, Sec. VII
presents single-particle spectra for disordered systems with
finite concentration of surface Kondo holes. In Sec. VIII, we
present the conclusions of our work.

II. MODELLING

A. Anderson lattice model for topological Kondo insulator

Our work utilizes a tight-binding lattice model for a
three-dimensional topological Kondo insulator. Following
Refs. [3,4], we consider a periodic Anderson lattice on a simple

cubic (more precisely, tetragonal) lattice, with the Hamiltonian

H0 = −tc
∑
〈ij〉σ

(c†iσ cjσ + H.c.)

+ εf

∑
iα

f
†
iαfiα − tf

∑
〈ij〉α

(f †
iαfjα + H.c.)

+V
∑

〈ij〉σα

(�iσjαc
†
iσ fjα + H.c.)

+U
∑

i

f
†
i+fi+f

†
i−fi−, (1)

in standard notation. The model entails two doubly degenerate
orbitals per site, labeled c for conduction electrons and f for
localized f -shell electrons, respectively. The index σ = ↑,↓
denotes the spin of c electrons, while the index α = +,−
corresponds to the pseudospin of the f electrons.

A spatially local hybridization, �ij ∝ δij , would lead to a
standard heavy-fermion model, and result in a conventional
Kondo insulator [31,32] if the chemical potential is located
inside the hybridization gap. Here, we work instead with a
nonlocal hybridization, as detailed below. Both hopping and
hybridization terms are assumed to be nonzero for pairs 〈ij 〉 of
nearest-neighbor sites only, with tc > 0, tf < 0, V > 0. Note
that nonzero f hopping is required to yield a finite band gap
within the slave-boson approximation utilized later on. We will
employ tc = 1 as energy unit unless otherwise noted.

The operators fiα describe the lowest Kramers doublet of
the f electrons once spin-orbit interaction and crystal-field
splitting are taken into account, for details see Ref. [4]. Here
we choose a situation corresponding to tetragonal symmetry,
with the lowest doublet being �8(2) constituted by states with
J = 5

2 and |Jz| = 1
2 [η = arctan(2/

√
3)]:

|+〉 ≡ ∣∣Jz = + 1
2

〉 = cos η|0↑〉 − sin η| + 1↓〉, (2)

|−〉 ≡ ∣∣Jz = − 1
2

〉 = sin η|−1↑〉 − cos η|0↓〉, (3)

where ↑, ↓ here denotes the spin degree of freedom for f

electrons, while −1, 0, +1 is m, the azimuthal quantum number
for angular momentum L = 3. Experimentally, this may be
realized, e.g., in tetragonal Ce compounds with dominant
f 1 configuration, provided that the f electron resides in the
chosen doublet.

We note that other ground-state doublets may be consid-
ered; however, to our knowledge, this is the only choice
compatible with tetragonal symmetry which grants bulk-
insulating behavior in 3D. For example, the �8(1) doublet used
in Refs. [33,34] (together with �8(2)) generates an insulator
in 2D, but only a semimetal in 3D, as it provides no hy-
bridization along the third direction. An appealing alternative,
more tailored towards SmB6, would be to consider a cubic
environment [35]. However, this implies a degeneracy of the f

multiplet to be 4 rather than 2, thus significantly complicating
the theoretical analysis. We expect that most of the features we
find are generic, i.e., would also apply to the cubic case, but
we leave a more detailed study of the latter for future work.

The nontrivial topological behavior of the model is encoded
in the c-f hybridization form factor [34] �iσjα between a c

electron at site i with spin σ , and an f electron at site j with
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pseudospin α. It is defined (up to a constant factor) by the
overlap between their wave functions:

�iσjα ≡ 〈iσ |jα〉 = 〈ri − rj σ |0α〉
=

∑
mσ ′

Aα
mσ ′ 〈ri − rj σ |0mσ ′〉

=
∑
m

Aα
mσY 3

m

(
	ri−rj

)
, (4)

which holds if ri and rj are nearest neighbors (n.n.), otherwise
�iσjα is assumed to be zero; coefficients Aα

mσ are taken from
Eqs. (2) and (3), and Y 3

m are the spherical harmonics for L = 3,
and azimuthal quantum number m. From Y 3

−1 = −Y 3∗
1 , we get

�iσjα = (�ij )σα

=
(
+cos ηY 3

0

(
	ri−rj

) −sin ηY 3∗
1

(
	ri−rj

)
−sin ηY 3

1

(
	ri−rj

) −cos ηY 3
0

(
	ri−rj

)
)

. (5)

Using the explicit expressions of the spherical harmonics

Y 3
1 (θ,φ) = −1

8

√
21

π
eiφ sin θ (5 cos2 θ − 1), (6)

Y 3
0 (θ,φ) = 1

4

√
7

π
(5 cos3 θ − 3 cos θ ), (7)

we find

�+x
iσ0α = −1

4

√
3

π
σx, �−x

iσ0α = +1

4

√
3

π
σx, (8)

�
+y

iσ0α = −1

4

√
3

π
σy, �

−y

iσ0α = +1

4

√
3

π
σy, (9)

�+z
iσ0α = +1

2

√
3

π
σz, �−z

iσ0α = −1

2

√
3

π
σz, (10)

or, absorbing the
√

3/π/4 factor in V ,

�iσjα =

⎧⎪⎨
⎪⎩

−(σx)σα sgn(xi − xj ), 〈i,j 〉 n.n. along x,
−(σy)σα sgn(yi − yj ), 〈i,j 〉 n.n. along y,
2(σz)σα sgn(zi − zj ), 〈i,j 〉 n.n. along z,
0, otherwise.

(11)

Note that �iσjα = −�jσiα: this is equivalent to �kσα =
−�−kσα , which is needed to ensure the nontrivial topological
behavior of the model [3,4].

The model described by Eqs. (1) and (11) can realize a
multitude of different phases, depending on the band filling
and the values of U , V , tf , and εf . A mean-field phase diagram
will be discussed in Sec. III below.

B. Kondo holes and other impurities

Most generally, we will consider random potentials on both
the c and f orbitals, described by a disorder Hamiltonian

Hdis =
∑
iσ

εcic
†
iσ ciσ +

∑
iα

εf if
†
iαfiα. (12)

The full Hamiltonian is then given by H = H0 + Hdis, where
we can define site-dependent potentials according to εci =
εci and εf i = εf i + εf .

Kondo holes represent sites i with missing f -orbital degrees
of freedom (i.e., nonmagnetic ions); they are modelled by

εf i → ∞ and εci = 0 (in practice, we use εf i = 100tc).
We will also consider weak scatterers in either the c or the f

band, described by small nonzero εci or εf i , respectively.
A large part of the paper is devoted to the study of isolated

impurities, where only a single site i has nonvanishing εci

or εf i , but Sec. VII will also consider the case of a finite
number Nimp (or finite concentration nimp) of defect sites with
nonvanishing εci or εf i .

III. MEAN-FIELD THEORY: TRANSLATION-INVARIANT
CASE

When translation symmetry holds, the one-body part of
Eq. (1) can be Fourier-transformed to yield

H0 = −tc
∑
kσ

Fkc
†
kσ ckσ +

∑
kα

(εf − tf Fk)f †
kαfkα

+
∑
kσα

V (�kσαc
†
kσ fkα + H.c.)

+
∑

i

Uf
†
i+fi+f

†
i−fi−, (13)

where k ≡ (kx,ky,kz) is a momentum from the first Brillouin
zone (BZ), −π � kx,ky,kz < π , further

Fk = 2(cos kx + cos ky + cos kz), (14)

and the c-f hybridization �kσα is the Fourier transform of
Eq. (11):

�̂k = d(k) · σ̂ , (15)

d(k) = (−2i sin kx,−2i sin ky,4i sin kz), (16)

σ̂ = (σx,σy,σz). (17)

A. Slave-boson approximation

To deal with the Coulomb repulsion U in Eq. (13), we
employ the slave-boson mean-field approximation [36–38],
which is known to be reliable at low temperatures below the
Kondo temperature. The approximation is based on taking the
limit U → ∞, i.e., excluding doubly occupied f orbitals. The
remaining states of the local f Hilbert space are represented by
auxiliary particles, bi and f̃iα , for empty and singly occupied f

orbitals, respectively, such that fiα = b
†
i f̃iα . The Hilbert space

is constrained by b
†
i bi + ∑

α f̃
†
iαf̃iα = 1. It is convenient to

choose bi bosonic and f̃iα fermionic, and to employ a saddle-
point approximation bi → b = 〈bi〉. With fluctuations of bi

frozen, the above constraint is imposed in a mean-field fashion
using a Lagrange multiplier λ. H0 takes the bilinear form:

H MF
0 = −tc

∑
kσ

Fkc
†
kσ ckσ +

∑
kα

(εf − tf Fkb
2)f̃ †

kαf̃kα

+
∑
kσα

bV (�kσαc
†
kσ f̃kα + H.c.)

−μ

(∑
kσ

c
†
kσ ckσ +

∑
kα

f̃
†
kαf̃kα − Ne

)

− λ

[∑
kα

f̃
†
kαf̃kα + Ns(b

2 − 1)

]
, (18)
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with Ne the total number of electrons and Ns the number of
lattice sites. We have introduced the chemical potential μ as
the Lagrange multiplier enforcing the average electron number
to be Ne, with the Kondo insulator reached at Ne = 2Ns .

Minimization of saddle-point free energy leads to the self-
consistency equations [34,36,39,40]:

Ne =
∑
kσ

〈c†kσ ckσ 〉 +
∑
kα

〈f̃ †
kαf̃kα〉, (19)

0 = 2b

(
1

Ns

∑
kα

tf Fk〈f̃ †
kαf̃kα〉 − λ

)

+ V

Ns

∑
kσα

(�kσα〈c†kσ f̃kα〉 + H.c.), (20)

1 = b2 + 1

Ns

∑
kα

〈f̃ †
kαf̃kα〉, (21)

which determine the parameters b, λ, and μ.
The diagonalization of H MF

0 yields single-particle ener-
gies ejk and corresponding eigenvectors wjk, with quantum
numbers k and j = 1, . . . ,4. The expectation value 〈Ôk〉 of a
momentum-diagonal single-particle operator Ôk is then given
by

〈Ôk〉 =
4∑

j=1

〈wjk|Ôk|wjk〉nF (ejk − μ), (22)

where nF (ω) = (eω/T + 1)−1 is the Fermi-Dirac distribution
function and T the temperature. Most of our calculations below
are intended to be for T = 0; practically we used T = 0.01 to
avoid discretization errors.

B. Mean-field phases

Within the slave-boson approximation the model in Eqs. (1)
and (11) has been shown [34] to have four different phases
as a function of its parameters. For small V , one encounters
a decoupled phase with b = 0, which may be classified as a
fractionalized Fermi liquid [41] (FL∗), i.e., an orbital-selective
Mott state. Upon increasing V , transitions occur to a WTI
phase with topological indexes (0; 111), an STI phase with
(1; 000), and finally a trivial band-insulating (BI) phase with
(0; 000), see also Fig. 2 below. This is in contrast with
the standard Doniach model [42] with on-site hybridisation
V

∑
σ (c†iσ fiσ + H.c.), which only shows a transition from

the decoupled to the trivial insulating phase. We note that
more complicated mean-field phase diagrams can arise [43]
when introducing second- and third-nearest neighbor hopping
into H0, but no qualitatively new phases appear. Beyond the
present mean-field theory, antiferromagnetism can be expected
for small V , but the phases at larger V are likely robust.

As shown in Appendix A, the mean-field Hamiltonian H MF
0

is equivalent to the common cubic-lattice four-band model
[44,45] used in the topological-insulator literature. However,
in the presence of boundaries and impurities, the physics of
the Kondo-insulator model is richer due to the additional self-
consistency conditions.

IV. REAL-SPACE MEAN-FIELD THEORY

In situations without full translation symmetry, the local
mean-field parameters b and λ become site-dependent, which
requires to formulate the mean-field theory in real space. We
shall assume the bare hopping matrix elements tc, tf , V to be
position-independent as in Eq. (1), but we treat the case with
arbitrary on-site energies in H = H0 + Hdis. Then

H MF =
∑
iσ

εcic
†
iσ ciσ − tc

∑
〈ij〉σ

(c†iσ cjσ + H.c.)

+
∑
iα

εf i f̃
†
iαf̃iα − tf

∑
〈ij〉α

bibj (f̃ †
iαf̃jα + H.c.)

+
∑

〈ij〉σα

V (bj�iσjαc
†
iσ f̃jα + H.c.)

−μ

(∑
iσ

c
†
iσ ciσ +

∑
iα

f̃
†
iαf̃iα − Ne

)

−
∑

i

λi

(∑
α

f̃
†
iαf̃iα + b2

i − 1

)
. (23)

The local mean-field equations for bi and λi read

0 =
∑

〈ji 〉σα

V (�jσiα〈c†jσ f̃iα〉 + H.c.) − 2λibi

+
∑
〈ji 〉

tf bj

(∑
α

〈f̃ †
iαf̃jα〉 + H.c.

)
, (24)

1 = b2
i +

∑
α

〈f̃ †
iαf̃iα〉, (25)

where 〈ji〉 denotes a nearest neighbor of site i. Practically,
Eqs. (23)–(25) need to be solved numerically for finite-size
systems. For sites with Kondo holes, i.e., no f degrees
of freedom, we formally set bi = λi = 0, which correctly
excludes hopping to these sites.

The chemical potential μ remains a global parameter
controlling the electron concentration ne = Ne/Ns . In the
thermodynamic limit with ne fixed, μ will be insensitive to the
existence of surfaces as well as to a finite number of impurities
(Nimp/Ns → 0). This is no longer true for finite systems. In
our simulations, we will fix μ to its value determined for
the translation-invariant case, which implies that ne can differ
slightly from 2 in the presence of surfaces. The advantage
of this protocol is to avoid complications arising from a
size-dependent μ.

To improve accuracy within a finite-size self-consistent
calculation, we have employed supercells (equivalent to an
average over twisted periodic boundary conditions). Unless
noted otherwise, a 2 × 2 supercell grid was used.

A. Clean system in slab geometry

Surface states are efficiently modelled in slab systems of
size Ns = nx × nx × Nz, with open boundary conditions along
z and periodic boundary conditions along x and y directions.
Then the in-plane momentum k = (kx,ky) remains a good
quantum number, and the mean-field parameters depend on

205105-4



KONDO HOLES IN TOPOLOGICAL KONDO INSULATORS: . . . PHYSICAL REVIEW B 89, 205105 (2014)

z only. After a (partial) Fourier transform in the xy plane,
electron operators carry indices z and k, and Eq. (23) can be
written as

H MF =
∑

k

H MF
k + μNe + N2

x

∑
z

λz

(
1 − b2

z

)
(26)

with

H MF
k = −tc

∑
zσ

F ′
kc

†
zkσ czkσ − tc

∑
〈zz′〉σ

(c†zkσ cz′kσ + H.c.)

+
∑
zα

(
εf − tf b2

zFk
)
f̃

†
zkαf̃zkα

− tf
∑
〈zz′〉α

bzbz′ (f̃ †
zkαf̃z′kα + H.c.)

+V
∑
zσα

(bz�
′
kσαc

†
zkσ f̃zkα + H.c.)

+V
∑

〈zz′〉σα

(bz′�′
zz′σαc

†
zkσ f̃z′kα + H.c.)

−μ
∑
zσ

c
†
zkσ czkσ −

∑
zα

(μ + λz)f̃
†
zkαf̃zkα, (27)

where 〈zz′〉 means z′ = z ± 1, and with

F ′
k = 2(cos kx + cos ky), (28)

�′
kσα = −2i sin kx(σx)σα − 2i sin ky(σy)σα, (29)

�′
zz′σα = 2(σz)σα sgn(z − z′). (30)

The eigenstates of H MF
k , |nk〉, carry quantum numbers of in-

plane momentum k and band index n = 1, . . . ,4Nz.
Self-consistency equation can be written down for bz and

λz in analogy to Eqs. (24) and (25), but are omitted here for
space reasons. Practically, we have used Nz = 15, which we
found sufficient to suppress the finite-size gap arising from the
coupling of the two surfaces.

B. Single impurity: embedding procedure

In the presence of impurities, the system becomes fully
inhomogeneous such that the real-space equations (23)–(25)
need to be solved. This restricts the numerical calculation
to relatively small system sizes (Ns = 103, . . . ,153), which
are insufficient to accurately study Friedel oscillation and
quasiparticle interference.

Notably, the problem can be simplified for isolated impuri-
ties using scattering-matrix techniques. The basic observation
is that mean-field parameters bi and λi are locally perturbed
by each impurity, but these perturbations decay on short length
scales. Therefore, to a good approximation, electron scattering
off each impurity can be described in terms of small-size
scattering regions where bi and λi deviate from their bulk
values.

Specifically, for a single impurity in the surface layer we
employ the following procedure, Fig. 1. We determine bi and λi

in a fully self-consistent inhomogeneous calculation for a small
system of size nx × nx × Nz in slab geometry. This scattering
region is then embedded into a much larger Nx × Nx × Nz

system; for computational efficiency we further reduce the

FIG. 1. (Color online) Embedding procedure: a nx × nx × nz

scattering region (red: impurity site, orange: sites with mean-field
parameters different from the clean case) is embedded in a larger
Nx × Nx × Nz region, where mean-field parameters are assumed
to be unperturbed. Black rectangle: nx × nx × Nz region of full
mean-field calculation in slab geometry.

size of the scattering region to nz < Nz layers, because layers
far from the impurity are only weakly perturbed.

Impurity-induced changes of electron propagators are then
calculated using the T -matrix formalism:

Ĝ(ω) = Ĝ0(ω) + Ĝ0(ω)T̂ (ω)Ĝ0(ω), (31)

where the scattering matrix is determined as

T̂ (ω) = V̂ [1 − Ĝ0(ω)V̂ ]−1. (32)

All matrices depend on indexes x,y,z,s,a (1 � x,y � Nx , 1 �
z � Nz, a = c/f , s = ↑,↓ if a = c, s = +,− if a = f ). The
interaction matrix is given by

V̂ ≡ Ĥ MF − Ĥ MF
0 , (33)

where Ĥ MF is the mean-field Hamiltonian with defect and
self-consistently determined bi and λi , and Ĥ MF

0 the mean-field
Hamiltonian of the clean slab. V̂ , reflecting both the defect and
its induced changes of mean-field parameters, is taken to be
nonzero only in the small nx × nx × nz scattering region.

The Green’s function of the impurity-free slab, Ĝ0, is
diagonal in in-plane momentum k = (kx,ky),

Ĝ0
zsa,z′s ′a′(ω,k) = [

1̂(ω + μ + iδ) − Ĥ MF
k

]−1
zsa,z′s ′a′ , (34)

with Ĥ MF
k from Eq. (27), and δ is an artificial broadening

parameter. Fast Fourier transform is used to obtain Ĝ0 in real
space. Finally, the LDOS is computed through

ρ(ω,x,y,z) = − 1

π

∑
sa

Im Ĝxyzsa,xyzsa(ω) . (35)

For weak scatterers, the lowest-order Born approximation is
sufficient, T̂ ≈ V̂ .

For these scattering calculations we employed Nx = 801 to
achieve a high momentum resolution for QPI (see below),
combined with a broadening δ = 0.0006 for the WTI and
δ = 0.002 for the STI, to have a smooth energy-dependent
DOS. nz = 3 was found to be sufficient to obtain converged
results for the surface LDOS.
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C. Surface quasiparticle interference

The QPI signal is obtained from the energy-dependent
surface LDOS by Fourier transformation in the xy plane:

ρQPI(ω,k) = 1

N2
x

∑
k

ei(kxx+kyy)ρ(ω,x,y,z = 1), (36)

where only the impurity-induced change in the density of states
is considered,

ρ(ω,x,y,z) = − 1

π

∑
sa

Im (Ĝ − Ĝ0)xyzsa,xyzsa(ω); (37)

the homogeneous background would contribute a signal at
k = 0 only. We note that ρQPI is in general a complex quantity.
However, in the case of a single impurity ρ(x,y) is inversion-
symmetric with respect to the impurity site, such that ρQPI is
real.

When relating the surface LDOS and ρQPI to the signal in
an actual STM measurement, complications arise from the fact
that the differential tunneling current is not simply proportional
to the LDOS: c and f signals are weighted differently, and an
interference term is also present [46–50]. Such corrections can
be taken into account, but the required ratio of the different
tunneling matrix elements into c and f orbitals is usually not
known. Therefore we refrain from doing so; we anticipate
that no qualitative changes to our conclusions would arise,
although the energy dependence of features in the tunneling
spectra may be modified.

V. RESULTS: CLEAN SYSTEM

We have investigated both the weak and strong topological-
insulator phases of the model Eq. (1), with parameters chosen
to obtain sufficiently large Kondo temperature and bulk gap, as
to avoid finite-size effects, and a moderate surface-state Fermi
velocity, as otherwise surface-state QPI is restricted to a tiny
range in momentum space.

A. Phase diagram

Figure 2 shows a zero-temperature mean-field phase di-
agram, obtained from Eqs. (18)–(21), as a function of the
hybridization V for the choice tc = 1, tf = −0.3, εf = −1.
All phases except for FL∗ have b �= 0; the WTI, STI, and
BI phases have been detected by calculating the relevant
Z2 topological invariants of the mean-field band structure
[4,51,52]; the transitions WTI↔STI and STI↔BI can be
detected via the closing of the bulk gap.

FIG. 2. Ground-state phase diagram of the model (1) in slave-
boson mean-field approximation as function of V , for tc = 1, tf =
−0.3, εf = −1. FL∗= fractionalized Fermi liquid, WTI = weak
topological insulator, STI=strong topological insulator, BI: trivial
band insulator. The arrow shows our parameter set for the WTI phase
(V = 0.4).

A general property of the model (1) is that the WTI phase
is found deep in the Kondo regime, whereas the STI phase is
realized in a regime of stronger valence fluctuations.

B. Band structure and surface states

Subjecting the system to open boundary conditions along
z, metallic states appear on the two (001) surfaces in both the
WTI and STI phases. For the WTI, we found two Dirac cones
at the two inequivalent momenta (0,π ) and (π,0) of the surface
Brillouin zone; the STI has a single Dirac cone at (π,π ).

We note that, depending on parameters, the surface states
may disperse such that constant-energy cuts near the Dirac
energy display multiple band crossings in addition to those
arising from the Dirac cones, which, in turn, complicates the
QPI analysis. In our choice of parameters, we tried to avoid
such situations.

1. Weak topological insulator

Explicit results for the WTI phase have been obtained using
tc = 1, tf = −0.3, V = 0.4, εf = −1. The resulting mean-
field band structure is shown in Fig. 3 for both the periodic
and slab cases. The surface Dirac cones at momenta (0,π )
and (π,0) are clearly visible, with the Dirac point at EDirac −
μ = −0.066; for our choice Nz = 15, the cones display a tiny
finite-size gap f s = 7 × 10−4 due to the coupling between
opposite surfaces. We note that the choice of a relatively large
value of tf is dictated by the necessity to obtain a sizable bulk
gap (which is zero when tf = 0), in order to have a sufficient
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FIG. 3. (Color online) Quasiparticle dispersion in the WTI phase,
for Nz = 15, tc = 1, tf = −0.3, V = 0.4, εf = −1, for both periodic
(“Bulk”) and open (“Slab”) boundary conditions along z, together
with associated density of states (an artificial broadening of 0.01 has
been employed), (a) for the full energy range and (b) in a 2tc window
around the chemical potential. For case (b), we also show the energy-
dependent quasiparticle weight Z for the slab case. Momentum k is
taken along a path in the 2D Brillouin zone shown in the inset in case
of (a). There are two inequivalent (π,0) and (0,π ) points, hence two
inequivalent Dirac cones.
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FIG. 4. (Color online) Layer-resolved spectral intensity
A(ω,k,z) (38) in the WTI phase (for the same parameters as Fig. 3):
(a) on the surface (z = 1) and, for comparison, (b) in the bulk
(z = 8), for the same path as in Fig. 3. An artificial broadening
δ = 0.005 has been employed.

energy window in which Dirac cones and the associated QPI
can be studied. With our parameters, the bulk gap evaluates to
bulk = 0.28.

Figure 4 displays the layer-resolved spectral intensity in the
slab case, defined as

A(ω,k,z) = − 1

π
Im

∑
sa

Ĝ0
zsa,zsa(ω,k) (38)

with Ĝ0 from Eq. (34), illustrating the weight distribution for
bulk and surface states.

All quasiparticle states |nk〉 are mixtures of c and f

electrons. This may be quantified by the band- and momentum-
dependent peak weight in the c-electron spectral function, usu-
ally dubbed quasiparticle weight, Znk ≡ |〈c|nk〉|2. We define
an energy-dependent quasiparticle weight Z(ε) according to

Z(ω) ≡ ρc(ω)

ρc(ω) + ρf (ω)
=

∑
nk Znkδ̃(ω − εnk)∑

nk δ̃(ω − εnk)
, (39)

where ρc(ε) and ρf (ε) are, respectively, the c and f contri-
butions to the total density of states, and δ̃(ω) is a Lorentzian
of width δ. As common for Kondo systems, Z is small near
the Fermi level, as shown in Fig. 3(b). As a result the surface
states are primarily of f character, with ZDirac = 0.05. We
note that Z does not directly correspond to the effective-mass
ratio m/m∗ because the bare f band is dispersive and hence
the c-electron self-energy momentum-dependent.

The bulk Kondo temperature is estimated as TK = 0.6
from the location of the mean-field phase transition where
b becomes nonzero upon cooling; this transition is well-
known to become a crossover upon including corrections
beyond mean fields. Let us point out that surface effect on
the mean-field parameters are sizable; in the bulk, we have
b = 0.51, λ = −2.10, whereas on the surface bz=1 = 0.28
and λz=1 = −2.04, i.e., Kondo screening is suppressed at the
surface. This strongly influences the Dirac-cone velocity: its
value v = 0.08 is much smaller than v = 0.21, which would
be obtained from a non-self-consistent slab calculation using
bulk values of b and λ. In other words, the interplay of
Kondo and surface physics increases the mass of the surface
quasiparticles—an effect only captured by fully self-consistent
calculations.
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FIG. 5. (Color online) Same as Fig. 3, but now in the STI phase,
for Nz = 15, tc = 1, tf = −0.1, V = 0.25, εf = 4 (an artificial
broadening of 0.01 has been employed), for the full energy range
(a) and in a 2tc window around the chemical potential (b). A single
surface Dirac cone exists at (π,π ).

2. Strong topological insulator

For the STI phase, we used parameters tc = 1, tf = −0.1,
V = 0.25, εf = 4. This choice (positive εf , small V ) stems
from the necessity to have (i) a small Fermi velocity of the
surface Dirac cone and (ii) a sizable energy window around
the Dirac point without additional surface states, in order to be
able to study Dirac-cone QPI. As a result, TK is much larger
than the bandwidth due to strong valence fluctuations. Despite
this, the quasiparticle weight for surface states remains small,
ZDirac ≈ 0.07. Further we have EDirac − μ = −0.113, bulk =
0.33, bulk values of b = 0.90, λ = −0.44, surface values
bz=1 = 0.90, λz=1 = −0.32 and a surface Fermi velocity of
v = 0.23. Band structure and layer-resolved intensities are
shown in Figs. 5 and 6, with a single Dirac cone at (π,π ).

3. Dirac cone spin structure

For a full characterization of the surface states we have
analyzed their spin–momentum locking, with details given in
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FIG. 6. (Color online) Layer-resolved spectral intensity
A(ω,k,z) (38) in the STI phase (for the same parameters as Fig. 5):
(a) on the surface (z = 1) and, for comparison, (b) in the bulk
(z = 8).
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Appendix B. We find the STI Dirac cone to be described by
the effective Hamiltonian

HSTI = v(kyσx − kxσy), (40)

where (kx,ky) is measured from the center of the cone at
(π,π ), and σ is proportional to the physical spin, as shown
in Appendix B, and in agreement with previous results [53].
This case corresponds to the standard situation with spin
perpendicular to momentum [1].

The WTI Dirac cones have somewhat different spin
structures, described by

HWTI = ±v(kyσx + kxσy), (41)

where momenta are measured from the centers of the cones at
(0,π ) and (π,0). This unusual spin-momentum locking should
be measurable by spin-polarized photoemission experiments
and is illustrated in Figs. 12(a) and 13(a) below.

VI. RESULTS: DILUTE DEFECTS

Kondo holes in Kondo insulators are known [25,26] to
create a bound state in the gap, or close to the band edge. We
have verified that this also applies to Kondo holes in the bulk
of a topological Kondo insulator, essentially because a bound
state emerges generically [54,55] from strong scattering,
provided that particle-hole symmetry is not too strongly
broken, and is protected by the gap. The situation becomes
more interesting for a Kondo hole at or near the surface of a
topological Kondo insulator, which is metallic, such that the
bound state turns into a resonance, which can be in principle
observed by STM.

Therefore we now consider Kondo holes in either the
surface layer or the layer below. To this end, we perform
fully self-consistent mean-field calculations for a system of
size nx × nx × Nz in slab geometry, typically with nx = 9 and
Nz = 15. Sample results for the mean-field parameters in the
case of a Kondo hole in the WTI phase are shown in Fig. 7.
These inhomogeneous mean-field parameters are then used as
input for the T -matrix calculation, as described in Sec. IV B
above, to determine the LDOS and the QPI spectra from Kondo
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1.350
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-2.040
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(f)

FIG. 7. (Color online) Spatially resolved mean-field parameters
near a Kondo hole, with model parameters in the WTI phase as in
Fig. 3. Shown are (a) and (d): bi , (b) and (e): nc

i = ∑
σ 〈c†iσ ciσ 〉, (c)

and (f): λi , in the surface (z = 1) layer, for the two cases: (top) Kondo
hole at site (0,0) in the z = 1 layer and (bottom) Kondo hole at site
(0,0) in the z = 2 layer. In (a)–(c), the f orbital is missing at (0,0),
hence bi and λi are not defined.

holes. These QPI spectra will be compared to those from weak
impurities, as the latter allow us to gain some analytical insight.

A. Local density of states (LDOS) for Kondo holes

The surface-layer LDOS, detectable in an STM experiment
and obtained from the T-matrix calculation, is shown in Fig. 8
for the weak topological Kondo insulator with parameters as in
Sec. V B 1. For the case of a Kondo hole in the surface layer,
Fig. 8(a), we see that a resonance appears in the bulk gap,
and it hybridizes with surface states. It is mainly localized
on the four sites surrounding the hole, with a rapid spatial
decay. Similar resonances have been predicted in nonKondo
TIs [29,56,57]. For comparison, we have also performed a non-
self-consistent calculation where the changes of mean-field
parameters due to the impurity have been ignored, such that
the T matrix is nonzero on a single site only. The two results
differ significantly concerning the energetic position of the
resonance, underlining that full self-consistency is important.

For a hole in the second layer, Fig. 8(b), the resonance
appears weaker and at higher binding energy, close to the
van Hove singularities of surface states. In the surface-layer
LDOS, it is visible essentially only on the site above the hole.
We note that the energetic location of the resonance depends on
microscopic details, i.e., we have also encountered cases with
a sharp low-energy resonance for a hole in the second layer.
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FIG. 8. (Color online) LDOS ρ(ω,x,y,z) from scattering matrix
calculation [Eq. (35)] on the first layer z = 1 in the WTI phase around
a Kondo hole at (0,0) (a) in the first, or (b) in the second layer, for Nx =
801. Different curves show the LDOS for different sites (x,y) close to
the hole, the clean case is shown for comparison. The peaks around
−0.14 and 0.05 arise from van-Hove singularities of the surface
states. The hole-induced resonance is below the Dirac energy, with
its spatial intensity distribution illustrated in the color-scale insets.
The inset graphs show the difference in the resulting LDOS between
a self-consistent (SCF) and non-self-consistent (NSCF) calculation,
for the (0,1) site in (a) and for the (0,0) site in (b).
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FIG. 9. (Color online) Same as Fig. 8, but now for the STI
phase. In this case, the bound state can be seen far from the Dirac
point, hybridizing with bulk f states, and does not appear as a
clear resonance. The difference between SCF and NSCF results is
negligible here, since bulk states are very weakly affected by the
hole.

In contrast, for the strong topological Kondo insulator
with parameters as in Sec. V B 2 we have not found sharp
low-energy resonances for any parameter set investigated. The
reason is that the STI phase of model (1) only occurs in the
mixed-valence regime, which in turn implies strong particle-
hole asymmetry. Since, for scattering in Dirac systems, the
resonance energy Eres is a function of both scattering strength
and particle-hole asymmetry [54,57] determined essentially by
Re G0(Eres)V = 1, increasing particle-hole asymmetry shifts
the resonance of a strong scatterer away from the Dirac energy.
For our parameters, we only found minor impurity signatures
in the low-energy LDOS, Fig. 9. Impurity-induced changes
are visible at higher energies, but spoiled by the influence of
bulk states.

When analyzing the impurity-induced changes in the
LDOS, ρ, as a function of the distance from the hole, Friedel
oscillations with a wavelength 2π/(2ω/v) = πv/ω can be
observed for energies close to EDirac, Fig. 10(a). As long as
warping effects can be neglected, the decay is isotropic, and
proportional to r−1 in the WTI phase and to r−2 in the STI
phase, in agreement with earlier results for graphene [58,59]
and for STIs [19,60,61]. At higher energies, when warping
effects cannot be neglected, the decay becomes anisotropic,
and a strong focusing effect can be observed if a nesting of the
Fermi surface can be achieved, Fig. 10(b).

B. QPI from weak impurities

Before analyzing the quasiparticle interference signal
caused by a Kondo hole, it is useful to analyze a few QPI
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FIG. 10. (Color online) Spatially resolved absolute value of the
impurity-induced LDOS, |ρ(ω,x,y,z = 1)| on a logarithmic scale
around a Kondo hole in the first layer in the STI phase where EDirac −
μ = −0.113: (a) at E − μ = −0.080 for which isotropic Friedel
oscillations can be observed, (b) at E − μ = +0.120 for which the
nesting effect of the Fermi surface is strong, see Fig. 13(a4) below,
giving rise to a “focusing” effect along the (0,0) − (π,π ) direction.

properties of weak impurities, where we neglect any impurity-
induced changes of mean-field parameters. A comparison
of numerical QPI results for both Kondo holes and weak
impurities can be found in Figs. 12 and 13 below.

In the following discussion we restrict our attention to
energies within the bulk gap. This enables an analytical
treatment close to the Dirac points, using the effective surface
Hamiltonian Eqs. (40) or (41). This approach has been taken in
the literature before, and we start with reviewing these results.
In what follows, we measure energies relative to the Dirac
energy: ω ≡ E − EDirac.

1. Pointlike effective impurity

We focus first on a strong topological insulator with the
surface Hamiltonian (40). The unperturbed surface Green’s
function is

Ĝ0(ω,k) = 1

ω2 − v2k2
(ωσ̂0 + vkyσ̂x − vkxσ̂y). (42)

For scatterers which act as pointlike impurities in the effective
theory—this assumption is in general not justified, see below—
the T matrix is momentum-independent, and the scattering
matrix equation (31) gives, for intracone scattering,

ρintra(ω,q) = − 1

π
Im Tr

∑
k

Ĝ0(ω,k)T̂ (ω)Ĝ0(ω,k − q).

(43)

Here we have used that ρ(ω,q) is real for the single-impurity
case considered here. For a nonmagnetic impurity, both V̂ and
T̂ (ω) are proportional to the identity in the spin space, so can
be treated as scalar quantities, and we get

ρintra(ω,q) = − 1

π
Im [Tintra(ω)�intra(ω,q)] , (44)

where

�intra(ω,q) =
∫

d2k
(2πv)2

ω2 + v2k2 − v2k · q
(ω2 − v2k2)[ω2 − v2(k − q)2]

,

(45)
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and we have made explicit that T (ω) describes intracone
scattering Tintra(ω). This result has been derived before in the
context of graphene [62], STIs [20], and high-temperature
superconductors [63] by going into Matsubara frequencies
ω → iω, applying the Schwinger-Feynman parametrization
trick, then coming back to real frequencies. It only depends on
the magnitude q = |q| of the transferred momentum q, and,
up to a momentum-independent additive term that we omit,
reads

�intra(ω,q) = − 1

πv2
F

(
qv

2ω

)
, (46)

with

F (z) =
√

1 − z2

z
arctan

z√
1 − z2

+ i
π

2
. (47)

Now we turn to a weak topological insulator, with two Dirac
cones described by the effective Hamiltonian (41). The surface
Green’s function becomes

Ĝ0
±(ω,k) = 1

ω2 − v2k2
[ωσ̂0 ± v(kyσ̂x + kxσ̂y)]. (48)

The intracone scattering leads to the same expressions
Eqs. (44) and (45) for both cones. The intercone scattering,
instead, leads to

ρinter(ω,q)

= − 1

π
Im Tr

∑
k

Ĝ0
+(ω,k)T̂ (ω)Ĝ0

−(ω,k − q − Q)

= − 1

π
Im [Tinter(ω)�inter(ω,q + Q)] , (49)

where Q = (π,π ) is the distance between the cones, and

�inter(ω,q) =
∫

d2k
(2πv)2

ω2 − v2k2 + v2k · q
(ω2 − v2k2)[ω2 − v2(k − q)2]

.

(50)

Interestingly, this function also appears in the description
of intracone scattering by a magnetic impurity in a STI
[20] or in a high-temperature superconductor [63], or of
intracone scattering in graphene by a staggered potential
[62], or of intercone scattering in graphene, here up to a
direction-dependent factor [62]. It is

�inter(ω,q) = − 1

πv2
G

(
qv

2ω

)
, (51)

with

G(z) = z√
1 − z2

arctan
z√

1 − z2
− i

π

2
. (52)

The functions F (z) and G(z) are shown in Fig. 11.
In the Born approximation, T (ω) = V is real, so the signal

is proportional to the imaginary part of � functions, and, for a
WTI, is given by the sum of three contributions (two intracone,
and one intercone):

ρWTI(ω,q) = 2ρintra(ω,q) + ρinter(ω,q), (53)

while for a STI it is simply the intracone signal:

ρSTI(ω,q) = ρintra(ω,q), (54)
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FIG. 11. (Color online) The real and imaginary parts of functions
(a) F (q), Eq. (47), and (b) G(q), Eq. (52), which describe, respec-
tively, intra- and intercone scatterings in the Born approximation.

with

ρintra(ω,q) = − 1

π
VintraIm [�intra(ω,q)] , (55)

ρinter(ω,q) = − 1

π
VinterIm [�inter(ω,q + Q)] , (56)

where we have taken into account that a given microscopic
scatterer will give rise to different intra- and intercone
scattering amplitudes Vinter and Vintra. It can be observed that
the imaginary part of �intra is flat for vq/2ω < 1, with a
kink and no divergence at vq/2ω = 1. This is a well-known
consequence of the inhibited backscattering by nonmagnetic
impurities in a TI cone [1], due to the opposite direction of
the spin when k ↔ (−k), see Fig. 13(a2). In contrast, the
imaginary part of �inter diverges for vq/2ω = 1+: in this case,
intercone scattering by this wave vector leads to a final state
with the same spin as the initial state, see Fig. 12(a2).

2. Extended effective impurity

For extended scatterers where the scattering matrix element
in the effective theory depends on the transferred momentum q
only, the Born-limit analytical results are modified into [20,64]

ρ(ω,q) = − 1

π
|Vq|Im �(ω,q), (57)

where |Vq| is the Fourier-transformed scattering profile which
now modulates the QPI signal.

3. Pointlike microscopic impurity

To bridge between microscopic and effective modeling,
microscopic scattering terms need to be transformed into those
for the surface theory. First, this implies that impurities which
are microscopically located in the c and f bands cause QPI
signals of different amplitude, because the surface states have
largely f character and hence couple more strongly to f

impurities.
Second, the transformation between microscopic and effec-

tive degrees of freedom is in general momentum-dependent.
This implies that an impurity which is pointlike within the
microscopic model, i.e., acts on a single lattice site, is not point-
like in the effective theory—a problem which is sometimes
overlooked in the literature. In other words, a microscopic
scattering term

∑
k,k′ c

†
kck′ transforms into

∑
k,k′ u

∗
kuk′a

†
kak′ in

205105-10



KONDO HOLES IN TOPOLOGICAL KONDO INSULATORS: . . . PHYSICAL REVIEW B 89, 205105 (2014)

FIG. 12. (Color online) Constant-energy cuts through (a) the single-particle spectrum A(ω,k,z = 1) and (b)–(f) the surface QPI signal
|ρQPI(ω,q)| in the WTI phase with parameters as in Fig. 3. The columns correspond to energies ω = 0.036, 0.051, 0.066, and 0.081 relative to
the Dirac point EDirac − μ = −0.066. (a) also shows the spin directions of the surface-state electrons (black arrows) and the relevant intracone
(green) and intercone (red) scattering wave vectors. The QPI panels display the response of (b) a weak f scatterer (εf = 0.01) in the surface
layer (z = 1), (c) a weak c-scatterer (εc = 0.01) at z = 1, (d) a Kondo hole at z = 1, (e) a weak f scatterer in the second layer (z = 2), and
(f) a Kondo hole at z = 2. The dashed line in (b1) shows the momentum-space cut for which ρQPI(ω,q) is shown in Fig. 14.

terms of effective particles ak. The resulting scattering matrix
element does not only depend on the transferred momentum
(k − k′). Hence, Eqs. (55) and (56) and also Eq. (57) are not
applicable beyond the limit of small q, i.e., the momentum
dependencies of scatterer and band structure mix.

This is nicely seen from the QPI results for weak point-
like impurities in the c and f band, obtained from a full
microscopic calculation. Comparing Figs. 12(b) and 12(c) one
notices that the QPI patterns for both cases, here in the WTI
phase, show a different momentum dependence, particularly
pronounced away from the Dirac point. The same applies to
Figs. 13(b) and 13(b), which illustrate this point for the STI
phase.

4. Beyond the Born approximation

Beyond the Born approximation, T (ω) can be computed
through

T (ω) = V

1 − G0(ω)V
, (58)

with

G0(ω) = 1

2

∫
d2k

(2π )2
Tr Ĝ0(ω,k), (59)

and is a complex quantity, which can be written as

T (ω) = |T (ω)|eiδ(ω) (60)
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FIG. 13. (Color online) Same as Fig. 12, but now in the STI phase with parameters as in Fig. 5 and EDirac − μ = −0.113. As intercone
scattering processes are absent, the QPI signal is weak due to forbidden backscattering unless warping/nesting effects play a role.

by introducing the phase shift δ(ω), which is zero in the Born
approximation. As a consequence, Eqs. (44) and (49) can be
written as

ρ(ω,q) = − 1

π
|T (ω)|[cos δ(ω)Im �(ω,q)

+ sin δ(ω) Re �(ω,q)], (61)

which shows that a linear combination of the imaginary
and real parts of the � functions is observed, depending on the
energy-dependent phase shift δ(ω).

Since Re F (z) has a cusp for z = 1, the intercone signal
may now show a shallow maximum (or minimum) at q =
2ω/v; moreover, while Im G(z) diverges for z → 1+, Re G(z)
diverges for z → 1−, so the intercone signal always diverges
for |Q − q| = 2ω/v, and can, in principle, show any kind of
interferencelike pattern.

5. Beyond the Dirac-cone approximation: warping

For energies sufficiently far from the Dirac point the
isotropic effective theory of Eqs. (40) and (41) is no more

valid, and a square warping effect can be observed, similar
to the hexagonal warping of Bi2Se3 and related compounds,
see Refs. [21,65,66]. In the STI phase, warping causes a
strong peak along the (0,0)−(π,π ) direction even in the Born
approximation, since it allows for nesting of the Fermi surface,
see Figs. 13(b4) and 13(c4). Warping happens in the WTI
phase, too, even though a strong nesting effect cannot be
observed. In general, the exact details of the warping effect
depend on the choice of the parameters, so it is not possible to
make universal predictions in this regime.

C. QPI from Kondo holes

We now turn to the discussion of the QPI results for
Kondo holes, where V and T (ω) extend over all the sites
of the nx × nx × nz (practically 9 × 9 × 3) scattering region.
This calculation needs to be done numerically as described in
Sec. IV B.

QPI results for an isolated Kondo hole in the surface layer
are shown in Figs. 12(d) and 13(d) for the WTI and STI
phases, respectively. Comparing the Kondo-hole case to the
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FIG. 14. (Color online) Momentum-space cuts along (0,0) − (π,π ) through the QPI signal ρQPI(ω,q) at different energies in the WTI phase
with parameters as in Fig. 3, for (a) a weak f scatterer (εf = 0.01) in the surface layer (z = 1), (b) a weak c scatterer (εc = 0.01) at
z = 1, (c) a Kondo hole at z = 1. For cases (a) and (b), the signal close to q = 0 resembles Im F (qv/2ω), Fig. 11(a), while the signal close to
q = (π,π ) follows Im G(qv/2ω), Fig. 11(b).

weak-impurity cases, Figs. 12(b), 12(c), 13(b), and 13(c), one
notices that (i) peak shapes change as the phase of the T

matrix becomes relevant and (ii) weight in momentum space
is redistributed due to the stronger momentum dependence of
the scattering potential.

Both effects are more clearly seen when looking at
momentum-space cuts along (0,0)−(π,π ) through the QPI
spectrum, shown in Figs. 14 and 15. For example, the shape of
the intercone peak in Figs. 14(a) and 14(c) is rather different.
For the Kondo hole, one moreover observes a strong energy
dependence (resonant in the WTI case) of the QPI signal,
which roughly follows the LDOS, as can be seen by comparing
Figs. 16 and 8(a).

Upon comparing the WTI and STI phases, the results show
that the QPI signal for intracone scattering (green arrows) is
weak and not peaked: this is simply a result of backscattering
being suppressed by spin-momentum locking. (Recall that this
is roughly described by Im F shown in Fig. 11.) In contrast,
for intercone scattering there are wave vectors (red arrows)
connecting states with equal spin, resulting in a larger and
strongly peaked QPI signal. As a function of energy the
crossover from nearly isotropic Fermi surface and QPI signal
(left column) to a signal dominated by square warping (right
column) is apparent, with approximate nesting leading to a
large gain in QPI intensity.

We have also calculated QPI patterns for impurities not
located in the surface (z = 1) layer, but beneath it. In general,
the low-energy QPI signal is weaker here as compared to
surface impurities, simply because the surface states live
mainly in the z = 1 layer. In panels (e) and (f) of Figs. 12
and 13, we show corresponding results for a weak impurity
in the f band and a Kondo hole, respectively, both located in
the z = 2 layer. While the main qualitative features remain,

the QPI patterns tend to be more complicated, as now the full
spatial matrix structure of the T matrix becomes important.

Taking the panels in Fig. 12 together, we see that the
QPI signal displays a large variation between the different
types of impurities—the same applies to Fig. 13. Even weak
pointlike impurities in different bands produce different QPI
patterns, related to their nonlocal character in the effective
surface theory, see Sec. VI B 3. On the one hand, this certainly
complicates the interpretation of QPI experiments, but on the
other hand, may be exploited to characterize experimentally
existing defects on the basis of careful modeling.

D. QPI from magnetic impurities: qualitative discussion

All results so far concern the nonmagnetic (spin-singlet)
QPI response to nonmagnetic (spin-singlet) impurities. As
shown in Ref. [67], magnetic impurities allow QPI to probe
scattering channels which are otherwise prohibited by spin-
momentum locking when time reversal symmetry is preserved.

In this section, we therefore quickly discuss both the
magnetic (i.e., spin-antisymmetric or spin-triplet) response as
well as magnetic impurities in the Dirac-cone approximation
[20]. First, the spin-triplet QPI signal from nonmagnetic
impurities is always zero due to time reversal.

Magnetic impurities, instead, can lead to both triplet and
singlet response. As shown in Ref. [20], the latter is zero in
the Born approximation, while it is finite beyond. For a single
Dirac cone, it is described by the F (z) function, Eq. (47), so
it is small and nondiverging. The former, however, is always
nonzero, and it is described by the G(z) function, Eq. (52), up
to a direction-dependent factor, so it is strong and diverging
at |q| = 2ω/v. These conclusions naturally apply to the STI
phase of the topological Kondo insulator.
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FIG. 15. (Color online) Same as Fig. 14, but now in the STI phase with parameters as in Fig. 5.
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FIG. 16. (Color online) Energy-dependent intensity and q-space
position of the intercone QPI peak for a z = 1 Kondo hole in the
WTI phase, corresponding to Fig. 14(c). The intensity is roughly
proportional to the vacancy-induced LDOS, see Fig. 8(a), while it
would simply follow the bulk LDOS in the Born approximation (not
shown). The peak position y is parameterized as q = (1 − y)(π,π )
such that y = 0 corresponds to intercone scattering at the Dirac
energy, ω = 0. In the Dirac-cone approximation we have y =
(2|ω|/v)/(π

√
2), with the Fermi velocity v = 0.08 (black dotted).

What happens for intercone scattering, relevant to the
WTI phase? For simplicity, we consider a magnetic impurity
polarized along the z direction and calculate the triplet
component of the LDOS polarized in z direction:

ρ
σzσz

inter (ω,q + Q)

= − 1

π
Im

{
T (ω)

∑
k

Tr[σ̂zĜ
0
+(ω,k)σ̂zĜ

0
−(ω,k − q)]

}
.

(62)

With Ĝ0
±(ω,k) from Eq. (48), we see that

ρ
σzσz

inter (ω,q) = − 1

π
Im [T (ω)�intra(ω,q + Q)], (63)

so the signal is proportional to �intra(ω,q), Eq. (45), thus to
function F (z), Eq. (46). Hence, it has the same momentum
structure as the intracone (!) scattering in the nonmagnetic
case, the only difference being that it is centered at Q = (π,π )
rather that at (0,0). When considering different magnetization
and/or probe axis, the signal will be modulated according to the
angle in the xy plane as shown in Ref. [20], but still described
by the function F (z), i.e., is weak and nondiverging.

To summarize, for the magnetic response from a magnetic
impurity the functions F (z) and G(z) switch their role with
respect to the spin-unpolarized case: F (z) describes intracone
singlet-singlet response and intercone triplet-triplet response,
while G(z) describes intercone singlet-singlet response and
intracone triplet-triplet response (all in the isotropic Dirac
cone approximation). The intracone scattering signal is always
centered at (0,0), the intercone one at (π,π ).

VII. RESULTS: FINITE CONCENTRATION
OF IMPURITIES

In this section, we depart from the dilute limit of isolated
impurities and turn to discuss the physics of a finite defect
concentration. A treatment thereof requires no modifications
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FIG. 17. (Color online) Spectral intensity A(ω,k,z = 1) of a
nx × nx × Nz supercell with a random surface concentration nimp =
0.2 of holes for the same path as in Fig. 3, (a) in the WTI phase,
to be compared with Fig. 4, which is the case with no holes, (b) in
the STI phase, to be compared with Fig. 6. We employed nx = 9,
Nz = 15, and an artificial broadening δ = 0.005. The spectra have
been averaged over 20 realizations of disorder. In the inset, we show
the spatial map of bi on the surface for a particular realization of
disorder (the same for both WTI and STI): white spots are the hole
sites.

to the real-space mean-field approach of Sec. IV, but energy
and momentum resolution of the numerical results are now
restricted by the system-size limit for the (self-consistent)
diagonalization of the mean-field Hamiltonian (23) (amplified
by the use of supercells).

We have performed simulations for a finite concentration of
Kondo holes randomly distributed over all sites of the system
as well as for a finite concentration of surface Kondo holes.
In both cases and in the WTI phase, there is a clear tendency
of the resonances around each impurity to form a low-energy
band [68–70]. This is illustrated in Fig. 17 which displays the
momentum-resolved single-particle spectrum of the surface
layer for a concentration of nimp = Nimp/N

2
x = 0.2 surface

holes, where the impurity band around E − μ = −0.08,
superposed to the Dirac cones, is clearly visible. In addition,
the overall low-energy intensity decreases roughly according
to (1 − nimp).

In the STI phase, instead, this effect is largely absent,
since no appreciable change of the LDOS around the Dirac
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energy is caused by the holes. At low energies, the only visible
effect is a smearing of the Dirac cone, due to the local shift
of the Dirac energy caused by disorder. At elevated energies
impurity-induced weight can be found, but in A(ω,k,z = 1)
this weight is difficult to separate from that of bulk states due
to the absence of kz resolution.

Once again, we note that this difference between STI and
WTI phases is not dictated by topology, but by the different
degree of particle-hole asymmetry in the two cases. More
results for a finite concentration of Kondo holes, together with
a detailed analysis, will be presented in subsequent work.

VIII. CONCLUSIONS

This paper was devoted to a mean-field-based study of
impurities in topological Kondo insulators, both in the WTI
and STI phases. Our primary focus was on Kondo holes, i.e.,
sites with missing f -orbital degree of freedom, but we have
also considered weak scatterers in both c and f channels.
Most calculations were performed in a slab geometry, in order
to study the effects of impurities on the observable properties
of surface states, measurable via photoemisson or scanning-
tunnelling spectroscopy. All results have been obtained in the
low-temperature limit, T � TK,bulk, while more expensive
numerical techniques, such as dynamical mean field theory
with an impurity solver beyond slave bosons [71,72], would be
required to study the full temperature dependence. We find that
in the WTI phase a Kondo hole creates a resonance, localized
on the sites near the hole, close to the Dirac energy. In the STI
phase, due to the large particle-hole asymmetry, this resonance
moves to higher energies, mainly hybridizing with bulk states.

QPI patterns are very different in the two phases, due to
the different number of Dirac cones which are involved. In
the STI phase, only a single Dirac cone is present, and, as
widely shown in the literature, backscattering is suppressed
due to spin-momentum locking, so the QPI signal is weak.
This is to be contrasted with the WTI phase, where intracone
scattering remains suppressed but intercone scattering is not,
so the resulting QPI signal is strong. This results can be nicely
justified analytically in the Born approximation for isotropic
cones. In the general case, full numerical calculations show that
different scatterers give rise to specific QPI patterns which in
principle can be used to distinguish experimentally different
kinds of impurities. In this context, we have pointed out that
pointlike microscopic impurities do, in general, not correspond
to pointlike impurities in effective surface theories.

We have also examined a finite concentration of Kondo
holes and determined momentum resolved spectral functions.
In the WTI phase, the resonances around each hole form
a broad impurity band near the Dirac energy, partly de-
stroying the Dirac cone structure, while in the STI phase
minor disorder broadening of the Dirac cone, combined with
impurity-induced weight at elevated energies, is observed. This
difference can be attributed not to topology, but to the different
amount of particle-hole asymmetry. Further work is required to
study possibly emergent non-Fermi-liquid behavior [73] due to
disorder. Our predictions can be verified in future experiments;
we also note that some results, e.g., on intercone QPI, are not
specific to TKIs and thus of relevance beyond Kondo systems.

Note added. Recently, a related paper [74] appeared, which
discusses isolated impurities in topological Kondo insulators
in the framework of the Gutzwiller approximation. The results
presented in Ref. [74] are compatible with ours, but do neither
cover surface QPI nor finite impurity concentration.
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APPENDIX A: EQUIVALENCE OF FREE-PARTICLE
MODELS

The TKI model that we have used in this paper, originally
proposed in Refs. [3,4], reduces to a free-particle model at
the mean-field level. This model turns out to be equivalent
to the common cubic-lattice four-band model [44,45] for 3D
topological insulators.

This can be shown as follows. If we set tc = −tf ≡ t , b = 1,
εf = −εc ≡ −ε, λ = μ = 0, and rescale the hybridization
along z by a factor 2 through Vz = −Vx/2 = −Vy/2 ≡
−λ/2 < 0 (in this way, the model acquires cubic symmetry),
Eq. (18) can be written as H = ∑

k �
†
kHk�k, with �

†
k =

(c†k↑,c
†
k↓,f

†
k+,f

†
k−) and

Hk =
(

ε − 2t
∑

μ

cos kμ

)
σ0τz + 2λτy

∑
μ

sin kμσμ, (A1)

where σμ (μ = x,y,z) and σ0 = 1̂ act on the (pseudo)spin
space, while τz, τy (together with τx and τ0) act on the orbital
space. Applying now the rotation τiσj → U ′−1τiσjU

′ with

U ′ =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠

= 1

2
(σ0τ0 + σzτ0 + σ0τz − σzτz), (A2)

which just changes the sign of the |f −〉 state, we get

Hk =
(

ε − 2t
∑

μ

cos kμ

)
σ0τz

+ 2λ(−sin kxσyτx + sin kyσxτx + sin kzσ0τy), (A3)

which is the model of Refs. [44,45] without inversion-
symmetry breaking terms, and λ = −t .

Similarly, performing a rotation in the orbital space through
τi → U−1τiU , with

U = 1

2

(
1 − i 1 − i

−1 − i 1 + i

)
= 1

2
(τ0 − iτz − iτx + iτy), (A4)

we get

Hk =
(

ε − 2t
∑

μ

cos kμ

)
σ0τx − 2λτz

∑
μ

sin kμσμ, (A5)

which is the Hamiltonian studied for example in Ref. [75].
Hence, many properties of the mean-field solution of the

TKI model apply to the other four-band models as well, with
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two major differences: (i) in the common four-band models
the two orbitals are often assumed to be roughly equivalent
[in fact, fully symmetric within the approximations adopted
to obtain Eq. (A3)]. In contrast, in the TKI model the two
orbitals are physically very different, i.e., of c and f characters.
(ii) Self-consistency leads to an effective model with site-
dependent parameters in the presence of impurities and/or
surfaces. Finally, we recall that the TKI model is a genuine
many-body model, and, as such, techniques going beyond
mean-field, such as dynamical mean-field theory, will reveal
further differences with respect to the simple noninteracting
four-band model [33,71].

APPENDIX B: SPIN EXPECTATION VALUE
OF THE SURFACE STATES

To connect to spin-polarized photoemission experiments,
we consider a spin-resolved version of the single-particle
spectrum and define a generalized spin expectation value
〈�σ 〉(ω,k,z = 1) ≡ 〈�σ 〉(ω,k) on the first layer z = 1, with k
being in-plane momentum. For free particles with k being a
good quantum number, 〈�σ 〉(ω,k) is nonzero only if ω matches
one of the energy eigenvalues at wave vector k. In a clean slab
calculation, we have eigenvectors |nk〉 and eigenvalues εnk
of Eq. (27), with 1 � n � 4Nz, or equivalently, the Green’s
function

Ĝ0(ω,k)zsa,z′s ′a′ ≡ 〈zsak|Ĝ0(ω,k)|z′s ′a′k〉

=
∑

n

Ank
zsaA

nk∗
z′s ′a′

ω − εnk + iδ
, (B1)

where Ank
zsa ≡ 〈zsak|nk〉 is the matrix of eigenvectors.

First of all, the non-spin-polarized ARPES signal of Figs. 12
and 13, panels (a1) to (a4), is obtained through

A(ω,k,z = 1) = − 1

π
I

∑
saz=1

Ĝ0(ω,k)zsa,zsa

= − 1

π
Im Tr[Ĝ0(ω,k)Ẑ], (B2)

where operator Ẑ is a projector on the subspace with z = 1:

Ẑzsa,z′s ′a′ = δz=z′=1. (B3)

Now, the total expectation value of the spin at energy ω,
plane momentum k, and on layer z = 1 is

〈�σ 〉(ω,k) = − 1

π
Im

∑
n

〈nk|�σẐ|nk〉
ω − εnk + iδ

= − 1

π
Im

∑
nzz′ss ′aa′

Ank∗
z′s ′a′A

nk
zsa

〈z′s ′a′|�σẐ|zsa〉
ω − εnk + iδ

= − 1

π
Im Tr[Ĝ0(ω,k)�σẐ]. (B4)
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FIG. 18. (Color online) Expectation value of the spin in the 2D
Brillouin zone (a) in the WTI phase, integrated from ω = 0 to ω =
0.10 (relative to the Dirac energy), and (b) in the STI phase integrated
from ω = 0 to ω = 0.28. The color scale shows the total spin density
(arbitrary units), while arrows show the direction.

We observe that

〈zsa|�σẐ|z′s ′a′〉 = δz=z′=1δaa′ 〈sa|�σ |s ′a〉, (B5)

so we only need to compute matrix elements 〈sa|�σ |s ′a〉, where
a = c/f , and s,s ′ = ↑,↓ if a = c, while s,s ′ = +,− if a = f .
To know the expectation value of the spin on f states Eqs. (2)
and (3), we trace out the orbital degree of freedom. The nonzero
matrix elements are

〈+|σx |−〉 = 〈−|σx |+〉 = − cos2 η, (B6)

〈+|σy |−〉 = 〈−|σy |+〉∗ = i cos2 η, (B7)

〈+|σ z|+〉 = −〈−|σ z|−〉 = cos2 η − sin2 η. (B8)

For c states, we have trivially

〈↑|σx |↓〉 = 〈↓|σx |↑〉 = 1, (B9)

〈↑|σy |↓〉 = 〈↓|σy |↑〉∗ = −i, (B10)

〈↑|σ z|↑〉 = −〈↓|σ z|↓〉 = 1. (B11)

It turns out that 〈σ z〉 is negligible close to the Dirac energy,
so the expectation value of the spin in the f shell is simply
renormalized by a factor − cos2 η = −3/7 ∼ −0.429, and the
total spin points parallel to the surface. We stress that here
operator Ẑ is needed because

∑
z〈�σ 〉(ω,k,z) = 0, since Dirac

cones on opposing surfaces have opposite spin expectation
values.

Qualitative results of this calculation are shown in Figs. 12
and 13, panel (a2), which show where the spin is pointing
for momenta belonging to the Fermi surface. Full results are
shown in Fig. 18, where 〈�σ 〉(ω,k) has been integrated over a
range of energies close to the Dirac point.
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