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Phonon-induced topological insulation
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We develop an approximate theory of phonon-induced topological insulation in Dirac materials. In the
weak-coupling regime, long-wavelength phonons may favor topological phases in Dirac insulators with
direct and narrow band gaps. This phenomenon originates from electron-phonon matrix elements, which
change qualitatively under a band inversion. A similar mechanism applies to weak Coulomb interactions
and spin-independent disorder; however, the influence of these on band topology is largely independent of
temperature. As applications of the theory, we evaluate the temperature dependence of the critical thickness and
the critical stoichiometric ratio for the topological transition in CdTe/HgTe quantum wells and in BiTl(S1−δSeδ)2,
respectively.
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I. INTRODUCTION

Nearing a decade of rapid progress [1], the field of
topological insulators has become subject of textbooks [2].
Despite its incipient maturity, the subject remains active and
broad with ongoing work ranging from exotic field theory [3]
to applied physics [4]. Above all, the mechanism of band in-
version, responsible for the appearance of topological surface
states, continues to captivate the imagination of theorists and
experimentalists alike.

At the interface between theory and experiment, there is an
intense interest to identify tunable band-gap materials, where
band inversion could be done and undone as a function of an
experimentally controllable parameter. Pressure [5], electric
fields [6], compound stoichiometry [7], lasers [8], and strong
random alloying [9] are some of the candidate agents that
can switch topological phases on and off. Recently, one of
us has argued that temperature is an additional “knob” that
may induce a band inversion [10]. This proposal originated
from a study of electron-phonon interactions, whose effect
in band topology had been previously overlooked. The idea
that phonons can change the band topology of an electronic
system resonates with an upcoming line of research concerned
with the effect of dissipative and thermal baths on topological
materials [11].

In Ref. [10], the origin for phonon-induced band inversion
remained rather obscure. The main objective of the present
work is to provide a simple and intuitive understanding of
the mechanism that underlies phonon-induced topological
insulation. This same mechanism applies to disorder- and
Coulomb-interaction-induced topological insulation as well.
We begin (Sec. II) by reviewing some fundamentals of band-
gap renormalization in semiconductors. This is a subject that
has attracted steady attention in the last four decades [12];
nevertheless, the possibility that phonons could invert the band
gap of a Dirac material has not been contemplated. If one con-
siders only the highest valence band and the lowest conduction
band of a direct-gap insulator, then simple perturbation theory
dictates that intraband (interband) electron-phonon scattering
processes reduce (augment) the band gap. The total change in
the band gap is given by the sum of the competing interband
and intraband parts. In wide-gap semiconductors, interband

transitions are suppressed and the band gap decreases with
temperature, regardless of the details of electron-phonon
matrix elements. However, in narrow-gap semiconductors,
the competition between intraband and interband transitions
becomes particularly sensitive to the matrix elements. These
matrix elements are peculiar in Dirac materials (Sec. III)
because the momentum-space texture of the band eigenstates
changes topology when the system undergoes a band inver-
sion. Due to this peculiarity, the dominant long-wavelength
electron-phonon matrix elements are of intraband (interband)
type in trivial (topological) Dirac insulators. Consequently, the
magnitude of the band gap of a trivial Dirac insulator decreases
with temperature, while it increases in a topological insulator.
This idea, which we elaborate in Sec. IV, is the main insight
from the present work. In Sec. V, we apply the theory to
HgTe/CdTe quantum wells and BiTl(S1−δSeδ)2. Because the
renormalized Dirac mass and the renormalized band gap differ
from one another, the appearance of topological surface states
does not occur simultaneously with a band inversion. This
may help explain the “topological proximity effect” observed
in BiTl(S1−δSeδ)2. In Sec. VI, we collect the main ideas and
discuss their relevance in materials with complex electronic
and phononic structures.

II. BAND-GAP RENORMALIZATION

We begin by reviewing the phonon-induced renormaliza-
tion of the band gap in semiconductors [12]. The Hamiltonian
of a perfectly periodic crystal is

H0 =
∑

k

∑
σσ ′

∑
ττ ′

〈στ |hk|σ ′τ ′〉c†kστ ckσ ′τ ′ , (1)

where k is the crystal momentum, hk is the Bloch Hamiltonian,
and ckστ is an operator that annihilates an electron with
momentum k, spin quantum number σ , and orbital quantum
number τ . The Bloch Hamiltonian has eigenvalues Ekn and
eigenstates

|ψkn〉 = exp(ik · r)|kn〉/
√

V , (2)
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where V is the crystal volume, n is the Bloch band label, and
|kn〉 is a multicomponent spinor whose spatial dependence has
the periodicity of the lattice.

Small deviations of the ions from their equilibrium positions
couple to the electron density and result in an electron-phonon
interaction V � V (1) + V (2), where

V (1) =
∫

dr ρ(r)
∑

j

Qj · ∇Vei
(
r − R0

j

)
,

V (2) = 1

2

∫
dr ρ(r)

∑
j

(Qj · ∇)2Vei
(
r − R0

j

)
. (3)

Here, R0
j is the equilibrium position of the j th ion, r is

the electron coordinate, ∇ = ∂/∂r, Vei(r) is the electron-ion
potential,

Qj = i
∑

k

eik·R(0)
j

(
�

2ρAV ωk

)1/2

ek (ak + a
†
−k) (4)

is the ionic displacement from equilibrium (assumed to
be small), ak is an operator that destroys a phonon with
momentum k, ωk is the phonon frequency, ρA is the atomic
density, and ek is the polarization vector of the phonon mode.
In addition, the electron density operator is

ρ(r) = 1

V

∑
q

e−iq·rρq ; ρq =
∑
kστ

c
†
kστ ck−qστ (5)

in the plane-wave basis. For simplicity, we have considered
one atom per lattice site and, for brevity, we have omitted the
index that labels different phonon modes. Furthermore, Eq. (3)
is local in real space and thus does not capture phonon-induced
changes in the electronic hopping amplitude; the effect of these
terms will be briefly discussed in Sec. VI.

Equations (3) and (5) together evidence that the electron-
phonon interaction conserves spin and orbital quantum num-
bers in the plane-wave basis. This fact will figure prominently
in the mechanism for phonon-induced topological insulation
(cf. Sec. IV). At any rate, since the electronic eigenstates do not
generally have well-defined spin and orbital quantum numbers,
phonons do scatter electrons between different bands. This
becomes apparent by rewriting Eq. (5) in the band eigenstate
basis,

ρq =
∑

kk′nn′

∑
G

δk′+q−k,G〈kn|eiG·r|k′ n′〉c†knck′n′ , (6)

where ckn annihilates an electron with momentum k in band
n, G is a reciprocal lattice vector and

〈kn|eiG·r|k′n′〉 ≡
∫

cell
dreiG·ru∗

kn(r)uk′n′(r). (7)

Here, ukn(r) ≡ 〈r|kn〉 and the spatial integration is over the
unit cell. If the Bloch eigenstates were plane waves (which
would approximately be the case in simple metals), Eq. (7)
would be nonzero only for G = 0. In Dirac insulators, the
Bloch states are not plane waves and the G 	= 0 terms (umklapp
processes) do not vanish. Yet, hereafter, we neglect umklapp
processes on the basis that (i) we consider the coupling of
electrons to long-wavelength phonons (deformation potential
coupling) and (ii) we model the electronic structure with k · p

Hamiltonians that are tailored to small momenta in the vicinity
of the band-gap minimum. Under this proviso, Eq. (3) can be
rewritten as [13,14]

V (1) =
∑

q

gqρq(a†
−q + aq),

V (2) =
∑
k,q

λkqρq(ak + a
†
−k)(a−k+q + a

†
k−q), (8)

where the expressions for gq and λkq are listed in Appendix A,
and

ρq �
∑
knn′

〈kn|k − q n′〉c†knck−qn′ . (9)

Since 〈kn|k n′〉 = δnn′ , zero-momentum phonons cannot scat-
ter electrons between different bands [15]. In contrast, q 	= 0
phonons can induce interband transitions because 〈kn|k′ n′〉 	=
δnn′ for k 	= k′. In the k · p Hamiltonians analyzed below, these
overlap matrix elements may be evaluated analytically.

Both V (1) and V (2) modify the electronic band structure. At
zero temperature, the renormalized energy levels are

E∗
kn � Ekn +

∑
n′q

|gq|2 |〈kn|k − qn′〉|2
Ekn − Ek−qn′

, (10)

where we have neglected the frequency of phonon modes in the
denominator. This is a good approximation for the purposes
of the present work (cf. Sec. IV). In addition, in the derivation
of Eq. (10), we have used (cf. Appendix A)

〈kn; 0|V (2)|kn′; 0〉 = 0, (11)

where |kn; N〉 ≡ c
†
kn|FS〉 ⊗ |N〉, |FS〉 is the Fermi sea, and

|N〉 is a Fock state of N phonons. The matrix element in
Eq. (11) is known as the Debye-Waller term. When short-
wavelength phonons are included, the Debye-Waller term is
nonzero and contributes to the renormalization of energy levels
at the same order as Eq. (10). In such case, the electron-phonon
matrix elements are usually computed from first-principles
pseudopotential methods [16], which show that the band-gap
renormalization of common semiconductors often contains
a significant Debye-Waller component. The possible impact
of the Debye-Waller term on band topology will be briefly
discussed in Sec. VI.

In Eq. (10), it is instructive to separate the sum over
intermediate states onto interband (n′ 	= n) and intraband
(n′ = n) parts. For a direct-gap semiconductor, a glance at
the energy denominators of Eq. (10) and Fig. 1 reveals that
intraband transitions decrease the band gap at k = 0, while
interband transitions increase it. In this paper, “interband
transition” refers to a transition that takes place between
the valence band and the conduction band edges. Transitions
between energy-degenerate bands are counted as “intraband.”
There are, of course, interband transitions between different
(nondegenerate) valence bands as well as between different
conduction bands. These interband transitions could a priori
lead to a decrease of the band gap. However, for Dirac
insulators in the vicinity of a topological phase transition,
there is often a large energy separation between the lowest
conduction band and the rest of conduction bands. Likewise,
the highest valence band is typically well separated in energy
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(a) (b)

FIG. 1. (Color online) Schematic diagram for (a) intraband and
(b) interband electronic transitions induced by phonons in a two-
band insulator with a direct gap at the zone center (each band
may be degenerate). It is assumed that additional conduction and
valence bands are sufficiently far in energy so that they do not
contribute substantially to band-gap renormalization. Such band-gap
renormalization involves the evaluation of Eq. (10) for k = 0.
Accordingly, the relevant electron-phonon scattering matrix elements
connect k = 0 with k = q, where q is the phonon momentum. Since
E0+ � Ek+ and E0− � Ek− for any k, intraband transitions lead to
a decrease of the band gap (E0+ − E0−). A similar argument reveals
that interband transitions increase the band gap.

from the rest of the valence bands. Under these conditions,
the leading interband contribution emerges from transitions
between the highest valence band and the lowest conduction
band, the rest being suppressed by relatively large energy
denominators in Eq. (10). In sum, the net change in the band
gap depends on the relative strength of the intraband and
interband contributions.

For wide-gap semiconductors, the interband contribution is
depleted by a large energy denominator in Eq. (10); therefore,
electron-phonon interactions decrease the band gap. However,
for narrow-gap semiconductors, the energy denominators are
no longer large enough to rule out the interband part. Instead,
the competition between intraband and interband contributions
depends sensitively on the magnitude of the G = 0 electron-
phonon matrix elements, gk−k′ 〈kn|k′n′〉. As we explain below
(cf. Sec. IV), the key for the phonon-induced topological
insulation is that intraband matrix elements dominate on the
trivial side of a topological phase transition, whereas interband
matrix elements take over on the nontrivial side of said phase
transition. In other words, phonons decrease the band gap when
the Dirac insulator is trivial, while they increase the band gap
when the Dirac insulator is topological. Albeit unusual, this
feature seems generic to Dirac insulators with deformation
potential coupling to phonons because it arises due to the
change in the eigenstates’ momentum-space texture across a
topological phase transition.

III. DIRAC MASS RENORMALIZATION

The aim of this paper is to extract qualitative insights from
low-energy effective models, rather than from more accurate
but less transparent first principles calculations. The minimal
k · p Hamiltonian that captures the low-energy properties of a
time-reversal- and inversion-symetric 2D or 3D Dirac insulator

with a band-gap minimum at the Brillouin zone center [17] is

hk = d0,k + dk · σ τ x + Mkτ
z, (12)

where σ i and τ i are Pauli matrices in spin and orbital space
(respectively), d0,k = γ k2a2, di,k = −αkia (i ∈ {x,y} in 2D
and i ∈ {x,y,z} in 3D), Mk = m + βk2a2, a is the lattice
constant that acts as an ultraviolet cutoff, and (γ,β,α,m) are
material parameters with units of energy. In particular, m is
the Dirac mass of the quasiparticles at k = 0. The parameter
α determines the velocity of Dirac quasiparticles, whereas γ

models the particle-hole asymmetry of the band structure. A
lattice regularization of Eq. (12) may be introduced in the usual
way, but it does not affect the main results substantially.

The eigenvalues of Eq. (12) are a pair of doubly degenerate
conduction and valence bands with energies

Ek± = d0,k ± εk ; εk ≡
√

dk · dk + M2
k . (13)

It is straightforward to obtain the corresponding eigenvectors
|kn〉 analytically; these will be used to derive the results below.
We assume that the band gap at k = 0 is parametrically smaller
than the gap at any other time-reversal-invariant momentum
(TRIM), i.e., we assume |β| � |m|. This scenario comprises
most real Dirac insulators. The band topology of the Dirac
insulator is then determined by the sign of m β: if positive (neg-
ative), the insulator is trivial (topological). From here on, we
take β > 0 without loss of generality, and thus m > 0 (m < 0)
describes a trivial (topological) insulator. Although it plays no
role in determining the band topology of noninteracting Dirac
insulators, γ can alter the band topology under the presence
of electron-phonon interactions.

Phonons affect the band topology of a Dirac insulator by
renormalizing the Dirac mass, m → m∗. In particular, if m and
m∗ have the opposite sign, phonons induce a topological phase
transition [10]. For real Dirac insulators, this is susceptible
to occur only at the TRIM where the band gap is smallest
(at k = 0 in our model) because the Dirac masses at all other
TRIM are typically large in magnitude compared to the energy-
scale of the electron-phonon interaction. The renormalization
of the Dirac mass due to electron-phonon interactions can be
obtained from the self-energy,

�nn′(k,iω) =
∑
qn′′

g2
q〈kn|k − q n′′〉〈k − qn′′|kn′〉

×
(

1 + nBq − fk−qn′′

iω − ξk−qn′′ − ωq
+ nBq + fk−qn′′

iω − ξk−qn′′ + ωq

)
,

(14)

where n,n′ ∈ {1,2,3,4} are band labels, ξkn = Ekn − εF with
Ek1 = Ek2 = Ek+ and Ek3 = Ek4 = Ek−; εF is the Fermi
energy, nBq = [exp(ωq/T ) − 1]−1 is the phonon occupation
number, fkn = [exp(ξkn/T ) + 1]−1 is the fermion occupation
number, and ω = (2l + 1)πT (l ∈ Z) is the fermionic Mat-
subara frequency.

Hereafter, we concentrate on the k = 0 self-energy,

�nn′(0,iω) = �0(0,iω)δnn′ + �z(0,iω)τ z
nnδnn′ , (15)

where �0 and �z are related to the renormalization of the
Fermi energy and the Dirac mass, respectively [cf. Eq. (12)].
The self-energy at k = 0 is diagonal and doubly degenerate
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due to the combined time-reversal and inversion symmetry of
Eq. (12). After simple algebra, we arrive at

�0(0,iω) �
∑

q

g2
q,eff(T )

iω + εF − d0,q

(iω + εF − d0,q)2 − ε2
q
,

(16)

�z(0,iω) �
∑

q

g2
q,eff(T )

Mq

(iω + εF − d0,q)2 − ε2
q
,

where we have neglected the phonon frequency in the
denominators and have defined

g2
q,eff(T ) ≡ g2

q(1 + 2nBq). (17)

From Eq. (15), the zero-temperature renormalized Dirac mass
can be read off as [18]

m∗ = m + �z(0,0). (18)

A natural generalization to finite temperature is

m∗(T ) = m + Re [�z(0,iπT )], (19)

where we have recognized that the lowest Matsubara fre-
quency is ±πT . When temperature is low compared to
the bandwidth of the electronic bands (which is in fact the
case of interest), Re [�z(0,iπT )] � �z(0,0) and the entire
temperature dependence of m∗(T ) originates from the phonon
occupation factor in Eq. (17). The physical consequences of a
temperature-dependent Dirac mass will be discussed in Sec. V.

An important aspect of Eq. (16) is that �z(0,0) is largely
independent of m when |m| is small. Whether phonons favor
a trivial or a topological phase is thus independent of whether
the bare Dirac insulator is trivial or topological (insofar as the
gap is small). The physical reason behind this result will be
described in Sec. IV.

Equations (15) and (16) are formally very similar to the
ones that appear in the theory of the topological Anderson
insulator [9]. The main difference arises in the temperature-
dependence of the self-energy, which is negligible for static
disorder and significant for phonons. Temperature may be
regarded as a knob to effectively tune the strength of electron-
phonon coupling [cf. Eq. (17)]. In fact, the experimental
fingerprint for the phonon-induced band-gap renormalization
in semiconductors is its temperature dependence.

We conclude this section by discussing the relation be-
tween the renormalized Dirac mass and the renormalized
band gap [18]. For small phonon frequency and at zero
temperature, �nn(k,ξkn) agrees with Eq. (10). Accordingly,
the renormalized band gap at k = 0 is E∗

g ≡ E∗
c − E∗

v , where

E∗
c � m + �0(0,E∗

c − εF ) + �z(0,E∗
c − εF ),

(20)
E∗

v � −m + �0(0,E∗
v − εF ) − �z(0,E∗

v − εF ).

Note that E∗
g depends on temperature and may be either

positive (normal band ordering) or negative (inverted band
ordering). Due to the frequency dependence of the electron-
phonon self-energy, E∗

g 	= 2m∗. Conceptually, the difference
between the renormalized band gap (which is the bulk gap
measured, e.g., in ARPES) and the renormalized Dirac mass
(which dictates the existence of topological surface states)
implies that the emergence or disappearance of topological
surface states does not go hand in hand with the closing of

the bulk quasiparticle gap. In Sec. V B, we argue that this
difference may help explain recent ARPES measurements [19]
that have probed the vicinity of the topological phase transition
in BiTl(S1−δ Seδ)2.

IV. PHONON-INDUCED TOPOLOGICAL INSULATION

Having reviewed the preliminary concepts, we are ready
to discuss when and why phonons favor topological phases
in Dirac insulators. The objective of this section is to extract
some general principles that govern the fate of band topology
in presence of electron-phonon interactions. These principles
should be valid beyond the toy model that we use to illustrate
them.

Starting from Eq. (12), we denote the self-energy for the
positive-energy and negative-energy bands (each of which is
doubly degenerate) as �+ and �−, respectively. In the spirit of
Sec. II, we separate the intraband and interband contributions:

�±(0,iω) = �intra
± (0,iω) + �inter

± (0,iω). (21)

From Eq. (14), it follows that

�intra
± (0,iω) =

∑
q

g2
q,eff

∣∣V intra
q

∣∣2

iω + εF − Eq±
,

(22)

�inter
± (0,iω) =

∑
q

g2
q,eff

∣∣V inter
q

∣∣2

iω + εF − Eq∓
,

where the intraband and interband matrix elements (V intra
q

and V inter
q ) describe the probability amplitude for electronic

transitions from k = 0 to k = q. For intraband transitions, the
initial and final scattering states are in bands with the same
energy dispersion; for interband transitions, one of them is in
the conduction band and the other one is in the valence band.
The explicit expressions for the matrix elements are∣∣V intra

q

∣∣2 = 1

2

(
1 + sgn(m)

Mq

εq

)
,

(23)∣∣V inter
q

∣∣2 = 1

2

(
1 − sgn(m)

Mq

εq

)
,

where Mq and εq were defined below Eq. (12) and in Eq. (13),
respectively. Note that |V intra

q |2,|V inter
q |2 ∈ [0,1] because they

correspond to transition probabilities. In order to interpret
Eq. (23), it is useful to recall that τ z is a good quantum
number at k = 0 [cf. Eq. (12)] and that phonons conserve
the orbital pseudospin [cf. Eqs. (5) and (8)]. Then, Eq. (23)
gives a measure of how parallel the orbital pseudospin at k = q
is with respect to that at k = 0. This is illustrated in Figs. 2(a)
and 2(b). The reason why Eq. (23) depends on the sign of
the bare Dirac mass m is because the orbital pseudospin at
k = 0 flips direction when m changes sign. This, in turn, is the
essence of band inversion.

Combining Eqs. (16), (21), and (22), the renormalized Dirac
mass is obtained from

�z = sgn(m)(�+ − �−)/2, (24)

where the momentum and frequency arguments are 0 and
πT , respectively. The sign change in the expression for �z

between m > 0 and m < 0 is due to the band inversion. When
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(a) (b)

(c) (d)

FIG. 2. (Color online) (a) and (b) Expectation value of τ (arrows)
as a function of momentum in (a) a trivial insulator and in (b) a
topological insulator. From the analytical expressions for the band
eigenstates, we obtain 〈τ 〉k± = ẑMk/Ek±. Degenerate energy bands
give the same contribution to 〈τ z〉; in contrast, 〈τ x〉k± = 〈τ y〉k± =
0 upon summing over each pair of degenerate bands. (c) and (d)
Electronic scattering probability from the zone center to a state with
momentum k. The scattering probability is maximized if the spin and
pseudospin of the state at momentum k are parallel to those of the
state at the zone center. (c) In a trivial insulator, intraband matrix
elements dominate at all momenta transfer because 〈τ z〉 does not
change sign with k. (d) In a topological insulator, intraband matrix
elements dominate for k < k∗, where k∗ is defined via Mk∗ = 0, while
interband matrix elements dominate for k > k∗.

m = 0, the labeling of “intraband” and “interband” becomes
ambiguous because the conduction and valence bands touch
at k = 0. In this case one may take either sgn(m) = 1 or
sgn(m) = −1 in Eqs. (23) and (24), and one arrives at the
same expression for m∗.

Let us first consider m > 0, which corresponds to a
trivial bare Dirac insulator. In this case, Mq > 0 and thus
|V intra

q | > |V inter
q | for any q. Namely, phonons tend to scatter

the k = 0 electron into another state in the same (or different-
but-degenerate) band because the orbital pseudospin is more
aligned therein [cf. Fig. 2(a)]. The importance of this point
becomes easier to grasp if we consider an undoped (εF =
0) and particle-hole symmetric (d0,q = 0) insulator at zero
temperature. In this case �intra

+ (0,0) < 0 < �inter
+ (0,0), with

|�intra
+ (0,0)| > �inter

+ (0,0). Thus �+(0,0) < 0 and, by particle-
hole symmetry, �−(0,0) = −�+(0,0). Accordingly, Eqs. (18)
and (24) dictate that m∗ < m. In other words, phonons drive
an undoped and particle-hole symmetric trivial Dirac insulator
towards the topological phase, solely because the intraband

matrix elements prevail over the interband matrix elements.
For a sufficiently strong electron-phonon coupling (or suffi-
ciently small m), m∗ < 0 and phonons induce a topological
insulating phase in an otherwise trivial insulator [20]. At the
same time, phonons decrease the renormalized gap and may
as well invert it, although E∗

g does not change sign at the same
time as m∗.

Next, we consider the case m < 0. Here, Mq changes
from negative to positive as q varies from 0 to π/a. The
sign change, which occurs at q a � q∗ a ≡ √|m|/β, reflects
a nontrivial texture of the orbital pseudospin in momentum
space [cf. Fig. 2(b)]. Since phonons favor transitions between
aligned orbital pseudospins, it follows that |V intra

q | > |V inter
q |

for q < q∗ and |V intra
q | < |V inter

q | for q > q∗. Let us once
again consider an undoped Dirac insulator with particle-
hole symmetry. If the main contribution to the self-energy
originated from electron-phonon scattering processes with
small momentum transfer (q < q∗), the intraband contribution
would dominate, thereby resulting in m∗ > m and E∗

g > Eg

(i.e., |m∗| < |m| and |E∗
g | < |Eg|). In this scenario, phonons

would have driven a topological insulator towards the trivial
phase and, in conjunction with the preceding paragraph, we
would have concluded that phonons favor the Dirac semimetal
phase irrespective of whether the insulator was topological
or trivial to begin with. However, in a narrow gap Dirac
insulator, q∗ a � 1 and typically the most important scattering
events are those with q > q∗. For one thing, there is more
phase space for transitions with higher momentum transfer.
Therefore, interband processes make the main contribution
to the self-energy and lead to m∗ < m (|m∗| > |m|), hence
stabilizing the topological phase on a system that was already
topological to begin with. In terms of the band gap, E∗

g < Eg

(|E∗
g | > |Eg|). As |m| becomes larger, the phase space for

interband transitions shrinks and intraband contributions begin
to dominate, thereby restoring the “conventional” behavior of
|m∗| < |m| and |E∗

g | < |Eg|. Thus �z(0,0) changes sign in the
topological phase as a function of |m| (cf. Fig. 3).

In sum, electron-phonon interactions of the deformation
potential type favor a topological insulator phase in narrow-gap
Dirac insulators with particle-hole symmetry. The causes
behind this unusual effect are the following: (i) the momentum-
space texture of the orbital pseudospin changes across a band
inversion, (ii) electron-phonon scattering of the deformation
potential type conserves spin and pseudospin degrees of
freedom, and (iii) electron-phonon matrix elements with
higher momentum transfer are important (in spite of the larger
energy denominators associated to them) due to the increased
phase-space for scattering [21]. These three principles might
help guide the understanding of how phonons influence the
band topology in real Dirac materials with complex band
structures. Moreover, the ideas developed above apply at finite
temperature as well. Given that higher temperature means
stronger effective electron-phonon coupling [cf. Eq. (17)],
there is the intriguing possibility that heating the system up
may drive a trivial insulator into the topological phase [10].
Thus far there are no known materials where helical sur-
face states appear only above certain temperature [22]. In
Sec. V we discuss related phonon-effects which may be
accessible in some Dirac materials of current experimental
interest.
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FIG. 3. (Color online) Dependence of the electron-phonon self-
energy on the bare Dirac mass for different types of electron-phonon
couplings gq. The axes are normalized in units of ω0 = 20 meV,
the optical phonon frequency used for the Fröhlich coupling. The
component of the self-energy that is responsible for renormalizing
the Dirac mass, �z, changes sign as a function of m when m becomes
increasingly negative. The reason for this is explained in the main
text. The value of |m| for which the sign change occurs depends on
the particular type of electron-phonon coupling gq. If gq→0 is finite
(or zero), then the sign change occurs when q∗ ∼ a−1. In contrast,
if gq→0 diverges (which is the case for Fröhlich coupling in absence
of screening), then small momenta transitions receive higher weight
and �z changes sign at a considerably smaller value of q∗ (see inset).

The preceding arguments relied on particle-hole symmetry
and on the absence of itinerant carriers. Is the mechanism for
phonon-induced topological insulation robust under doping
(εF 	= 0) and particle-hole asymmetry (γ 	= 0)? On one hand,
electron-phonon matrix elements are unchanged by εF 	= 0
and γ 	= 0. Yet, on the other hand, both γ and εF change
the denominators in Eq. (22). In the remaining part of
this section, we argue that the conclusions extracted in the
preceding paragraph remain robust under moderate particle-
hole asymmetry and doping.

Figure 4 shows the dependence of �±(0,0) on γ for an
undoped insulator. When m > 0, the intraband contribution
dominates up to a critical value γc � β. Likewise, when
m < 0, the interband contribution dominates up to γc �
β. Therefore, the status quo derived from γ = 0 remains
qualitatively unchanged until γ � γc. As shown in Fig. 5(b),
the value of γc may be shifted away from β via doping. When
γ = γc, the electron-phonon self-energy at zero frequency
develops a singularity due to a elastic transition that connects
the Fermi-level band eigenstate at k = 0 with the band edge at
the corner of the Brillouin zone [see also Fig. 5(a)]. Close to the
singularity, our perturbative result is unreliable. For γ � γc,
the system is first an indirect-gap semiconductor and then a
semimetal. In this regime, the sign of the self-energy is reversed
and phonons favor a topologically trivial phase. Since β is a
significant fraction of the electronic bandwidth, we conclude
that the mechanism for phonon-induced topological insulation
remains robust for moderate particle-hole asymmetry.

Figure 5(b) illustrates the dependence of �z on εF and γ . In
the lightly doped materials we are interested in, the screening
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FIG. 4. (Color online) Electron-phonon self-energies for the
positive- and negative-energy bands of an undoped Dirac insulator,
with deformation potential coupling to acoustic phonons. Intraband
and interband contributions are shown separately. The numerical
values of the band and phonon parameters are taken from Ref. [10].
(a) and (b) Trivial Dirac insulator with m = 10 meV. (c) and
(d) Topological insulator with m = −10 meV.

of the electron-phonon matrix elements by the itinerant carriers
is weak [23]. Moreover, in this regime the dependence of
the self-energy on doping is unremarkable, except close to
γ = γc. Hence once again the simple mechanism discussed
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FIG. 5. (Color online) (a) Band structure of a toy Dirac insulator
[Eq. (12)] as a function of the particle-hole asymmetry parameter
γ . When γ � β, the phonon-induced renormalization of the band
gap and the Dirac mass develop singularities. (b) Let us denote the
renormalized Dirac mass and band gap as m∗ = m + �z and E∗

g =
Eg + �′

z, respectively, where �′
z may be read off Eq. (20). Then, �z

diverges and changes sign at γ ≡ γc, when the band edge at a corner of
the Brillouin zone becomes degenerate with the Fermi energy. Hence,
γc may be tuned by doping. Likewise, �′

z diverges and changes sign
at γ ≡ γg , when the band edge at the zone center becomes degenerate
with the band edge at a corner of the Brillouin zone. Unlike γc, γg is
insensitive to doping. Such different response of γc and γg to doping
will play a role in Sec. V B.
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above is applicable for moderately doped Dirac systems. Along
the same line, we have confirmed that the neglect of ωq on
the denominators of Eq. (16) is appropriate except near the
singularities of the self-energy (not shown).

V. SOME APPLICATIONS

Thus far we have explained why, in narrow-gap Dirac
insulators which are not highly doped or highly particle-
hole asymmetric, long-wavelength phonons favor the topo-
logical insulating phase. An experimental signature of this
phenomenon would be the emergence of helical surface
states above certain temperature in an insulator that has
a topologically trivial ground state. Traces of this hitherto
unobserved phenomenon are more likely to be seen in materials
with tunable band gaps. HgTe/CdTe quantum wells and
BiTl(S1−δ Seδ)2 are examples of such materials in two and
three dimensions, respectively. In this section, we discuss
signatures of phonon-induced changes in the band topology
of these systems.

A. Temperature-dependence of the critical width
in HgTe/CdTe quantum wells

Topological insulation in CdTe/HgTe/CdTe quantum wells
was predicted [24] by Bernevig, Hughes and Zhang (BHZ)
in 2006. The experimental confirmation arrived shortly af-
terwards [25,26]. In CdTe, as in most tetrahedral semicon-
ductors [27], the p-type valence band edge (�8) lies below
the s-type conduction band edge (�6). In this “normal-
ordered” electronic structure, the energy gap is Eg = 1.6 eV.
In contrast, in HgTe, �8 lies above �6 and hence the energy
gap at the � point is inverted (Eg = −0.303 eV). Even though
bulk HgTe is semimetallic in absence of strain, it may be
coaxed into the insulating phase through quantum confinement
in CdTe/HgTe/CdTe quantum wells. The HgTe layer has
a small thickness d along the growth direction z and the
heterostructure is translationally invariant in the xy plane.
Accordingly, k⊥ = (kx,ky) are good quantum numbers. At
k⊥ = 0, the lowest-energy subbands in the quantum well are
denoted as E1 and H1, their energies being EE1 and EH1.
The dispersions of E1 and H1 with k⊥ are equivalent to those
of Dirac fermions with mass m = (EE1 − EH1)/2. If d < dc,
where dc is some critical thickness, the normal ordering of the
CdTe electronic structure prevails. This translates into m > 0
and trivial insulation. If d > dc, the ordering between E1 and
H1 subbands is inverted (m < 0) and the system becomes a
topological insulator. The objective of this subsection is to
investigate the effect of electron-phonon interactions on dc.

The natural starting point for such investigation is the BHZ
model [24], which describes the low-energy subbands in the
vicinity of k⊥ = 0. This model is a special case of Eq. (12),
with the Dirac mass given by m = (EE1 − EH1)/2. In presence
of phonons, m is renormalized to m∗(T ) and the critical
thickness for the topological transition or crossover is the
one for which m∗(T ) = 0. Anticipating that |γ | < |β| for all
relevant values of d [cf. Fig. 6(b)], it follows from Sec. IV that
Re[�z(0,iπT )] < 0 for any temperature T . Namely, within
the BHZ model, phonons favor the topological phase and
therefore one may expect dc to decrease as the system is heated.
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FIG. 6. (Color online) (a) Energies of E1 and H1 subbands
(k⊥ = 0) as a function of quantum well width d . The parameters
needed for the calculation are taken from Ref. [30]; in addition, we
consider εF = 0. (b) Temperature dependence of the band parameters
appearing in the BHZ model [Eq. (12)], for d = 4 nm. (c) Plot of
the critical quantum well [where m∗(T ) changes sign] as a function
of temperature. The solid line ignores phonon-induced intersubband
transitions, while the dashed curve partly captures them through the
evaluation of the electron-phonon self-energy in the BHZ model.
(d) Energy-difference between E1 and H1 subbands, as a function of
temperature, for a quantum well of thickness d = 4 nm. The solid line
is the result without phonon-induced intersubband transitions. The
dashed line incorporates the phonon effects in the lowest quantum
well states. The doted line (Êg) takes a slightly larger value of
the electron-phonon coupling (by a factor of ∼2.5); the change in
the slope of the energy gap as a function of temperature becomes
noticeable in this case.

This expectation is in stark contrast with the conclusions
from a recent theoretical study by Sengupta et al. [28],
which has claimed that dc increases with T . These authors
considered the effect of electron-phonon interactions solely
through the renormalization of the band gaps in bulk HgTe
and CdTe. Such approach is insufficient because it does not
capture the influence of phonon-induced transitions between
quantum well states. These transitions, partly included in the
electron-phonon self-energy of the BHZ model, are in principle
important because they connect states that are close in energy.

We improve on Ref. [28] by taking a two-pronged approach.
First, we evaluate the temperature dependence of the band
parameters (m,α,β,γ ) appearing in the BHZ model. This T de-
pendence comes through the phonon-induced renormalization
of the bulk CdTe and HgTe band gaps. The thickness at which
m(T ) changes sign will be denoted as dc(T ); this is the quantity
that was calculated by Ref. [28] and found to increase with T .
Second, we use the temperature-dependent band parameters as
input to calculate the electron-phonon self-energy within the
BHZ model. In this way, we determine the renormalized Dirac
mass via m∗(T ) = m(T ) + Re[�z(0,iπT )]. The actual critical
width d∗

c (T ) is defined as the thickness for which m∗(T ) = 0.
Since Re[�z(0,iπT )] < 0, there is the possibility that d∗

c (T )
decreases with T even as dc(T ) increases with T .
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In order to determine the temperature dependence of
the BHZ parameters, we solve the Schrödinger equation
for a Hg0.32Cd0.68Te/HgTe/Hg0.32Cd0.68Te quantum well.
This involves diagonalizing a six-band Kane Hamiltonian
h(k⊥,i∂z) [29]. The ensuing procedure is identical to that of
Ref. [24], except that we take temperature-dependent band
gaps [30] for bulk HgTe and bulk Hg0.32Cd0.68Te. The solution
at k⊥ = 0 reveals discrete quantum well states, from which
E1± and H1± have the lowest energies (here ± labels
Kramers partners that are degenerate at k⊥ = 0 due to time-
reversal symmetry). The BHZ model follows from applying
k · p perturbation theory around the k⊥ = 0 solution in the
Hilbert space spanned by {|E1+〉,|H1+〉,|E1−〉,|H1−〉}.
By considering only the lowest electronlike and holelike
subbands, the BHZ model is two-dimensional as far as
electrons are concerned. However, each of the four states
forming the low-energy subspace has an associated spinor,
whose six components vary with z. We denote these spinors
as χστ (z), where σ = ± and τ = E1,H1.

Figure 6(a) displays the calculated dependence of EE1 and
EH1 on d and T . It is apparent that EE1 − EH1 increases with
temperature when d < dc, while |EE1 − EH1| decreases with
temperature when d > dc. Hence, the effect of phonons on the
bulk states of CdTe and HgTe favors the normal (i.e., topologi-
cally trivial) ordering between E1 and H1. Accordingly, Fig. 6
c shows that dc(T ) increases with temperature, in agreement
with the result of Sengupta et al. [28]. At any rate, dc(T ) is not
the actual critical thickness because we have yet to consider
the effect of phonons in the low-energy subspace spanned by
{|E1±〉,|H1±〉}.

In order to obtain the actual critical thickness d∗
c , we

evaluate �z(0,iπT ) within the BHZ model, using the T -
and d-dependent band parameters derived above. Owing to
a lack of translational invariance along the growth direction,
the expression for �z differs by a form factor [31] from that
of Eq. (24). This form factor can be derived by recasting the
electron density in Eq. (5) as

ρ(r) = 1

A

∑
k⊥q⊥

∑
ττ ′σσ ′

e−iq⊥·r⊥(χ∗
στ |χσ ′τ ′)c†k⊥στ ck⊥−q⊥σ ′τ ′ , (25)

where A is the area of the sample in the xy plane, k⊥ =
(kx,ky), q⊥ = (qx,qy), r = (r⊥,z) and (χ∗

στ |χσ ′τ ′) is the z-
dependent scalar product between χστ (z) and χ∗

σ ′τ ′(z). A direct
calculation shows that (χ∗

στ |χσ ′τ ′) = (χ∗
στ |χστ )δττ ′δσσ ′ . Then,

the combination of the first line of Eq. (8) with Eq. (25) yields

�z(0,iω) �
∑

q

Fqz

g2
q,eff Mq⊥

(εF + iω − d0,q⊥ )2 − ε2
q⊥

, (26)

where q = (q⊥,qz). The form factor is given by

Fqz
=

∫ ∞

−∞
dzdz′|χ (z)|2|χ (z′)|2e−iqz(z−z′), (27)

where |χ (z)|2 ≡ ∑
τσ (χ∗

στ |χστ ). In the numerical evaluation
of Eq. (26), we sum over the contributions from three
types of electron-phonon interactions: deformation potential
coupling to acoustic phonons, deformation potential coupling
to optical phonons, and polar optical (Fröhlich) coupling. Their
respective numerical values are listed in Appendix B.

The final outcome of our calculation is collected in
Figs. 6(c) and 6(d), which display d∗

c and the renormalized
band gap as a function of T . Despite Re[�z(0,iπT )] < 0,
we find that d∗

c increases with temperature because m(T )
increases rather rapidly with T [cf. Fig. 6(d)]. That is, for
a given quantum well that is topological insulating at T = 0,
increasing temperature produces a crossover into the trivial
phase. Hence the conclusion of Ref. [28] is qualitatively
correct, although it overestimates the increase of the critical
thickness as a function of temperature. In Fig. 6(d), we plot the
temperature dependence of the band gap, E∗

E1 − E∗
H1, which

is experimentally measurable [30]. In the absence of phonon-
induced intersubband transitions, the gap increases linearly
with temperature starting at low temperature. However, the
inclusion of phonon-induced intersubband transitions and
their thermal activation results in a kink in the temperature
dependence of the gap. The experimental observation of this
kink would be an indirect indication of the tendency of phonons
to favor a topological phase within the BHZ model.

In sum, the net outcome of electron-phonon interactions
in HgTe/CdTe quantum wells is to drive the system closer to
the trivial insulating phase. Had we ignored the temperature
dependence of the band parameters of the BHZ model,
we would have wrongly concluded that phonons favor the
topological phase. This is a potentially important lesson
that might also impact the theory of topological Anderson
insulators [9], where the effect of disorder on the bulk states
of CdTe and HgTe has been overlooked.

We close this section with a digression on graphene,
which is another canonical two dimensional Dirac insulator. In
graphene, the topological invariant is encoded in the relative
sign between the masses of the two Dirac fermions located
in the first Brillouin zone. In inversion and time-reversal
symmetric systems, the magnitudes of the two Dirac masses
are the same. Since electron-phonon interactions do not break
any symmetries, they cannot change the sign of one Dirac mass
without simultaneously changing the other. Hence, phonons
cannot change the band topology of inversion-symmetric
graphene. In contrast, phonons can alter the band topology
of graphenelike systems without inversion symmetry [33].
There is yet another difference between the BHZ model for
HgTe/CdTe and the Kane-Mele model [34] for graphene. In
the BHZ model, electron-phonon interactions open a band gap
even when m = 0 because Mk � m + βk2 	= 0 for k 	= 0. In
graphene, phonons change the band gap only if the bare gap is
nonzero to begin with [35], because β = 0 [36]. Incidentally,
these differences are also the reason why strong disorder
drives CdTe/HgTe quantum wells into a topological insulating
phase [9], while it drives graphene into a metallic phase [37].

B. Fingerprints of phonons at the topological phase transition
of BiTl (S1−δSeδ)2

In 2011, ARPES experiments [7] reported evidence for a
topological phase transition in BiTl (S1−δSeδ)2 as a function
of the stoichiometric ratio δ. The material exhibited helical
surface states when δ > δc � 0.5, with the bulk energy gap
closing and reopening as δ was varied. Due to the finite
resolution of ARPES and because of limitations in fine-tuning
δ, the value of δc could not be measured accurately. However,
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the authors reinforced the case for δc � 0.5 via first-principles
electronic structure calculations. Soon afterwards, the same
group completed a more thorough study [19] of δc and
announced an unexpected finding: in-gap states emerged at
δ � 0.4–0.5, prior to the bulk gap closing. Those in-gap states
showed no dispersion along the direction normal to the surface
and displayed the spin helicity characteristic of topological
surface states. The authors speculated on a “topological
proximity effect” as a possible origin of the phenomenon.
In this section, we argue that it may instead be a fingerprint of
electron-phonon interactions.

From the arguments of Sec. IV, we infer that δc (defined
as the stoichiometric ratio for which m∗ = 0) must depend
on the strength of electron-phonon interactions. Moreover,
first-principles electronic structure calculations [32] show that
the conduction band at the X point of the bulk Brillouin
zone is nearly degenerate with the conduction band at the
� point, which in turn suggests that the phonon-induced
renormalization of the band gap can be significant.

Empirically, there are two ways to verify that δc depends
on electron-phonon interactions. On one hand, the measured
value of δc (which inevitably incorporates phonon effects)
should be different from the value predicted by existing ab
initio calculations [32] (which ignore phonons). Admittedly,
electron-phonon interactions are not the only agents that
can shift the value of δc with respect to the noninteracting
case: Coulomb interactions and short-ranged nonmagnetic
disorder may have an impact as well. On the other hand,
if phonons are at play, the measured δc should be strongly
temperature-dependent on the scale of the Debye temperature.
The observation of such temperature-dependence would in
fact be a true smoking gun for phonon-induced effects
in the band topology of BiTl (S1−δSeδ)2, because neither
static disorder nor Coulomb-like electron-electron interactions
should produce a significantly temperature-dependent effect.
Arguably, it is not easy to measure δc(T ) because the thermal
smearing of the quasiparticle bands prevents locating the exact
point where surface states emerge. Nevertheless, it should
be relatively easy to measure the temperature-dependence
of the bulk band gap when δ is sufficiently far from δc.
A phonon-induced reduction of δc would manifest itself
through d|E∗

g |/dT < 0 (if δ � δc) and d|E∗
g |/dT > 0 (if

δ � δc). Instead, if phonons increased δc with respect to the
noninteracting case, the observed temperature-dependence of
the band gap would be of opposite sign.

We model the low-energy electronic structure of BiTl
(S1−δSeδ)2 qualitatively by a lattice version of Eq. (12). Upon
selecting a value of |γ | � |β|, we can partially mimic the
realistic scenario where the conduction band at the Brillouin
zone edge is nearly degenerate with that of the zone center.
The corresponding band structure is shown in Fig. 7. Therein,
we have identified three different regions. When the Fermi
energy is in region I, |γc| < |γ | < |γg| and thus �z > 0 > �′

z.
For the definitions of γc, γg and �′

z, see the caption of
Fig. 5. In this case, phonons favor a trivial insulating phase. In
contrast, in both regions II and III phonons favor a topological
insulating phase. When the Fermi energy is in region II,
|γ | < γc| < |γg| and 0 > �′

z > �z. Since |�z| > |�′
z|, the

Dirac mass renormalizes more strongly than the bulk energy
gap. When the Fermi energy is in region III, |γ | < |γg| < |γc|
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FIG. 7. (Color online) Qualitative modeling of the low-energy
bands [32] of BiTl (S1−δSeδ)2, using the toy model of Eq. (12). The
dashed lines separate three distinct regions of doping, which lead to
three different types of phonon-induced effects. If the Fermi energy
is in region I, phonons favor a topologically trivial phase. If the Fermi
energy is in regions II or III, phonons favor a topological phase.
The “topological proximity effect” of Ref. [19] takes place when the
Fermi energy is in region II. In contrast, a “topological antiproximity
effect” is set to occur when the Fermi energy is in region III.

and 0 > �z > �′
z. Here, the Dirac mass renormalizes less

strongly than the bulk energy gap. The consequences of this
will be discussed below.

Figure 8(c) illustrates the energies of the conduction and
valence band edges [cf. Eq. (20)] as a function of δ, both in
presence and absence of electron-phonon interactions. Clearly,
phonons favor the topological insulating phase. Along the
same line, Fig. 8(d) shows the reduction of δc(T ) as a function
of temperature and predicts the emergence of helical surface
states beyond a crossover temperature, when δ < 0.5.

Throughout these plots, we have extrapolated the experi-
mental data of Ref. [7] into a linear relation between the bare
Dirac mass m (which is half the noninteracting band gap) and
δ. More complicated m(δ) functions would not change our
conclusions qualitatively. In addition, we have neglected the
thermal expansion of the lattice. Thermal expansion renders
all the band parameters of Eq. (12) temperature dependent
even before the inclusion of the electron-phonon self-energy.
In the previous section, we have learned that such “extraneous”
temperature-dependence can potentially revert the trend that
one would have anticipated solely from the calculation of
the self-energy. We justify our approach on the basis that, in
most semiconductors, the contribution of thermal expansion
to band-gap renormalization is small enough that its neglect
poses no risk for qualitative error [38].

We now propose a possible explanation for the “topological
proximity effect” reported in Ref. [19]. Topological surface
states take place when m∗ < 0, while the bulk gap measured
in ARPES corresponds to |E∗

g |. As mentioned in Sec. III,
m∗ 	= E∗

g/2 in presence of interactions. In Figs. 8(a) and 8(b),
we plot m∗ and E∗

g as a function of δ for different electron
densities. Since S and Se belong to the same group in the
periodic table, changing δ does not change the carrier density.
We find that, when the system is neutral or hole-doped [cf.
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FIG. 8. (Color online) (a) and (b) Zero-temperature renormalized
Dirac mass m∗ and half-band-gap E∗

g/2 of BiTl (S1−δSeδ)2 as a
function of δ, when the Fermi energy is (a) in region II and (b) in region
III. The electron and hole densities in (a) and (b) are n = 1019cm−3

and p = 1019cm−3, respectively. In (a), the emergence of topological
surface states precedes the band inversion (“topological proximity
effect”). In (b), the emergence of topological surface states succeeds
the band inversion (“topological antiproximity effect”). (c) Influence
of electron-phonon interactions on the renormalized conduction
and valence band edges. The solid (dashed) lines correspond to
the absence (presence) of electron-phonon interactions. Phonons
decrease the magnitude of the band gap in the trivial phase, while
they enhance it in the topological phase. The mechanism behind
this effect has been explained in Sec. IV. (d) Temperature and density
dependence of the critical stoichiometric ratio. Throughout this figure
we have taken γ = −0.22 eV; all other band and phonon parameters
are the same as in Ref. [10].

Fig. 8(b)], i.e., when the Fermi energy is located in region III,
there exists an interval of δ for which E∗

g < 0 and m∗ > 0. This
is a consequence of 0 < �z < �′

z and it indicates an onset
of topological surface states after (and not simultaneously
with) the occurrence of a band inversion. In contrast, in a
weakly electron-doped system [such that the Fermi energy
is in region II, cf. Fig. 8(a)], we find m∗ < 0 and E∗

g > 0
for δ ∈ (δc,δc + �δ). Assuming a reasonable strength of the
electron-phonon coupling [10], �δ � 0.2, the band gap at
δ = δc is E∗

g � 10 meV and the band broadening due to
electron-phonon interactions remains small. In such scenario,
the onset of topological surface states precedes the occurrence
of a band inversion. These results appear to be consistent
with Ref. [19], whose samples are electron-doped. Coulomb
interactions are unlikely to be responsible for this effect
because their associated self-energy has a weak frequency
dependence. On the other hand, although the disorder self-
energy is frequency dependent, its temperature dependence is
negligible. Hence the observation of a temperature and density
dependent �δ would confirm the key role of phonons.

Finally, we comment on the imaginary part of the self-
energy, which gives the broadening of the renormalized
quasiparticle bands. In order to observe phonon-induced

topological surface states, it is essential that the phonon-
induced broadening of the band gap at k � 0 be small. It
is easy to show that, so long as the width of region II in
Fig. 7 is larger than the characteristic phonon energy scale,
the phonon-induced band broadening of the k = 0 band gap is
negligible. This is the case for the parameter values taken in
Fig. 8.

VI. SUMMARY AND DISCUSSION

Electron-phonon interactions can induce topological insu-
lation in a narrow-gap Dirac material with an intrinsically
trivial electronic structure. The essential ingredients behind
this phenomenon are the following: (i) a direct and small
band gap, (ii) the change in the momentum-space texture
of the band eigenstates from the trivial to the topological
phase, (iii) the conservation of spin and orbital degrees of
freedom in electron-phonon scattering processes involving
long-wavelength phonons, and (iv) the importance of electron-
phonon matrix elements with high momentum transfer (due to
the increased scattering phase-space associated to them.)

Together, these ingredients produce a peculiar outcome;
while the leading electron-phonon matrix elements in a trivial
Dirac insulator are those in which a phonon scatters an
electron within the same band, the dominant matrix elements
in a narrow-gap topological insulator are those in which a
phonon scatters an electron between the conduction and the
valence band. A direct consequence of this peculiarity in the
electron-phonon matrix elements is that the band gap of a
trivial (topological) Dirac insulator decreases (increases) as
temperature is raised. This, in turn, anticipates the emergence
of helical surface states beyond a crossover temperature in a
Dirac insulator with a topologically trivial ground state.

The above mechanism is not exclusive to phonons and
can be transferred to spin-independent disorder and Coulomb
interactions. The large dielectric constant of common Dirac
insulators implies that the effect of Coulomb interactions in
band topology will often be small in comparison to that of
electron-phonon interactions. As for disorder, the signatures of
topological Anderson insulation must be accessed by transport
experiments because it is difficult to measure the band gap as
a function of random impurity concentration. Such transport
experiments are rather contrived due to the unintended bulk
doping that is prevalent in many Dirac materials. In contrast,
measuring the temperature dependence of a bulk band gap
is routine. In sum, the main aspect that sets phonons apart
from other agents is that their influence on band topology is
significantly temperature-dependent.

Signatures of phonon-induced topological insulation have
not yet been confirmed in experiment. What are the materials
to look for and what should be measured? In principle, any
Dirac insulator with a direct and small band gap can display
the phenomenon. A small gap is necessary because otherwise
intraband electron-phonon scattering processes dominate and
lead to a decrease of the band gap regardless of the band
topology. Since the typical electron-phonon self-energies are
∼10–100 meV, the most spectacular phonon effects occur
in the vicinity of a topological phase transition. As of this
writing, there is an increased number of Dirac materials where
experimentalists are able to apply pressure or change the
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stoichiometry continuously in order to tune the band gap from
the trivial to the topological phase, and vice versa. Should the
band gap decrease (increase) with raising temperature in the
trivial (topological) side of the transition, this would confirm
that phonons favor a topological insulating phase. Recent
experiments in BiTl(S1−δSeδ) have reported that topological
surface states emerge at δ = δc − �δ < δc, whereas the bulk
gap closes at δ = δc. Does �δ depend on carrier concentration
and on temperature? As explained in Sec. V B, an affirmative
response would suggest that phonons are behind the observed
effect.

We conclude by assessing the limitations of our theory,
which relies on three assumptions: (i) the lowest conduction
band and the highest valence band are well separated in energy
from the rest of the bands, (ii) short wavelength phonons can be
neglected, and (iii) the leading phonon effects originate from
the coupling between the density of electrons and the lattice
deformation.

The first assumption, which enables the use of low-
energy effective models to arrive at a simple picture of
phonon-induced topological insulation, is often justified in
the vicinity of a topological phase transition. When phonon-
induced transitions to high-energy bands become significant,
we anticipate that a formally similar low-energy effective
model will still be applicable, albeit with renormalized band
parameters. Should this renormalization be strong enough, the
influence of phonons on band topology might be reversed. For
instance, in CdTe/HgTe quantum wells (cf. Sec. V A), the
net effect after including electron-phonon interactions in high
energy bands is that phonons favor the trivial phase.

The neglect of short wavelength phonons and of umklapp
processes (and hence of the Debye-Waller term) has been done
on the basis of simplicity and is nearly universal in textbooks.
Yet, in real materials, the Debye-Waller contribution to band-
gap renormalization may be of the same order as the self-
energy contribution discussed in this work. Recognizing that
Debye-Waller processes involve vertical (zero-momentum-
transfer) interband transitions [16], which should be insensitive
to the occurrence of a band inversion, we speculate that the
Debye-Waller term will renormalize the band gap but not the
Dirac mass (thereby not affecting the band topology).

Finally, the third assumption above ignores phonon-induced
processes that alter electronic hopping amplitudes. Such terms
have been discussed in graphene [39] and can also exist in
Dirac insulators. They can be incorporated into our theory in
an ad hoc fashion by promoting the electron-phonon coupling
from an identity matrix in spin and orbital space to a matrix
with off-diagonal elements. The off-diagonal elements might
lead to phonon-induced trivial insulation. For instance, if a
phonon mode exists which flips the orbital pseudospin, then
this mode will directly oppose phonon-induced topological
insulation. However, it is likely that the off-diagonal matrix
elements of the electron-phonon coupling in the spin and
orbital space are often small compared to the diagonal
elements, much like in graphene.

In the future, it would be desirable to resort to first-
principles calculations that relax our assumptions. Some initial
efforts along this direction are underway [40]. It is our hope that
the basic insights for phonon-induced topological insulation,
unearthed here in the context of a toy model, will remain

relevant after considering the full complexity of the electronic
and phononic band structures.
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APPENDIX A: DEBYE-WALLER CONTRIBUTION

Let us expand the electron-ion potential with respect
to small displacements of the ions from their equilibrium
positions:

Vei

(
r − R(0)

j − Qj

) = Vei

(
r − R(0)

j

) − Qj · ∇Vei

(
r − R(0)

j

)
+ 1

2 (Qj · ∇)2Vei

(
r − R(0)

j

) + · · · .

(A1)

In textbooks [13], only the first-order term in the expansion of
Eq. (A1) is kept, which leads to V (1) [cf. Eq. (8)] in the limit
of long-wavelength phonons, with

gq =
√

�

2ρAV ωq
q · eqVei(q). (A2)

Thereafter, the effect of electron-phonon interactions on physi-
cal observables is computed through second order perturbation
theory in V (1). The term of order Q2 in Eq. (A1) is ignored
in textbooks. However, if treated in first-order perturbation
theory, it contributes at the same order as the perturbation
kept in textbooks. This contribution receives the name of
“Debye-Waller term.” In this appendix, we show that the
Debye-Waller term vanishes in the limit of long-wavelength
phonons.

Following the same steps [13] as in the derivation ofV (1), the
electron-phonon interaction emerging from the O(Q2) term in
Eq. (A1) can be written as

V (2) = 1

2

∑
k,q,G

ρq+GVei(q + G)[(q + G) · ek][(q + G) · ek−q]

×
√

�

2ρAV ωk

√
�

2ρAV ω−k+q
(ak+a

†
−k)(a−k+q+a

†
k−q),

(A3)

where G is a reciprocal lattice vector. If the short-wavelength
phonons are neglected (which implies keeping only the G = 0
term [13] in the sum of Eq. (A3)), then Eq. (A3) reduces to the
second line of Eq. (8), with

λkq =
√

�

2ρAV ωk

√
�

2ρAV ω−k+q
Vei(q)(q · ek) (q · ek−q).

(A4)
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The change in the electronic structure due to V (2) involves the
following expectation value of the phonon operators:

〈(ak + a
†
−k)(a−k+q + a

†
k−q)〉 = 〈aka

†
k−q + a

†
−ka−k+q〉 ∝ δq,0.

Since λkq = 0 for q = 0, it follows that V (2) makes a vanishing
contribution to the renormalized electronic energy levels. This
conclusion does not hold when G 	= 0 terms are kept in
Eq. (A3).

For completeness, we show an alternative derivation for
the vanishing of the Debye-Waller term. Following the
work of Allen and Cardona in Ref. [16], the Debye-Waller
term involves a vertical interband matrix element of the
type

〈
ψkn

∣∣∣∣∂Vei(r − R)

∂R

∣∣∣∣ψkn′

〉

= i
∑

k′
k′Vei(k′)e−ik′ ·R

∫
all

dr ψ∗
kn(r)ψkn′(r)eik′ ·r

= i
∑

G

G Vei(G)
∫

cell
dr eiG·ru∗

kn(r)ukn′(r),

where R is the ion coordinate and the spatial integrals in
first and second equalities are over the entire crystal and
over the unit cell, respectively. In addition, we have used the
Bloch’s theorem: ψkn(r) = exp(ik · r)ukn(r). If the eigenstates
are plane waves, the spatial integration selects G = 0 and the
matrix element vanishes. Even for non-plane-wave eigenstates,
the G = 0 term is clearly zero. Neglecting G 	= 0 terms (and
hence ignoring the Debye-Waller term) is justified if the
electron-ion potential changes slowly in space (which is the
case in the deformation potential approximation) and/or if the
Bloch eigenstates are approximately plane waves (which is an
acceptable approximation for some simple metals, though not
for most semiconductors).

APPENDIX B: ELECTRON-PHONON COUPLING
PARAMETERS FOR HGTE/CDTE QUANTUM WELLS

For reference, in this appendix, we list the various types
of gq that were used in Sec. V A. Since we are interested in
long-wavelength phonons and since the quantum well states
have no degeneracies beyond the standard spin degeneracy,
we consider the coupling to longitudinal modes only. Because
crystals with zinc-blend structure contain two atoms per unit
cell, we consider one longitudinal acoustic phonon and one
longitudinal optical phonon. The optical phonon can couple to
electrons through deformation potential and through Fröhlich-
type interaction. The numerical parameters are quoted from
Ref. [41].

In the case of deformation potential coupling to longitudinal
acoustic phonons,

gq =
√

�C2
acq

2

2ρAV ωq
, (B1)

where ρA = 8100 kg/m3 is the atomic mass density, Cac =
5 eV is the acoustic deformation potential coupling constant,
ωq = csq is the phonon frequency, and cs = 2100 m/s is the
sound velocity.

In the case of deformation potential coupling to nonpolar
optical phonons,

gq =
√

�C2
op

/
a2

2ρAV ω0
, (B2)

where Cop = 20 eV is the optical deformation potential, ω0 =
17 meV is the optical phonon frequency, and a � 0.646 nm
is the lattice constant for HgTe. In the case of the Fröhlich
coupling to polar optical phonons,

gq =
√

e2�ω0

V q2

(
1

ε∞
− 1

ε0

)
, (B3)

where ε∞ = 14 and ε0 = 20 are high-frequency and static
dielectric constants (in units of vacuum permittivity).
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