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The recent observation of charge fractionalization in single Tomanga-Luttinger liquids (TLLs) [H. Kamata
et al., Nat. Nanotechnol. 9, 177 (2014)] opens new routes for a systematic investigation of this exotic quantum
phenomenon. In this Rapid Communication we perform measurements on two adjacent TLLs and put forward
an accurate theoretical framework to address the experiments. The theory is based on the plasmon scattering
approach and can deal with injected charge pulses of arbitrary shape in TLL regions. We accurately reproduce
and interpret the time-resolved multiple fractionalization events in both single and double TLLs. The effect of
intercorrelations between the two TLLs is also discussed.
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Introduction. When electrons are confined in one spatial
dimension the traditional concept of Fermi-liquid quasiparti-
cles breaks down [1–3]. The Fermi surface collapses and the
elementary excitations become collective modes of bosonic
nature [4]; these are two distinctive features of the so-
called Tomonaga-Luttinger liquid (TLL) [5,6]. A paradigmatic
example of TLL is the edge state of a quantum Hall system, typ-
ically created on contiguous boundaries of two-dimensional
semiconductor heterostructures [7]. Here the properties of the
TLL can be tuned by varying the gate voltage [8], the magnetic
field, the filling factor ν [7], and electrostatic environment of
the channel [9,10]. Spatially separated TLLs with opposite
chirality can be realized in systems with ν > 1, and as a result
of strong correlations, charge fractionalization occurs [11,12].
According to the plasmon scattering theory [13,14] an electron
injected into a TLL region undergoes multiple reflections
from one edge of the sample to the other. A fraction r

(dependent on the TLL parameter g) of the injected charge Q is
reflected back in the adjacent edge, and the remaining fraction
1 − r is transmitted forward through the same edge. This
fractionalization is a transient effect [13–21]. Due to charge
compensations occurring at every fractionalization a full
charge Q is transmitted in the long-time limit. Therefore, only
time-resolved (or finite frequency) experiments could detect
the value of the fractional charge rQ. The first conclusive evi-
dence of transient fractionalization was reported only recently
by means of time-resolved transport measurements of charge
wave packets [22]. This provides complementary evidence of
fractionalization seen in shot-noise measurements [19–21,23],
frequency-domain experiments [24], and momentum-resolved
spectroscopy [25].

In this Rapid Communication we implement the technique
developed in Ref. [22] to perform transport measurements
across two spatially separated TLLs and highlight the effect
of inter-TLL interactions. Furthermore, we put forward a the-
oretical framework to calculate the evolution of wave packets
of arbitrary shape scattering against multiple noninteracting-
liquid/TLL interfaces arranged in different geometries. By
a proper treatment of the boundary conditions we are able

to make direct comparisons with the measured signal. All
features of the transient current are correctly captured both in
the single and double TLL systems.

Experimental setup. Figure 1 shows the sample patterned on
a GaAs/AlGaAs heterostructure with chiral one-dimensional
edge channels formed along the edge of the two-dimensional
electronic system (2DES) in a strong perpendicular magnetic
field B. Artificial TLL can be formed in a pair of coun-
terpropagating edge channels along both sides of a narrow
gate metal [22]. Other unpaired channels are considered as
noninteracting (NI) leads. Two types of TLL regions were
investigated: type-I TLL, with NI leads on both ends, and
type-II TLL, with NI leads only on the left and a closed
end on the right. We can selectively activate one or both the
TLL regions by applying appropriate voltages (VG1 and VG2).
A nonequilibrium charge wave packet of charge Q � 150e

is generated by depleting electrons around an injection gate
with a voltage step applied on the gate. The wave packet
travels along a NI lead as shown in Fig. 1, and undergoes
charge fractionalization processes at the left and right ends
of the TLL regions. The multiple charge fractionalization
processes must be investigated separately. The reflected wave
packet appears on another NI lead, on which a time-resolved
charge detection scheme is applied with a quantum point
contact (QPC) detector [8]. We have successfully resolved the
reflected wave packets of charge Q

(refl)
1 fractionalized at the

left boundary and Q
(refl)
2 at the right boundary. Typical wave

forms are shown by dots in Figs. 3 and 4. The fractionalization
ratio r , which is related to the TLL parameter g through
g = (1 − r)/(1 + r), can be extracted from r = Q

(refl)
1 /Q and

is found to be approximately g = 0.92 [22]. The charge
velocity in the TLL region can be measured from the time
interval between the two reflected wave packets. The interest
in activating both type-I and -II regions is to assess the role of
the long-range Coulomb interaction between the two TLLs.

Model and formalism. To model the setup of Fig. 1 we
consider two parallel chiral edges hosting right- (R) and
left-(L) moving electrons (see Fig. 2). Electrons with opposite
chirality experience a space-dependent repulsion V (x). In the
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FIG. 1. (Color online) Optical micrograph of the sample (the
horizontal white line indicates that unused parts are not shown). Metal
gate electrodes (gold regions) are patterned on a 2DES (light-gray
region) and etched insulating GaAs (dark-gray regions). The 2DES
located 90 nm below the surface has a density of 1.45 × 1011 cm−2

and a low-temperature mobility of 4.0 × 105 cm2 V−1 s−1. Chiral
one-dimensional edge channels are formed along the edge of the
2DES in a strong perpendicular magnetic field B = 4.0 T, which
corresponds to a bulk filling factor ν = 1.5. Type-I and type-II
TLL regions have an effective length of �1 = 68 and �2 = 80 μm,
respectively, and a width of 1 μm. The charge wave packet is injected
at the falling edge of a voltage step 5 mV in amplitude applied to
an injection gate Vinj. The QPC detector is set at the pinched-off
regime, and one of the gate voltages is modulated by a voltage pulse
Vdet of height 0.2 V for a period of 80 ps to temporally enhance the
transmission probability of the QPC. The average current I through
the QPC as a function of time interval t between two voltage pulses is
measured at the detection Ohmic contact �det under the pulse pattern
repeated at 25 MHz. All measurements were carried out at ∼300 mK.

FIG. 2. (Color online) Model of the experimental setup. The
wave packet is injected from the R edge (dashed circle). The figure
shows a snapshot of the fractionalized charge when the injected wave
packet has passed the TLL region. Transmitted packets are dark (blue)
and reflected packets are light (red). Type-I geometry (a): R and L

edges with NI regions for x < 0 and x > �, and activated TLL region
for 0 < x < �. Type-II geometry (b): A single bent edge with NI
regions for x < 0, and activated TLL region for 0 < x < �.

regions where V (x) = 0 we have a NI liquid and otherwise,
V (x) = V , a TLL is formed. For electrons with the same
chirality an additional repulsion U (x) = U in the NI liquid and
U (x) = U ∗ in the TLL is included. Spatial inhomogeneities
in V (x) induce backscattering from the R to the L edge (and
vice versa) even without an interedge hopping [13,14]. The
low-energy Hamiltonian of the system reads [7]

Ĥ =
∑

α=L,R

iαvF

∫
dx ψ̂†

α(x)∂xψ̂α(x)

+ 2π

∫
dx

{
V (x) n̂R(x)n̂L(x) + U (x)

2

[
n̂2

R(x) + n̂2
L(x)

]}
,

(1)

where the fermion field ψ̂
(†)
R/L destroys (creates) R/L edge-

state electrons moving with bare Fermi velocity αvF ≡ ±vF ,
and n̂α ≡ : ψ̂†

αψ̂α : is the density fluctuation operator. For
a nonperturbative treatment of the interaction we bosonize
the field operators as ψ̂α(x) = ηα√

2πa
e−2

√
π iφ̂α(x), with ηα the

anticommuting Klein factor, a a short-distance cutoff, and
φ̂α(x) the chiral boson fields. The density can then be expressed
as n̂α = −∂xφ̂α/

√
π. By introducing the auxiliary fields φ̂ =

φ̂L + φ̂R and θ̂ = φ̂L − φ̂R , Eq. (1) becomes [1]

Ĥ = 1

2

∫
dx

{
v(x)

g(x)
[∂xφ̂(x)]2 + v(x)g(x)[∂xθ̂ (x)]2

}
, (2)

where for a TLL region of length � the parameter g(x) and the
renormalized velocity v(x) depend on the interactions through
the relations

g(x) =
{√

vF +U∗−V
vF +U∗+V

≡ g for 0 < x < �

1 otherwise,
(3)

v(x) =
{√

(vF + U ∗)2 − V 2 ≡ v∗ for 0 < x < �

vF + U ≡ v otherwise.

The temporal evolution of the system is governed by the
equation of motion for φ̂ [26]. Taking the average φ(x,t) ≡
〈φ̂(x,t)〉 over an arbitrary wave-packet state we find

d2

dt2
φ(x,t) = v(x)g(x)∂x

(
v(x)

g(x)
∂xφ(x,t)

)
, (4)

which implies that φ and v(x)
g(x)∂xφ are continuous for all x.

For independent channels, as those of the type-I geometry
illustrated in Fig. 2, these are the only conditions to impose on
the solution of Eq. (4) [10,13,27]. On the other hand, for the
type-II geometry one has to further impose that R electrons are
converted into L electrons and vice versa, i.e., that the channels
are not independent. The proper treatment of boundary
conditions, absent in previous works, leads to a qualitatively
different transient fractionalization since the transmission and
reflection coefficients are entangled. Once φ(x,t) is known
the total density and current are extracted from ρ(x,t) =
e〈n̂(x,t)〉 = −e∂xφ(x,t)/

√
π and j (x,t) = e∂tφ(x,t)/

√
π .

We consider an incident wave packet injected in the upper
R edge (see Fig. 2). Then the solution of Eq. (4) can be
expanded in right-moving scattering states sq(x) of energy
εq = vq according to φ(x,t) = ∫ ∞

−∞
dq

2π
φqsq(x)e−iεq t [28]. For
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a wave packet initially, say at time t = 0, localized in x < 0
the function φq is related to the Fourier transform ρ(inc)

q

of ρ(inc)(x) = ρ(x,0) by the relation φq = i
√

π

eq
ρ(inc)

q [29].
Therefore, once sq(x) is known the time-dependent density
and current are given by

ρ(x,t) = −i

∫ ∞

−∞

dq

2π

ρ(inc)
q

q
e−iεq t ∂xsq(x),

(5)

j (x,t) = v

∫ ∞

−∞

dq

2π
ρ(inc)

q e−iεq t sq(x).

Below we solve the scattering problem in the geometries of
the experiment.

Type-I geometry. This geometry is illustrated in Fig. 2(a)
and has been realized in Ref. [22]. We look for scattering states
of the form

sq(x) =
⎧⎨
⎩

eiqx + rqe
−iqx for x < 0

aqe
iq ′x + bqe

−iq ′x for 0 < x < �

tqe
iqx for x > � ,

(6)

with q ′ = v
v∗ q. By imposing the continuity conditions at the

boundaries we obtain a 4 × 4 linear system [26] that we solve
exactly. If we are interested in the current detected at the
collector (located in x < 0) only the reflection coefficient rq

is needed [30]:

rq = −r + 4g

∞∑
n=1

ζne
2inq ′�, (7)

where g± = 1 ± g, r = g−
g+

, and ζn = g2n−1
−

g2n+1
+

. Inserting this

expression in Eq. (5) the time-dependent density and current
for x < 0 read [31]

ρ(x,t) = ρ(inc)(x−) + ρ(refl)(x+),
(8)

j (x,t) = v[ρ(inc)(x−) − ρ(refl)(x+)],

with x± = x ± vt , xn = 2n�v
v∗ , and

ρ(refl)(x+) = rρ(inc)(−x+) − 4g

∞∑
n=1

ζnρ
(inc)(−x+ + xn). (9)

Equation (9) generalizes the result of Ref. [13] to arbitrary
wave-packet shapes. The first reflection occurs at time t1 =
|x0|/v (x0 < 0 being the initial position of the wave packet)
at the left boundary and a fractionalized charge Q

(refl)
1 = rQ

is reflected back in the L edge [here Q = ∫
dx ρ(inc)(x)]. The

transmitted fractional charge propagates in the TLL region, a
second reflection occurs at the right boundary, and at time
t2 = t1 + 2�/v∗ a second wave packet of charge Q

(refl)
2 =

−Q(4gg−/g3
+) = −Qr(1 − r2) appears in the L edge. The

fractionalization sequence continues ad infinitum and the
reflected charge Q(refl)

n diminishes at each event. At the end
of the infinite sequence the total reflected charge vanishes
since Q(refl) = ∑∞

n=1 Q(refl)
n = −r − 4g

∑∞
n=1 ζn = 0. This is

a consequence of the chiral charge conservation and highlights
the transient nature of the fractionalization phenomenon. For
the comparison with the experiment we acquire ρ(inc)(x0 − vt)
from Ref. [22] (see inset in Fig. 3) and used g = 0.92,
� = �1 = 68 μm, and v∗ = 150 km/s and estimated v by a
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FIG. 3. (Color online) Type-I geometry: Calculated current
(black curve) from Eqs. (8) and (9) versus measured current (dotted-
red curve) from Ref. [22]. The inset shows the incident wave form
vρ(inc).

best fitting. As shown in Fig. 3 the agreement with the current
calculated from Eq. (8) is remarkably good.

Type-II geometry. Here a single edge is bent on itself as
illustrated in Fig. 2(b). Therefore R electrons in the upper
branch are converted in L electrons in the lower branch. We
model this geometry by imposing that the L amplitude bq of
the scattering state in the TLL region equals −aqe

2iq ′� [26].
Following the same line of reasoning as before we find the
reflection coefficient

rq = −r + 4g

∞∑
n=1

ξne
2inq ′�, (10)

with ξn = (−1)n gn−1
−

gn+1
+

. We observe that |rq | = 1 as it should due

to charge conservation. The density and current at the collector
in x < 0 are still given by Eq. (8) but the reflected density reads

ρ(refl)(x+) = rρ(inc)(−x+) − 4g

∞∑
n=1

ξnρ
(inc)(−x+ + xn). (11)
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FIG. 4. (Color online) Type-II geometry: Calculated current
(black curve) from Eqs. (8) and (11) versus measured current
(dotted-red curve) from Ref. [22].
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Expt.

FIG. 5. (Color online) Measured current (dotted-red curve) from
TLL-I when both TLL-I and TLL-II are activated versus calculated
current with g = 0.92 (black dashed curve) and g = 0.87 (black solid
curve). The inset shows a cartoon of the fractionalization process. The
velocities in TLL-I and TLL-II are different (with VG1 = −0.19 V
and VG2 = −1.4 V) in order to isolate four fractionalized wave
packets.

In Fig. 4 we show the calculated (black curve) and mea-
sured [22] (dotted-red curve) current in the lower branch. The
parameters are the same as in Fig. 3 with the only difference
that � = �2 = 80 μm. Again, good agreement between theory
and experiment is found. The theory reproduces a small first
reflection of charge rQ (occurring at time t1) and a subsequent
large transmitted charge (4g/g2

+)Q (occurring at time t2).
Type-I + type-II geometry. Finally we present numerical

and experimental results when both type-I and type-II TLLs are
activated. As illustrated in Fig. 1 the wave packet injected into
TLL-II is partially transmitted toward TLL-I and the resulting
reflected wave packet is then measured at the collector. The
measured signal is displayed in Fig. 5 (dotted red curve).
The simultaneous activation of TLL-I and TLL-II produces a
richer current pattern characterized by an additional peak and
dip. These extra structures are naturally interpreted within our
theory. The reflected wave packet is given by ρ(refl)(x+) with
only TLL-I activated by replacing ρ(inc)(x) in Eq. (8) with the
outcome ρ(x−) obtained by a preliminary calculation with only
TLL-II activated. TLL-II alone produces a wave form similar
to the incident one, with the addition of a small side peak of

weight r on the left (see Fig. 4). The temporal delay between
the peaks is �tII = 2�2/v

∗
II, where v∗

II is the renormalized
velocity inside TLL-II. When this double-peaked wave packet
enters TLL-I the reflected current displays a first replica of
the incident shape with positive weight r and a second replica
of the incident shape with negative weight −r(1 − r2), as we
demonstrated in Fig. 3. The delay between the two replicas
is �tI = 2�1/v

∗
I , v∗

I being the renormalized velocity inside
TLL-I. This explains the experimentally observed pattern of
Fig. 5 (the inset shows a cartoon of this double fractionalization
process).

The calculated reflected current is shown in Fig. 5 for
comparison. From �tI(II) = �1(2)/v

∗
I(II) with �tI ≈ 1.0 ns and

�tII ≈ 0.5 ns we estimated v∗
I ≈ 136 km/s, v∗

II ≈ 320 km/s,
and v by a best fitting. The value g = 0.92 (black dashed curve)
is probably too large as the additional peak and dip are almost
invisible. We therefore repeated the calculation with g = 0.87
(black solid curve) to match the height of the positive main
peak and found that the additional peak and dip are correctly
more pronounced. The physical justification of a smaller g is
elaborated in the conclusions.

Conclusions. We extended the plasmon scattering approach
to address the charge fractionalization phenomenon recently
observed in artificial TLLs of different geometries [22]. The
method allows us to monitor the temporal evolution of a
charge wave packet in each chiral edge of the experimental
setup, thus providing a tool for a direct comparison with the
time-resolved transport measurement. Quantitative agreement
between theory and experiment is obtained for the type-I and
type-II geometries. We then performed new measurements in
a double-TLL geometry and found indications that electron
correlations are enhanced due to the repulsion between
electrons in different TLLs. Our calculations neglect the
inter-TLL repulsion and the enhancement of correlations is
effectively accounted for by a reduced TLL parameter g.
The proper inclusion of the long-range interaction across
the bulk two-dimensional electron gas is eventually required
for the ultimate understanding of the transport properties of
interacting edge channels.
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B 66, 035313 (2002).

[13] I. Safi and H. J. Schulz, Phys. Rev. B 52, R17040 (1995).

201413-4

http://dx.doi.org/10.1088/0022-3719/14/19/010
http://dx.doi.org/10.1088/0022-3719/14/19/010
http://dx.doi.org/10.1088/0022-3719/14/19/010
http://dx.doi.org/10.1088/0022-3719/14/19/010
http://dx.doi.org/10.1143/ptp/5.4.544
http://dx.doi.org/10.1143/ptp/5.4.544
http://dx.doi.org/10.1143/ptp/5.4.544
http://dx.doi.org/10.1143/ptp/5.4.544
http://dx.doi.org/10.1063/1.1704046
http://dx.doi.org/10.1063/1.1704046
http://dx.doi.org/10.1063/1.1704046
http://dx.doi.org/10.1063/1.1704046
http://dx.doi.org/10.1103/RevModPhys.75.1449
http://dx.doi.org/10.1103/RevModPhys.75.1449
http://dx.doi.org/10.1103/RevModPhys.75.1449
http://dx.doi.org/10.1103/RevModPhys.75.1449
http://dx.doi.org/10.1103/PhysRevB.81.085329
http://dx.doi.org/10.1103/PhysRevB.81.085329
http://dx.doi.org/10.1103/PhysRevB.81.085329
http://dx.doi.org/10.1103/PhysRevB.81.085329
http://dx.doi.org/10.1103/PhysRevB.84.045314
http://dx.doi.org/10.1103/PhysRevB.84.045314
http://dx.doi.org/10.1103/PhysRevB.84.045314
http://dx.doi.org/10.1103/PhysRevB.84.045314
http://dx.doi.org/10.1103/PhysRevB.88.235409
http://dx.doi.org/10.1103/PhysRevB.88.235409
http://dx.doi.org/10.1103/PhysRevB.88.235409
http://dx.doi.org/10.1103/PhysRevB.88.235409
http://dx.doi.org/10.1103/PhysRevB.61.16397
http://dx.doi.org/10.1103/PhysRevB.61.16397
http://dx.doi.org/10.1103/PhysRevB.61.16397
http://dx.doi.org/10.1103/PhysRevB.61.16397
http://dx.doi.org/10.1103/PhysRevB.66.035313
http://dx.doi.org/10.1103/PhysRevB.66.035313
http://dx.doi.org/10.1103/PhysRevB.66.035313
http://dx.doi.org/10.1103/PhysRevB.66.035313
http://dx.doi.org/10.1103/PhysRevB.52.R17040
http://dx.doi.org/10.1103/PhysRevB.52.R17040
http://dx.doi.org/10.1103/PhysRevB.52.R17040
http://dx.doi.org/10.1103/PhysRevB.52.R17040


RAPID COMMUNICATIONS

TIME-RESOLVED CHARGE FRACTIONALIZATION IN . . . PHYSICAL REVIEW B 89, 201413(R) (2014)

[14] I. Safi, Ann. Phys. 22, 463 (1997).
[15] M. J. Salvay, H. A. Aita, and C. M. Naón, Phys. Rev. B 81,

125406 (2010).
[16] E. Perfetto, G. Stefanucci, and M. Cini, Phys. Rev. Lett. 105,

156802 (2010).
[17] M. J. Salvay, A. Iucci, and C. M. Naón, Phys. Rev. B 84, 075482

(2011).
[18] E. Perfetto, M. Cini, and S. Bellucci, Phys. Rev. B 87, 035412

(2013).
[19] B. Trauzettel, I. Safi, F. Dolcini, and H. Grabert, Phys. Rev. Lett.

92, 226405 (2004).
[20] E. Berg, Y. Oreg, E.-A. Kim, and F. von Oppen, Phys. Rev. Lett.

102, 236402 (2009).
[21] I. Neder, Phys. Rev. Lett. 108, 186404 (2012).
[22] H. Kamata, N. Kumada, M. Hashisaka, K. Muraki, and

T. Fujisawa, Nat. Nanotechnol. 9, 177 (2014).
[23] H. Inoue, A. Grivnin, N. Ofek, I. Neder, M. Heiblum,

V. Umansky, and D. Mahalu, arXiv:1310.0691.
[24] E. Bocquillon, V. Freulon, J. M. Berroir, P. Degiovanni,

B. Plaais, A. Cavanna, Y. Jin, and G. Fve, Nat. Commun. 4,
1839 (2013).

[25] H. Steinberg, G. Barak, A. Yacoby, L. N. Pfeiffer, K. W.
West, B. I. Halperin, and K. Le Hur, Nat. Phys. 4, 116
(2007).

[26] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.89.201413 for details on the explicit
solution of Eq. (4) in the different geometries.

[27] M. Horsdal, M. Rypestøl, H. Hansson, and J. M. Leinaas, Phys.
Rev. B 84, 115313 (2011).

[28] For an incident wave packet injected from x = −∞ in the lower
L edge e−iεq t → eiεq t .

[29] The property that the expansion coefficients of ρ(inc)(x) are the
same in the scattering-state basis and in the plane-wave basis is
crucial to perform the q integral in Eqs. (5). This property can
be checked by calculating ρ(inc)(x) for all x (see Ref. [26]).

[30] To evaluate ρ and j in x > 0 the expressions of aq, bq , and tq

are needed [26].
[31] Within our convention the current j carried by an excess of

left-moving electrons is negative. Thus in order to compare the
theoretical results with the experiment in Ref. [22], in producing
the plots we have to revert the “−” sign appearing in the second
lines of Eqs. (8).

201413-5

http://dx.doi.org/10.1051/anphys:199705001
http://dx.doi.org/10.1051/anphys:199705001
http://dx.doi.org/10.1051/anphys:199705001
http://dx.doi.org/10.1051/anphys:199705001
http://dx.doi.org/10.1103/PhysRevB.81.125406
http://dx.doi.org/10.1103/PhysRevB.81.125406
http://dx.doi.org/10.1103/PhysRevB.81.125406
http://dx.doi.org/10.1103/PhysRevB.81.125406
http://dx.doi.org/10.1103/PhysRevLett.105.156802
http://dx.doi.org/10.1103/PhysRevLett.105.156802
http://dx.doi.org/10.1103/PhysRevLett.105.156802
http://dx.doi.org/10.1103/PhysRevLett.105.156802
http://dx.doi.org/10.1103/PhysRevB.84.075482
http://dx.doi.org/10.1103/PhysRevB.84.075482
http://dx.doi.org/10.1103/PhysRevB.84.075482
http://dx.doi.org/10.1103/PhysRevB.84.075482
http://dx.doi.org/10.1103/PhysRevB.87.035412
http://dx.doi.org/10.1103/PhysRevB.87.035412
http://dx.doi.org/10.1103/PhysRevB.87.035412
http://dx.doi.org/10.1103/PhysRevB.87.035412
http://dx.doi.org/10.1103/PhysRevLett.92.226405
http://dx.doi.org/10.1103/PhysRevLett.92.226405
http://dx.doi.org/10.1103/PhysRevLett.92.226405
http://dx.doi.org/10.1103/PhysRevLett.92.226405
http://dx.doi.org/10.1103/PhysRevLett.102.236402
http://dx.doi.org/10.1103/PhysRevLett.102.236402
http://dx.doi.org/10.1103/PhysRevLett.102.236402
http://dx.doi.org/10.1103/PhysRevLett.102.236402
http://dx.doi.org/10.1103/PhysRevLett.108.186404
http://dx.doi.org/10.1103/PhysRevLett.108.186404
http://dx.doi.org/10.1103/PhysRevLett.108.186404
http://dx.doi.org/10.1103/PhysRevLett.108.186404
http://dx.doi.org/10.1038/nnano.2013.312
http://dx.doi.org/10.1038/nnano.2013.312
http://dx.doi.org/10.1038/nnano.2013.312
http://dx.doi.org/10.1038/nnano.2013.312
http://arxiv.org/abs/arXiv:1310.0691
http://dx.doi.org/10.1038/ncomms2788
http://dx.doi.org/10.1038/ncomms2788
http://dx.doi.org/10.1038/ncomms2788
http://dx.doi.org/10.1038/ncomms2788
http://dx.doi.org/10.1038/nphys810
http://dx.doi.org/10.1038/nphys810
http://dx.doi.org/10.1038/nphys810
http://dx.doi.org/10.1038/nphys810
http://link.aps.org/supplemental/10.1103/PhysRevB.89.201413
http://dx.doi.org/10.1103/PhysRevB.84.115313
http://dx.doi.org/10.1103/PhysRevB.84.115313
http://dx.doi.org/10.1103/PhysRevB.84.115313
http://dx.doi.org/10.1103/PhysRevB.84.115313



