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We study the effect of interactions on two-dimensional fermionic symmetry-protected topological (SPT) phases
using the recently proposed braiding statistics approach. We focus on a simple class of examples: superconductors
with a Z2 Ising symmetry. Although these systems are classified by Z in the noninteracting limit, our results
suggest that the classification collapses to Z8 in the presence of interactions—consistent with previous work
that analyzed the stability of the edge. Specifically, we show that there are at least eight different types of Ising
superconductors that cannot be adiabatically connected to one another, even in the presence of strong interactions.
In addition, we prove that each of the seven nontrivial superconductors have protected edge modes.
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Introduction. Recently it has become apparent that general-
izations of topological insulators [1–7] known as “symmetry-
protected topological (SPT) phases”[8–17] can be realized
in large classes of interacting boson and fermion systems.
Loosely speaking, SPT phases are characterized by two proper-
ties. First, they support robust gapless boundary modes which
are protected by certain symmetries. Second, SPT phases can
be adiabatically connected to a “trivial state” (i.e., an atomic in-
sulator or product state) if the relevant symmetries are broken.
While significant progress has been made in understanding
SPT phases in one-dimensional (1D) systems [9,10,14–18],
less is known about the higher dimensional case. Several
approaches have been developed to understand these higher
dimensional systems. One approach, which applies to bosonic
SPT phases in general spatial dimension, is the cohomology
classification scheme of Refs. [11–13]. Another approach,
which applies to bosonic or fermionic two-dimensional (2D)
SPT phases with chiral boson edge modes, is to study the
edge theories of these systems using the K-matrix formalism
[19–21].

In this Rapid Communication, we discuss a third approach
which was introduced in Ref. [22] and applies to 2D SPT
phases with unitary symmetry groups. The key idea behind
this method is to study SPT phases by “gauging” their
symmetries—i.e., coupling them to an appropriate gauge
field, thereby transforming their global symmetries into gauge
symmetries. One can then probe the structure of the original
SPT phases by constructing the excitations of the gauged
systems and computing their quasiparticle braiding statistics.
This approach has several nice features. First, it provides
a simple way to distinguish different SPT phases: if two
gauged systems have different quasiparticle statistics, then it
is clear that the corresponding “ungauged” systems cannot
be adiabatically connected without breaking the symmetry.
Second, it gives insight into the stability of the edge: As shown
in Ref. [22], the quasiparticle braiding statistics of the gauged
system can be used to prove the existence of protected edge
modes.

While Ref. [22] focused on bosonic SPT phases, here we
explore the fermionic case—a problem of particular interest
because the classification of interacting fermionic SPT phases

is not understood beyond 1D (although an interesting attempt
was made in Ref. [23]). We focus on a simple class of
examples: 2D superconductors with a Z2 Ising symmetry. It
was previously conjectured [24–26] that while these systems
are classified by an integer invariant Z in the noninteracting
limit, the classification collapses to Z8 when interactions are
included. This claim was supported by an analysis of edge
instabilities which established an upper bound of at most
eight phases with protected gapless edge modes. Here we
derive a lower bound for the classification, using both bulk
and edge arguments. First, we show that there are at least
eight different types of Ising superconductors that cannot be
adiabatically connected to one another, even in the presence
of strong interactions. Second, we prove that each of the seven
nontrivial superconductors have protected edge modes.

Pseudospin notation. We begin with some notation. Con-
sider a general fermion system with an on-site, unitary Z2

symmetry S. Without loss of generality, we can assume that
the Hamiltonian is built out of fermion operators that have a
definite parity under S [27]. We will label the operators that
are even under S with a pseudospin index ↑ and operators that
are odd under S with an index ↓. In this notation, the system
is composed of two species of fermions, c↑ and c↓, where

Sc↑S−1 = c↑; Sc↓S−1 = −c↓. (1)

In addition to the above Z2 symmetry, locality dictates that
the system must also conserve fermion parity Pf , defined by

Pf c↑P −1
f = −c↑; Pf c↓P −1

f = −c↓. (2)

Putting these two constraints together, we can see that
the pseudospin-↑ and pseudospin-↓ fermions are separately
conserved modulo 2.

The noninteracting limit. We next review the classification
of noninteracting fermion SPT phases with Z2 Ising symmetry.
The key observation is that quadratic pseudospin mixing terms,
e.g., c

†
↑c↓, are prohibited by the Z2 symmetry. Therefore

the c↑ and c↓ fermions are completely decoupled in the
noninteracting limit. Applying the known integer classification
of 2D topological superconductors [28,29], it follows that the
different free fermion phases are classified by a pair of integers
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ν = 0 1 e↑ m↑ e↓ m↓ e↑e↓ m↑m↓ ε↑ε↓ e↑m↓ m↑e↓ ε↑ ε↓ e↑ε↓ ε↑e↓ m↑ε↓ ε↑m↓

ν = 8 1 e↑ε↓ m↑ε↓ ε↑e↓ ε↑m↓ m↑m↓ e↑e↓ ε↑ε↓ m↑e↓ e↑m↓ ε↑ ε↓ e↑ e↓ m↑ m↓

(ν↑,ν↓). Here, (ν↑,ν↓) ∈ Z2 corresponds to a phase where the
pseudospin-↑ and pseudospin-↓ fermions form two decoupled
topological superconductors with ν↑ and ν↓ chiral Majorana
edge modes, respectively. (The sign of ν↑,ν↓ indicates the
chirality of the edge mode—left or right moving). In this
Rapid Communication, we only consider a subset of the above
phases—namely, those satisfying ν↑ = −ν↓. The reason for
this restriction is that our definition for SPT phases requires
that they be adiabatically connected to a trivial band insulator
if the symmetry is broken, and only phases with ν↑ = −ν↓
obey this condition. Hence, according to our definition, the
noninteracting SPT phases are classified by a single integer
ν = ν↑ = −ν↓.

The effect of interactions. We now investigate how this
classification changes when we include interactions. In prin-
ciple, the addition of interactions can have two effects on
the classification of SPT phases: (1) interactions can increase
the number of different phases by giving rise to new SPT
phases that cannot be realized in noninteracting systems, and
(2) interactions can decrease the number of different phases
by allowing distinct noninteracting phases to be adiabatically
connected to one another [18]. Here we focus on the latter
effect. We ask, which of the noninteracting SPT phases remain
distinct once we include interactions?

Our strategy for (partially) answering this question is as
follows. First, we construct a lattice free fermion Hamiltonian
Hν for each SPT phase. We then couple the pseudospin-↑ and
pseudospin-↓ fermions to two independent Z2 gauge fields
(Z↑

2 × Z
↓
2 ) and we denote the resulting gauged Hamiltonian by

Hν
gauge (see the Supplemental Material for a precise definition

of Hν
gauge [30]). Finally, we study the braiding statistics of the

Z2 flux excitations of Hν
gauge. We will show that these braiding

statistics depend on ν modulo 8, and hence there must be
at least eight distinct SPT phases, even in the presence of
interactions.

To begin, it is useful to first think about a simpler system
with only one pseudospin component and ν chiral edge
modes. The quasiparticle braiding statistics of such a chiral
superconductor were worked out by Kitaev in Ref. [31]. That
calculation showed that the quasiparticle braiding statistics
of the superconductor depends on the number of chiral edge
modes ν, modulo 16. For example, if ν is even, the Z2 gauge
fluxes (i.e., superconducting vortices) are Abelian anyons with
an exchange phase factor e(π/8)iν . If ν is odd, the Z2 fluxes are
non-Abelian anyons with an exchange phase (−)(ν2−1)/8e(π/8)iν

when the two non-Abelian anyons are in the vacuum fusion
channel.

Now, let us consider the two-component system Hν
gauge.

This system consists of a pseudospin-↑ component with ν

right-moving edge modes and a pseudospin-↓ component with
ν left-moving edge modes. Naively, one might guess that the
braiding statistics of this system also depends on ν modulo 16,
since it is made up of two independent chiral superconductors.

However, this guess is incorrect: The braiding statistics of the
“doubled” system only depends on ν modulo 8. To see this, we
need to show that the braiding statistics for ν = 0,1, . . . ,7 are
all different, while the ν = 0 case is equivalent to the ν = 8
case. One way to establish the first statement is to compute the
exchange phases of all the different types of Z

↓
2 (or Z

↑
2 ) flux

excitations. Here, a Z
↓
2 flux is defined to be any quasiparticle

excitation that acquires a phase of −1 when braided around
a pseudospin-↓ fermion and acquires no phase when braided
around a pseudospin-↑ fermion. Using the results of Ref. [31],
it is easy to see that for even ν there are four types of Z

↓
2 fluxes

with exchange statistics ±e(π/8)iν , while for odd ν there are
two types of Z

↓
2 fluxes with exchange statistics ±e−(π/8)iν . (In

the latter case, we assume the fluxes are in the vacuum fusion
channel). In particular, we see that the exchange statistics of
the Z2 fluxes are different for each of the eight possibilities
ν = 0,1, . . . ,7.

On the other hand, to see that ν = 0 and ν = 8 have the
same braiding statistics, we need to construct an explicit
isomorphism between the quasiparticles in the two systems.
To this end, we consult Ref. [31] and note that for both
ν = 0,8 the gauge theory has four quasiparticles 1,eσ ,mσ ,εσ

for each pseudospin direction, σ = ↑,↓. Including all possible
composites of pseudospin-↑ and pseudospin-↓ excitations,
there are 4 × 4 = 16 quasiparticles all together. We can think
of the εσ as the constituent fermions, while eσ and mσ

are different types of Zσ
2 gauge fluxes which differ from

one another by the addition of a fermion: eσ = mσεσ . Using
the results of Ref. [31], we can see that for both ν = 0,8, the
three particles εσ ,eσ ,mσ acquire a phase of −1 when braided
around each other. The only difference is that eσ and mσ are
bosons for the case ν = 0, while they are fermions for the
case ν = 8. With these properties in mind, one can easily
see that the following map gives an isomorphism between
the quasiparticles in the two systems:

Here, the table is organized so that the first ten quasiparticles
are all bosons, while the other six are all fermions. We
can see that the correspondence not only preserves braiding
statistics and fusion rules, but also preserves the Z

↑
2 × Z

↓
2

gauge structure, mapping the ↓ fermions (ε↓) of one system
onto the corresponding fermions in the other system, and
likewise mapping the Z

↓
2 fluxes (e↓,m↓,ε↑e↓,ε↑m↓) of one

system onto the Z
↓
2 fluxes of the other system (and similarly

for ↑).
Two conclusions follow from the above analysis. First, we

conclude that the Hamiltonians Hν with ν = 0,1, . . . ,7 cannot
be adiabatically connected to one another in the presence of
interactions, without breaking the Z2 symmetry. Indeed, if
there existed a gapped, Z2 symmetric path connecting the
different Hν , then there would have to be a corresponding
gapped path connecting the gauged systems Hν

gauge, since we
define our gauging procedure in such a way that the gauged
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and ungauged Hamiltonians, Hgauge and H , have identical
energy spectra below the energy gap of the Z2 flux excitations
(see the definition of Hgauge in the Supplemental Material).
But a gapped path connecting the gauged Hamiltonians is
not possible since we have seen that they have different
quasiparticle braiding statistics; hence a symmetry-preserving
path connecting the ungauged Hamiltonians is also impossible.
The second conclusion is that it is at least plausible that H 0

and H 8 can be adiabatically connected to one another in the
presence of interactions, since the corresponding Z

↑
2 × Z

↓
2

gauge theories H 0
gauge and H 8

gauge share the same statistics and
gauge structure.

The instability of ν = 8 edge. In this section, we give
additional evidence that the ν = 8 system and ν = 0 system
belong to the same interacting phase: We show that the ν = 8
edge can be gapped out by appropriate interactions, without
breaking the Z2 symmetry (explicitly or spontaneously). We
note that a similar result was obtained previously in Refs. [24–
26].

Our approach is based on bosonization. We note that
the edge of the ν = 8 free fermion system contains eight
pseudospin-↑ Majorana modes and eight pseudospin-↓ Ma-
jorana modes moving in opposite directions. Pairing up
the Majorana modes to form complex fermions, we can
equivalently describe the edge using four pseudospin-↑ and
four pseudospin-↓ complex fermions. We then bosonize
these fermions, using four boson modes �1, . . . ,�4 for the
pseudospin-↑ fermions, and four boson modes �5, . . . ,�8 for
the pseudospin-↓ fermions. The edge is then described by the
chiral boson Lagrangian

Ledge = 1

4π
(KIJ ∂xφI ∂tφJ − VIJ ∂x�I∂x�J ), (3)

where K = diag(1,1,1,1,−1,−1,−1,−1), and VIJ is the
velocity matrix. Here we use a normalization convention
where the fermion creation operators are of the form
ei�k , k = 1, . . . ,8. In this language, the symmetry trans-
formation is given by S−1�S = � + πK−1χ , where χT =
(0,0,0,0,1,1,1,1).

We now construct interaction terms that gap out the
edge without breaking the Z2 symmetry (either explicitly or
spontaneously). We consider backscattering terms of the form
U (
) = U (x) cos[
T K� − α(x)]. In order for U (
) to be
invariant under S, we require that


T χ ≡ 0 (mod 2). (4)

In order to gap out the edge, we need to add four
backscattering terms

∑
i U (
i): Each term can gap out a pair

of counterpropagating edge modes. Such terms can gap out
the edge as long as the {
i} vectors satisfy [32]


T
i K
j = 0 (5)

for all i,j . This “null-vector” condition guarantees that we
can make a suitable change of variables mapping Ledge

onto a system of four decoupled Luttinger liquids with
four backscattering terms. It is then easy to see that the
backscattering terms will gap out the corresponding Luttinger
liquids (at least for large U [33]).

β

U U

Wβ WWβ γ

(a) (b)

(d)

ba ba

(c)

FIG. 1. (Color online) (a) We consider a thought experiment in
which we create two Z

↓
2 fluxes in the bulk and then move them along a

path β to points a,b at the edge. (b) We argue that the two fluxes can
be annihilated at the boundary by applying local operators Ua,Ub.
(c) We define Wβ to be an operator which describes a process in
which the fluxes are created in the bulk, brought to the edge, and
then annihilated. (d) To obtain a contradiction, we consider two paths
β,γ that intersect one another, and we investigate the commutation
algebra of the corresponding operators Wβ ,Wγ .

We now claim that the following {
i} will do the job:


T
1 = (1,−1,0,0,1,−1,0,0);


T
2 = (1,0,−1,0,1,0,−1,0);


T
3 = (1,0,0,−1,1,0,0,−1);


T
4 = (1,0,1,0,0,−1,0,−1). (6)

Indeed, it is easy to check that these {
i} obey the null-vector
criterion (5), as well as the symmetry condition (4). To
complete the argument, we need to check that the perturbation
corresponding to {
i} does not spontaneously break the Z2

symmetry. However, as explained in Ref. [19], we can rule
out the possibility of spontaneous symmetry breaking if the
(8
4) 4 × 4 minors of the 8 × 4 matrix with columns 
1, . . . ,
4

have no common factor. This property of 
1, . . . ,
4 can be
verified by direct calculation.

Protected edge states for ν �= 0 mod 8. On the other hand,
we now show that the edge of Hν is protected if ν �= 0 mod 8.
To state our result more precisely, let us consider a disk
geometry and a Hamiltonian of the form H = Hbulk + Hedge,
where Hbulk = Hν , and Hedge is an arbitrary interacting
Hamiltonian acting on fermions near the edge. In this setup,
what we will show is that the ground state |0〉 cannot be both
Z2 symmetric and “short-range entangled” [34]. We believe
that this result rules out the possibility of a Z2 symmetric,
gapped edge, and in this sense proves that the gapless edge
excitations are protected.

As in Ref. [22], our argument is a proof by contradiction:
We assume that |0〉 is short-range entangled and Z2 symmetric
and we show that these assumptions lead to a contradiction.
The first step is to couple the pseudospin-↑ and pseudospin-↓
fermions to two independent Z2 gauge fields. We then imagine
creating a pair of Z

↓
2 (or Z

↑
2 ) fluxes in the bulk. After creating

the Z
↓
2 fluxes, we separate them and move them along some

path β to points a,b at the boundary [Fig. 1(a)]. Formally, this
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process can be implemented by applying a unitary (stringlike)
operator Wβ to |0〉.

Next, we claim that the Z
↓
2 fluxes can be annihilated

at the boundary if we apply appropriate local operators. That is,
there exist local operators Ua,Ub, acting near points a,b such
that UaUbWβ |0〉 = |0〉 [Fig. 1(b)]. Establishing this claim is
the hardest step in the argument, and here we merely outline
its proof [35]. The basic point is that when we bring the Z

↓
2

fluxes to the boundary, we effectively create two Z
↓
2 domain

walls at a and b. Given that the ground state is Z
↓
2 symmetric,

these domain walls are local excitations: They only affect
expectation values in the neighborhood of a and b. It then
follows that these domain walls can be annihilated by local
operators since local excitations of a short-range entangled
state can always be annihilated locally.

In the third step, we consider a creation and annihilation
process in which two Z

↓
2 fluxes are created in the bulk,

moved to the boundary, and then annihilated. Let Wβ be a
unitary operator describing this process [Fig. 1(c)]. (Formally,
Wβ = UaUbWβ .) Now, consider a second path γ with the
geometry shown in Fig. 1(d) and define Wγ in the same way.
By construction, we have Wβ |0〉 = Wγ |0〉 = |0〉. Hence

WβWγ |0〉 = WγWβ |0〉 = |0〉. (7)

In the final step, we show that (7) leads to a contradiction
if ν �= 0 (mod 8). It is useful to consider separately the case
where ν is even and ν is odd. First, suppose ν is even. In this
case, the Z

↓
2 fluxes are Abelian anyons and it follows from a

general analysis of Abelian quasiparticle statistics (see, e.g.,
Refs. [22,36]) that

WβWγ |0〉 = e2iθWγWβ |0〉, (8)

where eiθ is the exchange phase of the Z
↓
2 fluxes. According

to the braiding statistics calculation outlined above, the four
types of Z

↓
2 fluxes have exchange statistics θ = ±πν

8 . Hence

if ν �= 0 (mod 8), then e2iθ �= 1 for any of the four types of
fluxes, and Eqs. (7) and (8) are in contradiction.

Now suppose ν is odd. In this case, the Z
↓
2 fluxes are non-

Abelian anyons, so the above braiding statistics analysis is
more complicated. However, we can avoid these complications
using an alternative argument. We note that if ν is odd, then
each Z

↓
2 flux carries an unpaired Majorana mode. Thus, the

state Wβ |0〉 has unpaired Majorana modes localized near points
a and b. But then it is clearly impossible for UaUbWβ |0〉 = |0〉
since unpaired Majorana modes cannot be destroyed by any
local operation. Once again, we encounter a contradiction,
implying that our assumption is false and |0〉 cannot be both
Z2 symmetric and short-range entangled.

Conclusions and discussions. In this Rapid Communication
we have studied SPT phases in interacting fermion systems
using a braiding statistics approach. As a simple example,
we considered superconductors with a Z2 (Ising) symmetry.
Although in the noninteracting case these Ising supercon-
ductors are classified by an integer invariant ν ∈ Z, we give
evidence that the classification collapses to Z8 in the presence
of interactions. We also give a general argument proving that
the edge excitations are protected when ν �= 0 (mod 8) and
unprotected when ν = 0 (mod 8).

An interesting question is whether interactions allow for
additional SPT phases with Z2 symmetry that cannot be
realized in free fermion systems. The method developed in this
Rapid Communication may be useful in addressing this issue,
as well as the more general problem of classifying fermionic
SPT phases with unitary symmetries. Such a classification is
especially desirable, as the group cohomology classification
scheme [12,13] cannot be directly applied to fermionic
systems.
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