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Absence of Bose condensation on lattices with moat bands
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We study hard-core bosons on a class of frustrated lattices with the lowest Bloch band having a degenerate
minimum along a closed contour, the moat, in the reciprocal space. We show that at small density the ground
state of the system is given by a noncondensed state, which may be viewed as a state of fermions subject to
Chern-Simons gauge field. At fixed density of bosons, such a state exhibits domains of incompressible liquids.
Their fixed densities are given by fractions of the reciprocal-space area enclosed by the moat.
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Though initially introduced for an ideal Bose gas, notion
of Bose-Einstein condensation [1] (BEC) goes far beyond
the noninteracting case and describes, e.g., superfluidity in
such strongly correlated liquid as 4He [2]. Condensation
remains advantageous even at strong interaction, as con-
densed particles avoid exchange interaction, thus reducing
the average potential energy. Within this picture, elementary
excitations, the quasiparticles [3], exhibit Bose statistics
and gapless soundlike spectrum (for neutral superfluids).
These predictions found countless confirmations in a diverse
range of systems from 4He liquid to cold gases of alkali
atoms [4,5].

The fundamental question is whether the BEC ground state
with bosonic quasiparticle excitations is the unique ground
state of any noncrystalline Bose substance. The goal of this
paper is to present an alternative to this paradigm. To this end
we discuss bosonic liquids in a family of two-dimensional (2D)
lattices, whose band structure exhibits an energy minimum
along a closed line—the moat—in the Brillouin zone (Fig. 1).
The simplest example of the moat lattice is given by graphene’s
honeycomb lattice with nearest and next-nearest hopping
[6–10]. With no interactions the ground state is highly
degenerate as bosons may condense in any state along the
moat as well as in any linear superposition of such states. One
may expect that interactions remove the degeneracy and select
a unique ground state.

In this paper we show that at small filling factors the
ground state does not exhibit BEC. Instead of selecting a single
macroscopically occupied state, it involves all states along the
moat and its vicinity, each one being only singly occupied.
Such a state does not break the underlying U (1) symmetry,
although does break the time-reversal invariance. Moreover,
the elementary excitations are not bosons but rather fermions.
At small enough filling fractions, their spectrum is gapped. As
a result, moat lattices provide an example of dramatic departure
from the “BEC + Landau quasiparticles” paradigm for Bose
liquids.

A useful insight in the physics of the moat lattices comes
from analogy with the fractional quantum Hall effect (FQHE).
There, too, the macroscopic degeneracy of the ground state
is lifted by the interactions. It results in incompressible (i.e.,
gapped) states, when the electron density is an odd integer
fraction of the lowest Landau level maximum occupation.
There is a similar phenomenology associated with the lifting
of degeneracy in the moat lattices. The characteristic particle

density is given by the area AM of the reciprocal space,
enclosed by the moat. For a fractional filling of the form

νl = AM
2l + 1 + κ

, l = 0,1, . . . , (1)

the bosonic ground state is incompressible; here the reciprocal
area is normalized to that of the Brillouin zone. Index κ is
related to the reciprocal space Berry phase and is given by
κ = 0 if the moat encircles � point, Fig. 1(b), and κ = 1 for
moat encircling K and K ′ points, Fig. 1(d). For a generic
lattice filling ν < 1/2, such that νl−1 < ν < νl , the system
breaks into incompressible domains with fillings νl−1 and νl .

Mathematically the moat bands appear, when the lattice
Hamiltonian acquires a polynomial structure of the form

Ĥ = t1T̂ + t2T̂
2 , T̂ =

(
0 Ĝ

Ĝ† 0

)
, (2)

where the matrix structure is in A/B sublattice space and
t1 and t2 are nearest and next-nearest hopping, correspond-
ingly. For the case of honeycomb lattice, Fig. 2, Ĝ = Gk =∑

j=1,2,3 eik·ej with the three lattice vectors ej connecting a site
of sublattice A with three nearest neighbors of sublattice B.
The Hamiltonians of the form (2) are not limited, though, to the
honeycomb lattice. A generic oblique lattice with three distinct
nearest and three distinct next-nearest hopping integrals is
described by Eq. (2), if two conditions are imposed on six
hopping constants [11] [variety of other lattices give rise to
Hamiltonians of the form (2)].

The two energy bands of the Hamiltonian (2) are given
by E

(∓)
k = ∓|t1||Gk| + t2|Gk|2. The lowest energy band E

(−)
k

exhibits a degenerate minimum along the contour M, the
moat, in the reciprocal space given by |Gk| = |t1|/2t2. For the
honeycomb lattice this condition [12] is satisfied for t2 > |t1|/6
(Fig. 1). A similar dispersion relation appears in the context of
particles with isotropic Rashba spin-orbit coupling [13–19].

The issue of Bose condensation for particles with such a
dispersion relation is a nontrivial one. On the noninteracting
level there is no transition at any finite temperature. This
is due to the square root, (E − EM)−1/2, divergence of the
single-particle density of states (DOS) near the bottom of
the band. Such behavior of DOS highlights similarities with
one-dimensional systems, where the ground state of strongly
repulsive bosons is given by the Tonks-Girardeau gas of free
fermions [20–25]. Here we show that the effective fermion
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FIG. 1. (Color online) Lowest energy band of the honeycomb
lattice with t2/t1 = 0 (a), 0.3 (b), 0.5 (c), and 0.9 (d). The minimal
energy contour, the moat M, is shown in light gray (blue online).

picture describes the ground state of hardcore bosons on 2D
moat lattices as well. An important observation [17] is that the
chemical potential of fermions with the dispersion relation of
Fig. 1 scales as μF ∝ ν2 at sufficiently small filling factors
ν � 1 (this is a consequence of the divergent DOS). On the
other hand, for BEC in one of the states along the moat M, the
chemical potential scales as μB ∝ ν, due to on-site repulsion
(notice that the latter does not affect the fermionic energy,
because of the Pauli exclusion). One thus concludes that at a
suffciently small filling ν the fermionic state is energetically
favorable over BEC.

To build a fermionic state of Bose particles one may
use Chern-Simons flux attachments familiar in the context
of FQHE [26–30]. This leads to composite fermions (CF)

e1e3

t 2

a2

t1

a1 3a

e2

0 0

0

4πν

FIG. 2. (Color online) The unit cell of honeycomb lattice with
lattice vectors ai and ei , i = 1,2,3. Full (empty) sites belong to the
sublattice A (B). Total Chern-Simons flux is a combination of (i)
πν fluxes through each of the triangles and (ii) phases exp (−iπν)
attached to sides of the full regular triangle and exp (iπν) attached to
the sides of the empty regular triangle. This arrangement of phases
corresponds to the Haldane modulation of phases with staggered
φH = −�/6 = −2πν/3 (see main text).

FIG. 3. (Color online) Phase diagram of hard-core bosons on a
honeycomb lattice. CF and BEC are composite fermion and Bose
condensate states respectively. Also shown are incompressible states
with fractionally quantized filling fractions νl .

subject to a dynamic magnetic field produced by the attached
flux tubes. Following FQHE ideas, one may treat the latter in
the mean-field approximation by substituting on-site density
operators by their expectation values. In the context of
FQHE this leads to a uniform magnetic field, which partially
compensates for the external one. The lattice version of
this procedure is somewhat more subtle, however. Since the
particles (and thus the fluxes, attached to them) are confined
to stay on the lattice sites, a uniform lattice filling ν does not
translate into a uniform magnetic field. As we explain below,
it rather leads to a uniform magnetic flux 4πν per unit cell
superimposed with a staggered Haldane [31] flux arrangement.
At small filling factors, ν � 1, the corresponding Hofstadter
spectrum consists of quantized Landau levels, separated by
cyclotron gaps. The latter protects the ground state from
divergent fluctuation correction, rendering (local) stability of
the mean-field ansatz. The corresponding phase diagram is
schematically depicted in Fig. 3.

To quantify these ideas we start from the Hamiltonian,
written in terms of bosonic creation and annihilation operators
b
†
r, br, which commute at different cites, [b±

r ,br′ ] = 0, r �= r′,
and fulfill the hard-core condition (b†r)2 = (br)2 = 0. For, e.g.,
the honeycomb lattice the Hamiltonian takes the form

H = t1
∑
r,j

b†rbr+ej
+ t2

∑
r,j

b†rbr+aj
+ H.c., (3)

where the vectors ej and aj , j = 1,2,3, are shown in Fig. 2.
Chemical potential, μ, is related to the average on-site
occupation ν through an equation of state.

Motivated by the observation that the fermionic chemical
potential is lower than that of BEC, we proceed with the
Chern-Simons transformation [26–30]. To this end we write
the bosonic operators as

b(†)
r = c(†)

r e±i
∑

r′ �=r arg[r−r̃]nr̃ , (4)
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where the summation runs over all sites of the lattice. Since
the bosonic operators on different sites commute, the newly
defined operators cr and c

†
r obey fermionic commutation

relations. Also notice that the number operator is given by
nr = c

†
rcr. Upon transformation (4) hopping terms of the

Hamiltonian (3) acquire phase factors ei
∑

r̃ φr̃,r,r′nr̃ , where φr̃,r,r′

is an angle at which the link 〈r,r′〉 is seen from the lattice site
r̃. In terms of the fermionic operators the Hamiltonian (3)
reads as

H = t1
∑
r,j

c†rcr+ej
e
i
∑

r̃ φr̃,r,r+ej nr̃

+ t2
∑
r,j

c†rcr+aj
e
i
∑

r̃ φr̃,r,r+aj
nr̃ + H.c. (5)

Notice that the hard-core condition is taken care of by the Pauli
principle and thus fermions may be considered as noninteract-
ing. Using the expression for φr̃,r,r′ , one can directly check that∑

r̃ φr̃,r,r+ei
nr̃ − ∑

r̃ φr̃,r,r+ej
nr̃ = ∑

r̃ φr̃,r,r+ei−ej
nr̃, for any

two vectors ei/j , i,j = 1,2,3 shown in Fig. 2. The right-hand
side of this equation can be identified with the phase acquired
by the next-nearest-neighbor hopping term along al = ei − ej ,
while the left-hand side represents the phase of two consecutive
nearest-neighbor (NN) hops along vectors ei and −ej . As a
result, the Hamiltonian (5) retains the algebraic structure of
Eq. (2), where operator T̂ describes fermions in NN graphene
lattice subject to CS fluxes.

To analyze the consequences of these phase factors we
adopt the mean-field ansatz [26,28], nr̃ ≈ 〈nr̃〉 ≡ ν. This
substitutes fluctuating CS phases with an external magnetic
field, carrying flux � = 4πν per unit cell (two sites, each
with the occupation ν and 2π flux per particle). While NN
hoping operator T̂ is sensitive only to this total flux, the
next-NN operator T̂ 2 implies that the magnetic field exhibits
Haldane modulation [31] within the unit cell. Indeed the phase
factor, corresponding to a link 〈rr′〉, is ϕrr′ = ∑

r̃�=r,r′ φr̃,rr′ν +
(arg[r − r′] − arg[r′ − r])ν. For a counterclockwise travel
along any elemental (i.e., not encircling any lattice points)
triangle, the first term here accumulates the net phase πν.
The second term brings phase −πν for small 120◦ triangles
and phase 3πν for large equilateral triangle (Fig. 2). As
a result, the entire flux � is concentrated into a half of
the unit cell—the large empty triangle. This corresponds
to Haldane modulation [31] with the staggering parameter
φH = −�/6, superimposed with the uniform flux �. Notice
that only such configuration of fluxes results in the algebraic
Hamiltonian (2), while, e.g., a constant magnetic field does
not admit representation (2).

This algebraic structure (2) greatly simplifies spectral
problem by reducing it to diagonalization of the NN operator
T̂ . As mentioned above, the latter is sensitive only to the total
flux �, but not to the staggered component φH . At small filling
factors (i.e., magnetic fields) its spectrum may be analyzed
in the semiclassical approximation [32]. Accordingly, the
eigenvalues of T̂ , denoted as Gl(�), where l = 0,1, . . ., can
be found by (i) considering the constant energy contours
|Gk| = const = G of the bare operator in the reciprocal k
space and (ii) identifying Gl(�) with energy G of contours

2t

E

FIG. 4. (Color online) Hofstadter energy spectrum vs filling frac-
tion ν ∈ [0,1/2], for t2 = t1/4, i.e., moat M is around the � point.
Notice that the bottom of the Hofstadter spectrum is flat, which is a
consequence of the fact that all Landau levels exhibit minima at the
same energy E = −t2

1 /4t2.

having normalized reciprocal area

Al =
(

l + 1

2
− κ

)
�

2π
, (6)

where 2πκ is the Berry phase [33,34]. Finally, the spectrum
of the Hamiltonian (2), which describes the lattice subject to
the uniform magnetic flux � and Haldane modulation φH =
−�/6, is found in terms of Gl(�) as

El(�) = −t1Gl(�) + t2[Gl(�)]2 . (7)

Since we have attached exactly one flux quantum per fermion,
all states at the lowest Landau level (LLL) are occupied. As
a result, the many-body ground-state energy follows LLL.
The peculiarity of the moat dispersion is that LLL is not
necessarily l = 0 one, but a level with l ≈ AM/ν (see inset in
Fig. 5). Indeed, Landau levels (7) are nonmonotonic functions
of flux. They reach the minimum at G = t1/2t2, i.e., exactly
at the very bottom of the moat. Recalling that � = 4πν, one
obtains the set of the filling factors νl , Eq. (1), where LLL
(and thus the ground-state energy) reaches its minima. As an
illustration, consider the moat closely encircling K and K ′
points [Fig. 1(d)]. In this case Gk ≈ 3|k|/2 and κ = 1/2 [31],

from Eq. (6) one finds Gl(�) =
√√

3�l, leading to El(�) =
−t1

√√
3�l + t2

√
3�l. The nonmonotonic dependence on �

is evident.
To go beyond the semiclassical approximation we consider

the Hofstadter problem on the lattice, including Haldane
modulation. For a rational flux � = 4πp/q (p and q are
positive integers) diagonalization of the operator T̂ reduces
to Harper equation, which can be analyzed numerically.
For such fluxes the spectrum splits onto q nonoverlapping
subbands, labeled by m = 1,2, . . . ,q. The corresponding
spectrum Em,k(�), Fig. 4, acquires the form of the Hofstadter
butterfly [35]. Notice the flatness of the lower edge of the
spectrum, which reflects the divergent DOS at this energy.
Figure 5 amplifies the lowest part of the Hofstadter spectrum.
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FIG. 5. (Color online) Bottom part of Fig. 4. Thick (red [gray])
line represents the ground-state energy per particle, Eg.s.(ν), obtained
numerically from the Hofstadter energy spectrum. Arrows show
fractionally quantized filling fractions (1). Dashed line is the
macroscopic chemical potential exhibiting jumps at the fractionally
quantized filling fractions. Dotted line is the chemical potential of the
Bose condensed state. Inset: Semiclassical Landau levels as functions
of the filling fraction.

Nonmonotonic Landau levels, Eq. (7), are clearly visible at
small filling fractions. The ground-state energy per particle
Eg.s.(ν) = q

Np

∑p

m=1

∑N/q

k Em,k(4πp/q), where N is number
of lattice sites, is shown in Fig. 5. For small filling fractions
it closely follows the semiclassical LLL (7), exhibiting the

minima at the fractionally quantized filling fractions νl , Eq. (1).
Due to Maxwell phase separation rule, this leads to the
macroscopic chemical potential of the staircase shape with
the jumps at the fractionally quantized filling fractions (1) (see
Fig. 5). The flat regions of the staircase imply phase separation
into domains with fillings νl and νl+1.

As seen in Fig. 5, for ν � 1 the Hofstadter spectrum
consists of well-separated (broadened) Landau levels. As a
result the CF ground state is separated by an energy gap from
excitations. This renders stability of the mean-field ansatz
against small fluctuations. Notice that the CF spectrum is
gapless at ν = 1/2, Fig. 4 (indeed, flux per cell is � = 2π and
may be gauged away), suggesting that the mean-field ansatz
may be inapplicable (at least not in the form adopted above).

To conclude, we considered the nature of the ground state
and low-energy excitations of repulsive bosons on lattices
with moat bands. The optical lattices with appropriate char-
acteristics have been reported [7–10] very recently, opening
a way for experiments on cold bosonic atoms with moat
dispersion. We have shown that at small filling factors the
expected ground state is not BEC but is rather a filled LLL
of composite fermions. The excitations are gapped and have
fermionic statistics. This manifests itself in discontinuous
jumps of the chemical potential at fractional filling fractions,
Eq. (1).
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