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Spin-polarized current state of electrons in bilayer graphene
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We propose a model of spin-polarized current state for electrons in bilayer graphene. The model resolves
the puzzles as revealed by experiments that (a) the energy gap Egap of the insulating ground state at the charge
neutrality point (CNP) can be closed by a perpendicular electric field of either polarity, (b) Egap increases
significantly with increasing the magnetic field B, (c) the particle-hole spectrum is asymmetric in the presence
of B, (d) there is a peak structure in the electric conductivity at small B at the CNP, and (e) there are quantum
Hall states stemming from lifting of degeneracy in the lowest Landau level. The model predicts that the ground
state of the system close to the CNP is a ferrimagnet at finite B and the Hall current is spin polarized.
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Recently, the bilayer graphene (BLG) has been studied
extensively because of its potential application to new elec-
tronic devices [1–4]. Many experiments [5–8] performed
on high-quality suspended BLG samples have shown strong
evidence for the gapped ground state of electrons at the charge
neutrality point (CNP). The main experimental findings are
as follows: (i) The ground state is insulating with a gap
that can be closed by a perpendicular electric field of either
polarity, (ii) the gap grows with increasing magnetic field B

as Egap = �0 +
√

a2B2 + �2
0 with �0 ≈ 1 meV and a ≈

5.5 meV T−1, (iii) the state is particle-hole asymmetric in
the presence of the magnetic field B, (iv) there is a peak
structure in the electric conductivity at small B ≈ 0.04 T at
the CNP, and (v) there are quantum Hall states (ν = 0, ±1,
±2 and ±3) stemming from lifting of degeneracy in the lowest
Landau level. These experimental observations are still puzzles
to the existing theories [9–18] including the models of the
ferroelectric-layer asymmetric state [9,10] or quantum valley
Hall state (QVH) [12], layer-polarized antiferromagnetic state
(AF) [13], quantum anomalous Hall state (QAH) [11,14,15],
quantum spin Hall state (QSH) [11,15], and ordered-current
state (OCS) [16–18]. The QVH, QAH, and QSH states all
have been ruled out by the experiment [7]. It is shown that the
AF state is not able to reproduce the gap growth with B [18].
The carrier density position of the gap given by the OCS
deviates from the CNP at finite B and the OCS cannot correctly
explain (v).

In this work, we propose a model of spin-polarized current
state (SPCS) for the electrons in BLG. We study the order
parameters, the gap behavior, and the energy levels of the
SPCS in the presence of the magnetic field. We will show
that the experimental observations (i)–(v) stated above can be
explained by the present theory. With the theory, we will also
give new predictions.

The Hamiltonian. The unit cell of the BLG lattice shown
in Fig. 1 contains atoms a and b on the top layer, and a′
and b′ on the bottom layer with lattice constant a ≈ 2.4 Å
and interlayer distance d ≈ 3.34 Å. The energy of intralayer
nearest-neighbor (NN) [between a (a′) and b (b′)] and
interlayer NN (between b and a′) electron hopping are t and
t1, respectively. From the density-functional calculation [19]
and the experiments [20], the values of these quantities are
determined in the ranges: 2.8 eV < t < 3.1 eV and 0.27 eV

<t1 < 0.4 eV. We here take t = 3 eV and t1 = 0.273 eV. The
Hamiltonian of the continuum model for the noninteracting
electrons is

H0 =
∑
vkσ

C
†
vkσH 0

vkCvkσ , (1)

with C
†
vkσ = (c†avkσ ,c

†
bvkσ ,c

†
a′vkσ ,c

†
b′vkσ ) and H 0

vk = ε0(svkxσx−
kyσy)τ0 − t1(σ−τ+ + σ+τ−), where c

†
lvkσ creates a spin-σ

electron of momentum k in valley v [= K ≡ (4π/3a,0) or
K ′ = −K] of sublattice l, k is measured from the Dirac point
K (K ′) and confined to a circle k � 1/a in K (K ′) valley,
sv = 1 (−1) for v = K (K ′), ε0 = √

3t/2, the Pauli matrices
σ ’s operate in (a,b) or (a′,b′) space, and τ ’s in the space of
(top, bottom) layers. We hereafter use the units of ε0 = a = 1.

The interaction part of the Hamiltonian is

H ′ = U
∑
lj

δnlj↑δnlj↓ + 1

2

∑
li �=l′j

vli,l′j δnliδnl′j , (2)

where δnliσ = nliσ − n/2 is the number deviation of electrons
with spin σ from the average occupation n/2 at site i of
sublattice l, δnli = δnli↑ + δnli↓, and U and v’s are the
interactions between electrons. The off-site interactions here
are given as v(r) = e2[1 − exp(−q0r)]/r where r = |	r| with
	r as a vector from li to lj , and q0 is a parameter that
approximately takes into account the wave function spreading
effect in short range. According to the many-particle theory,
since the exchange self-energy of electrons contains the
screening due to the electronic charge fluctuations, we adopt
the effective exchange interaction,

vxc(r) = e2

r
(
1 + αqsr + q2

s r
2
) , (3)

where qs = 2πe2χ0 is the screening constant with χ0 =
t1 ln 4/π (aε0)2 the polarizability by the random-phase ap-
proximation (RPA) [21], and α is an adjustable parameter.
Note that the form of vxc(r) is consistent with the RPA in
the limit r → ∞. The total Hamiltonian H0 + H ′ satisfies the
particle-hole symmetry [22].

Self-energy of electrons. The self-energy �σ
ll′(k) contains

the Hartree and exchange terms. The off-diagonal part of
the self-energy comes from the exchanges and results in a
renormalization of H 0

vk . We will drop this part by supposing
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FIG. 1. (Color online) Top view of the bilayer graphene. Atoms
a (a′) and b (b′) are on the top (bottom) layer.

that it has already been included in H 0
vk . The Hartree terms in

the diagonal part stem from the density orderings 〈δnljσ 〉’s. In
terms of the orderings of spin ml = (〈δnlj↑〉 − 〈δnlj↓〉)/2 and
charge ρl = 〈δnlj↑〉 + 〈δnlj↓〉, we have 〈δnljσ 〉 = σml + ρl/2
with σ = +(−) for spin-up (-down). Since the charge ordering
ρl is the deviation from the average electron concentration
n, those ρl’s satisfy the relations ρa = −ρb′ and ρb = −ρa′ .
The exchange self-energy in the diagonal part is due to
the average 〈cliσ c

†
ljσ 〉 = Rlσ (r) + iIlσ (	r). The imaginary part

Ilσ (	r) is proportional to a current that breaks the time-reversal
symmetry. In the previous work [18], we neglected the spin
dependence in 〈cliσ c

†
ljσ 〉. Here, we keep the spin dependence

in this average. Under the mean-field approximation and
neglecting the terms of orders �O(k), the self-energy in the
diagonal part is obtained as

�σv
ll = εl − σu0ml − sv�lσ − vcδ/2, (4)

where εl is due to the charge ordering, �lσ stems from
the current ordering, δ = n − 1, and u0 and vc are effective
interactions (see Supplemental Material [23]). In terms of
ρl , εl’s are given by εa = vaaρa + vabρb, εb = vbbρb + vbaρa ,
εb′ = −εa , and εa′ = −εb. The interactions vaa , vbb, and
vab = vba are defined in Supplemental Material [23]. The order
parameters ρl , ml , and �lσ are determined by

ρl = 1

2N

∑
vkσ

(〈c†lvkσ clvkσ 〉 − 〈c†
l̄vkσ

cl̄vkσ 〉), (5)

ml = 1

2N

∑
vkσ

σ 〈c†lvkσ clvkσ 〉, (6)

�lσ = vs

N

∑
vk

sv〈c†lvkσ clvkσ 〉, (7)

where N is the total number of the unit cells, the k summations
run over a single valley, the sublattice l̄ means that ā = b′ and
b̄ = a′ and vis-à-vis, and vs is an effective interaction (see
Supplemental Material [23]).

The SPCS at the CNP with B = 0. At the CNP and in
the absence of external electric and magnetic field, we expect
the gap stems only from the current ordering and impose the
conditions �lσ = −�l̄σ and �l↑ = −�l↓ on the solution. The
gap between the valence and conduction bands is 2|�aσ |. To
reproduce the experimental data �0 = 1 meV, vs needs to be
6.372. With this condition, the adjustable parameter α in vxc(r)
given by Eq. (3) is determined as 4.69. The other interaction

parameters are determined as u0 = 6.38, vc = 5.38, vaa ≈
vbb = 3.3, and vab = vba = 6.58 (by taking q0 = 0.5/a, see
Supplemental Material [23]). With these parameters, we obtain
ρl = ml = 0 except �lσ being finite.

The relation �l↑ = −�l↓ means that the current flows in
the opposite direction for the opposite spin. Therefore, the
system is in the spin-polarized current state.

The SPCS at finite B. Under the magnetic field B applied
perpendicularly to the BLG plane, the vector potential is
	A = (0,Bx). By using the raising and lowering operators a†

and a for the variable x + ky/B = (a† + a)/
√

2B and the
operator kx = −i∇x = i

√
B/2(a† − a), the operator svkx +

i(ky + Bx) in H 0
vk becomes i

√
2Ba† for v = K or i

√
2Ba for

v = K ′. The eigenfunction is expressed as ψ
μ
vnσ = �vnX

μ
vnσ

with μ as the band index, and �vn (a 4 × 4 diagonal matrix)
and X

μ
vnσ (a four-component vector normalized to unity) are

defined as

�vn = Diag(iφn−1+sv
,φn−1,φn−1, − iφn−1−sv

),

Xμ
vnσ = (

x1μ
vnσ ,x2μ

vnσ ,x3μ
vnσ ,x4μ

vnσ

)t
,

where φn is the nth level wave function of a harmonic oscillator
centered at xc = −ky/B, and the superscript t means the
transpose of the vector. Here, when the subscript n of φn is
negative, the corresponding component in X

μ
vnσ is understood

as zero. Especially, for n = 0, there is only one state of energy
�σK

aa (�σK ′
b′b′ ) at K (K ′) valley with the electrons staying on a

(b′) sublattice. The vector X
μ
vnσ and the eigenenergy E

μ
vnσ are

determined by HvnσX
μ
vnσ = E

μ
vnσX

μ
vnσ , with

Hvnσ =

⎛
⎜⎜⎜⎝

�σv
aa ε+

vn 0 0

ε+
vn �σv

bb −t1 0

0 −t1 �σv
a′a′ ε−

vn

0 0 ε−
vn �σv

b′b′

⎞
⎟⎟⎟⎠,

and ε±
vn = √

B(2n − 1 ± sv). The k summations in
Eqs. (5)–(7) for self-consistently determining the order
parameters are now changed to summations over the
y-component momentum ky and the Landau states [18].

The solution at δ = 0 to the order parameters �lσ and ml

are plotted in Fig. 2. At the CNP, these parameters satisfy
the relationships: �lσ = −�l̄σ and ml = ml̄ , while the charge
ordering parameters ρl vanish. As shown in the left panel of
Fig. 2, the magnitudes of the current parameters �l+ = �l↑
for spin-up electrons increases with B, but the magnitude of
�l− = �l↓ for spin-down electrons decreases with B in a
small interval of B close to zero; �l− vanishes at B ≈ 0.15 T
and then very slowly increases with B. The behaviors of �lσ

can be understood by simply looking into the property of the
n = 0 state. As noted above, the energy of the state is �σK

aa =
−σmau0 − �aσ at K valley or �σK ′

b′b′ = −σmb′u0 + �b′σ at
K ′ valley. The energy is negative for spin-up electrons, while
it is positive for spin-down electrons. At zero temperature and
at the CNP, the latter state is empty. Therefore, the magnetic
field enhances �l↑ but suppresses �l↓.

Because there are more negative energy states for spin-
up electrons than for spin-down electrons at finite B and at
the CNP, the system has a total net spin. It is seen from the
right panel of Fig. 2, the system is a ferrimagnet with the
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FIG. 2. (Color online) (Left) Order parameter �lσ as a function
of magnetic field B. The main panel shows the result for spin-
up electrons. The inset is for spin-down electrons. (Right) Spin
polarization ml of sublattice l as a function of magnetic field B.

sublattices a and b′ being equally spin-up ordered and the
b and a′ sublattices spin-down ordered. The magnitude of
the spin polarization ml is approximately linear in B. The
magnetization comes solely from the orbital current ordering
but not the Zeeman splitting. The Zeeman splitting has been
neglected here because the orbital effect is about 46 times
larger than it. The “spin-up” here merely means its current
ordering parameter �a↑ is positive.

The Landau levels in the conduction and valence bands
close to zero at B = 1 T are shown in Fig. 3. At the CNP,
because of ρl = 0 and ml = ml̄ and �lσ = −�l̄σ , the energy
levels are degenerated for exchanging the two valleys. On the
other hand, the levels are different for different spins because
of the spin polarization and the different current orderings.
The obvious difference appears at the levels of n = 0 and 1.
The energy levels of n = 1 are determined by the upper-left
(lower-right) 3 × 3 matrix of HK1σ (HK ′1σ ). To order O(B),
the level of n = 1 nearly degenerated with the level �σK

aa of
n = 0 is obtained approximately as

EK1σ ≈ �σK
aa + 2B

(
�σK

a′a′ − �σK
aa

)
/t2

1 . (8)

FIG. 3. (Color online) Landau levels Eμ
vnσ in the valence and

conduction bands at B = 1 T. The lines represent the continuum
conduction (solid) and valence (dashed) bands at B = 0 with
momentum k as the abscissa.

FIG. 4. (Color online) Energy gap Egap at CNP as a function of
B compared with the experimental result (Exp) [7].

The perturbation EK1σ − �σK
aa is positive for spin-up electrons

but negative for spin-down electrons. By viewing the energy
levels, the energy gap at the CNP is found as the difference
between Ec

K1↓ in the conduction band and Ev
K2↓ in the valence

band,

Egap = Ec
K1↓ − Ev

K2↓. (9)

Comparison with experiments. (i) By experiment [7], the
gap is measured through the electric conductivity with a
source-drain voltage applied to the sample. During such an
electric transport process, the spin should not be altered and
the gap should be given by Eq. (9). The gap is shown as
a function of B in Fig. 4. Except a dip at B ≈ 0.15 T, the
theory reproduces satisfactorily the experimental result [7].
(ii) Although the dip is not observed in Ref. [7], the appearance
of the dip is in qualitatively agreement with the observation by
Weitz et al. [5]. The latter experiment shows that there is peak
structure in the electric conductivity at |B| ≈ 0.04 T, which
implies the dip in the energy gap. (iii) On the other hand,
the energy bands have no particle-hole symmetry, which is
in agreement with the experiment [7]. (iv) Because the levels
of n = 0 and 1 of spin-up electrons in the valence band are
occupied while their counterparts of spin-down electrons in the
conduction band are empty, we have obtained the insulating
state with ν = 0 at the CNP. This is different from the
previous OCS model [18] by which the levels n = 0 and 1
are degenerated for both spins and all are occupied (empty)
when they are negative (positive). Thus, the electron density
of the gapped state given by the previous model cannot not
be viewed at the CNP. (v) Finally, the gap can be closed by
perpendicular electric field in either direction. To see it, we
apply voltages ±V , respectively, to the top and bottom layers.
This causes charge polarization between the two layers. The
quantity εl in Eq. (4) now includes the voltage and the charge
ordering effect (and is finite). For positive (negative) V , we
get positive (negative) εa . The level �

↑K
aa (�↑K ′

b′b′ ) in the valence

band raises, while the level �
↓K ′
b′b′ (�↓K

aa ) in the conduction
band decreases. At certain V , the phase transition with the
particle distribution changing in the top level of the valence
band and bottom level of conduction band happens and the
gap closes [18].
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Quantum Hall states (QHS) of integer |ν| � 4. By doping
electrons, the level Ec

K1↓ or Ec
K ′1↓ is first filled with spin-down

electrons. The occupation of level Ec
K1↓ (Ec

K ′1↓) close to �
↓K
aa

(�↓K ′
b′b′ ) means that the sublattice a (b′) is mostly occupied.

Therefore, if the level Ec
K1↓ is filled, there will exist charge

ordering with ρa > 0 and ρb < 0, resulting in εa < 0 and
Ec

K1↓ < Ec
K ′1↓. This is the state of ν = 1. Analogously, we can

analyze the other states of integer |ν| � 4. The key point is that
under the carrier doping the valley degeneracy of the Landau
levels is lifted by the charge orderings ρl �= 0 (see Supplemen-
tal Material [23]). The appearance of these QHS is in qualita-
tive agreement with the experimental observations [24,25].

Prediction. As stated above, the system is a ferrimagnet at
the CNP under the magnetic field. Moreover, since the Hall
states of ν = 1, 2, 3, and 4 correspond to the occupations of

the levels of n = 0 and 1 in the conduction band with spin-
down electrons, the Hall current in these states is spin-down
polarized. On the other hand, the Hall current in the states of
ν = −1, −2, or −3 is spin-up polarized because the states of
n = 0 and 1 in the valence band are for spin-up electrons.

Summary. On the basis of the four-band continuum Hamil-
tonian, we have proposed a model of spin-polarized current
state for the interacting electrons in BLG. The model can
explain the experimental observations (i)–(v) as stated in the
beginning of the paper. The model predicts that (a) the ground
state of the system close to the CNP is a ferrimagnet at finite
B and (b) the Hall current is spin polarized.
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